summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/linear/CholeskyDecompositionImpl.java
blob: bde380e158ef2c594d8fcf5ba5669371bfeabc39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.linear;

import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;


/**
 * Calculates the Cholesky decomposition of a matrix.
 * <p>The Cholesky decomposition of a real symmetric positive-definite
 * matrix A consists of a lower triangular matrix L with same size that
 * satisfy: A = LL<sup>T</sup>Q = I). In a sense, this is the square root of A.</p>
 *
 * @see <a href="http://mathworld.wolfram.com/CholeskyDecomposition.html">MathWorld</a>
 * @see <a href="http://en.wikipedia.org/wiki/Cholesky_decomposition">Wikipedia</a>
 * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
 * @since 2.0
 */
public class CholeskyDecompositionImpl implements CholeskyDecomposition {

    /** Default threshold above which off-diagonal elements are considered too different
     * and matrix not symmetric. */
    public static final double DEFAULT_RELATIVE_SYMMETRY_THRESHOLD = 1.0e-15;

    /** Default threshold below which diagonal elements are considered null
     * and matrix not positive definite. */
    public static final double DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD = 1.0e-10;

    /** Row-oriented storage for L<sup>T</sup> matrix data. */
    private double[][] lTData;

    /** Cached value of L. */
    private RealMatrix cachedL;

    /** Cached value of LT. */
    private RealMatrix cachedLT;

    /**
     * Calculates the Cholesky decomposition of the given matrix.
     * <p>
     * Calling this constructor is equivalent to call {@link
     * #CholeskyDecompositionImpl(RealMatrix, double, double)} with the
     * thresholds set to the default values {@link
     * #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD} and {@link
     * #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD}
     * </p>
     * @param matrix the matrix to decompose
     * @exception NonSquareMatrixException if matrix is not square
     * @exception NotSymmetricMatrixException if matrix is not symmetric
     * @exception NotPositiveDefiniteMatrixException if the matrix is not
     * strictly positive definite
     * @see #CholeskyDecompositionImpl(RealMatrix, double, double)
     * @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD
     * @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD
     */
    public CholeskyDecompositionImpl(final RealMatrix matrix)
        throws NonSquareMatrixException,
               NotSymmetricMatrixException, NotPositiveDefiniteMatrixException {
        this(matrix, DEFAULT_RELATIVE_SYMMETRY_THRESHOLD,
             DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD);
    }

    /**
     * Calculates the Cholesky decomposition of the given matrix.
     * @param matrix the matrix to decompose
     * @param relativeSymmetryThreshold threshold above which off-diagonal
     * elements are considered too different and matrix not symmetric
     * @param absolutePositivityThreshold threshold below which diagonal
     * elements are considered null and matrix not positive definite
     * @exception NonSquareMatrixException if matrix is not square
     * @exception NotSymmetricMatrixException if matrix is not symmetric
     * @exception NotPositiveDefiniteMatrixException if the matrix is not
     * strictly positive definite
     * @see #CholeskyDecompositionImpl(RealMatrix)
     * @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD
     * @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD
     */
    public CholeskyDecompositionImpl(final RealMatrix matrix,
                                     final double relativeSymmetryThreshold,
                                     final double absolutePositivityThreshold)
        throws NonSquareMatrixException,
               NotSymmetricMatrixException, NotPositiveDefiniteMatrixException {

        if (!matrix.isSquare()) {
            throw new NonSquareMatrixException(matrix.getRowDimension(),
                                               matrix.getColumnDimension());
        }

        final int order = matrix.getRowDimension();
        lTData   = matrix.getData();
        cachedL  = null;
        cachedLT = null;

        // check the matrix before transformation
        for (int i = 0; i < order; ++i) {

            final double[] lI = lTData[i];

            // check off-diagonal elements (and reset them to 0)
            for (int j = i + 1; j < order; ++j) {
                final double[] lJ = lTData[j];
                final double lIJ = lI[j];
                final double lJI = lJ[i];
                final double maxDelta =
                    relativeSymmetryThreshold * FastMath.max(FastMath.abs(lIJ), FastMath.abs(lJI));
                if (FastMath.abs(lIJ - lJI) > maxDelta) {
                    throw new NotSymmetricMatrixException();
                }
                lJ[i] = 0;
           }
        }

        // transform the matrix
        for (int i = 0; i < order; ++i) {

            final double[] ltI = lTData[i];

            // check diagonal element
            if (ltI[i] < absolutePositivityThreshold) {
                throw new NotPositiveDefiniteMatrixException();
            }

            ltI[i] = FastMath.sqrt(ltI[i]);
            final double inverse = 1.0 / ltI[i];

            for (int q = order - 1; q > i; --q) {
                ltI[q] *= inverse;
                final double[] ltQ = lTData[q];
                for (int p = q; p < order; ++p) {
                    ltQ[p] -= ltI[q] * ltI[p];
                }
            }

        }

    }

    /** {@inheritDoc} */
    public RealMatrix getL() {
        if (cachedL == null) {
            cachedL = getLT().transpose();
        }
        return cachedL;
    }

    /** {@inheritDoc} */
    public RealMatrix getLT() {

        if (cachedLT == null) {
            cachedLT = MatrixUtils.createRealMatrix(lTData);
        }

        // return the cached matrix
        return cachedLT;

    }

    /** {@inheritDoc} */
    public double getDeterminant() {
        double determinant = 1.0;
        for (int i = 0; i < lTData.length; ++i) {
            double lTii = lTData[i][i];
            determinant *= lTii * lTii;
        }
        return determinant;
    }

    /** {@inheritDoc} */
    public DecompositionSolver getSolver() {
        return new Solver(lTData);
    }

    /** Specialized solver. */
    private static class Solver implements DecompositionSolver {

        /** Row-oriented storage for L<sup>T</sup> matrix data. */
        private final double[][] lTData;

        /**
         * Build a solver from decomposed matrix.
         * @param lTData row-oriented storage for L<sup>T</sup> matrix data
         */
        private Solver(final double[][] lTData) {
            this.lTData = lTData;
        }

        /** {@inheritDoc} */
        public boolean isNonSingular() {
            // if we get this far, the matrix was positive definite, hence non-singular
            return true;
        }

        /** {@inheritDoc} */
        public double[] solve(double[] b)
            throws IllegalArgumentException, InvalidMatrixException {

            final int m = lTData.length;
            if (b.length != m) {
                throw MathRuntimeException.createIllegalArgumentException(
                        LocalizedFormats.VECTOR_LENGTH_MISMATCH,
                        b.length, m);
            }

            final double[] x = b.clone();

            // Solve LY = b
            for (int j = 0; j < m; j++) {
                final double[] lJ = lTData[j];
                x[j] /= lJ[j];
                final double xJ = x[j];
                for (int i = j + 1; i < m; i++) {
                    x[i] -= xJ * lJ[i];
                }
            }

            // Solve LTX = Y
            for (int j = m - 1; j >= 0; j--) {
                x[j] /= lTData[j][j];
                final double xJ = x[j];
                for (int i = 0; i < j; i++) {
                    x[i] -= xJ * lTData[i][j];
                }
            }

            return x;

        }

        /** {@inheritDoc} */
        public RealVector solve(RealVector b)
            throws IllegalArgumentException, InvalidMatrixException {
            try {
                return solve((ArrayRealVector) b);
            } catch (ClassCastException cce) {

                final int m = lTData.length;
                if (b.getDimension() != m) {
                    throw MathRuntimeException.createIllegalArgumentException(
                            LocalizedFormats.VECTOR_LENGTH_MISMATCH,
                            b.getDimension(), m);
                }

                final double[] x = b.getData();

                // Solve LY = b
                for (int j = 0; j < m; j++) {
                    final double[] lJ = lTData[j];
                    x[j] /= lJ[j];
                    final double xJ = x[j];
                    for (int i = j + 1; i < m; i++) {
                        x[i] -= xJ * lJ[i];
                    }
                }

                // Solve LTX = Y
                for (int j = m - 1; j >= 0; j--) {
                    x[j] /= lTData[j][j];
                    final double xJ = x[j];
                    for (int i = 0; i < j; i++) {
                        x[i] -= xJ * lTData[i][j];
                    }
                }

                return new ArrayRealVector(x, false);

            }
        }

        /** Solve the linear equation A &times; X = B.
         * <p>The A matrix is implicit here. It is </p>
         * @param b right-hand side of the equation A &times; X = B
         * @return a vector X such that A &times; X = B
         * @exception IllegalArgumentException if matrices dimensions don't match
         * @exception InvalidMatrixException if decomposed matrix is singular
         */
        public ArrayRealVector solve(ArrayRealVector b)
            throws IllegalArgumentException, InvalidMatrixException {
            return new ArrayRealVector(solve(b.getDataRef()), false);
        }

        /** {@inheritDoc} */
        public RealMatrix solve(RealMatrix b)
            throws IllegalArgumentException, InvalidMatrixException {

            final int m = lTData.length;
            if (b.getRowDimension() != m) {
                throw MathRuntimeException.createIllegalArgumentException(
                        LocalizedFormats.DIMENSIONS_MISMATCH_2x2,
                        b.getRowDimension(), b.getColumnDimension(), m, "n");
            }

            final int nColB = b.getColumnDimension();
            double[][] x = b.getData();

            // Solve LY = b
            for (int j = 0; j < m; j++) {
                final double[] lJ = lTData[j];
                final double lJJ = lJ[j];
                final double[] xJ = x[j];
                for (int k = 0; k < nColB; ++k) {
                    xJ[k] /= lJJ;
                }
                for (int i = j + 1; i < m; i++) {
                    final double[] xI = x[i];
                    final double lJI = lJ[i];
                    for (int k = 0; k < nColB; ++k) {
                        xI[k] -= xJ[k] * lJI;
                    }
                }
            }

            // Solve LTX = Y
            for (int j = m - 1; j >= 0; j--) {
                final double lJJ = lTData[j][j];
                final double[] xJ = x[j];
                for (int k = 0; k < nColB; ++k) {
                    xJ[k] /= lJJ;
                }
                for (int i = 0; i < j; i++) {
                    final double[] xI = x[i];
                    final double lIJ = lTData[i][j];
                    for (int k = 0; k < nColB; ++k) {
                        xI[k] -= xJ[k] * lIJ;
                    }
                }
            }

            return new Array2DRowRealMatrix(x, false);

        }

        /** {@inheritDoc} */
        public RealMatrix getInverse() throws InvalidMatrixException {
            return solve(MatrixUtils.createRealIdentityMatrix(lTData.length));
        }

    }

}