summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/optimization/MultiStartUnivariateRealOptimizer.java
blob: b5ccc5f5a26f64e2e6d4e4eb4b95b73410cee450 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.optimization;

import org.apache.commons.math.ConvergenceException;
import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.random.RandomGenerator;
import org.apache.commons.math.util.FastMath;

/**
 * Special implementation of the {@link UnivariateRealOptimizer} interface adding
 * multi-start features to an existing optimizer.
 * <p>
 * This class wraps a classical optimizer to use it several times in
 * turn with different starting points in order to avoid being trapped
 * into a local extremum when looking for a global one.
 * </p>
 * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $
 * @since 2.0
 */
public class MultiStartUnivariateRealOptimizer implements UnivariateRealOptimizer {

    /** Serializable version identifier. */
    private static final long serialVersionUID = 5983375963110961019L;

    /** Underlying classical optimizer. */
    private final UnivariateRealOptimizer optimizer;

    /** Maximal number of iterations allowed. */
    private int maxIterations;

    /** Maximal number of evaluations allowed. */
    private int maxEvaluations;

    /** Number of iterations already performed for all starts. */
    private int totalIterations;

    /** Number of evaluations already performed for all starts. */
    private int totalEvaluations;

    /** Number of starts to go. */
    private int starts;

    /** Random generator for multi-start. */
    private RandomGenerator generator;

    /** Found optima. */
    private double[] optima;

    /** Found function values at optima. */
    private double[] optimaValues;

    /**
     * Create a multi-start optimizer from a single-start optimizer
     * @param optimizer single-start optimizer to wrap
     * @param starts number of starts to perform (including the
     * first one), multi-start is disabled if value is less than or
     * equal to 1
     * @param generator random generator to use for restarts
     */
    public MultiStartUnivariateRealOptimizer(final UnivariateRealOptimizer optimizer,
                                             final int starts,
                                             final RandomGenerator generator) {
        this.optimizer        = optimizer;
        this.totalIterations  = 0;
        this.starts           = starts;
        this.generator        = generator;
        this.optima           = null;
        setMaximalIterationCount(Integer.MAX_VALUE);
        setMaxEvaluations(Integer.MAX_VALUE);
    }

    /** {@inheritDoc} */
    public double getFunctionValue() {
        return optimaValues[0];
    }

    /** {@inheritDoc} */
    public double getResult() {
        return optima[0];
    }

    /** {@inheritDoc} */
    public double getAbsoluteAccuracy() {
        return optimizer.getAbsoluteAccuracy();
    }

    /** {@inheritDoc} */
    public int getIterationCount() {
        return totalIterations;
    }

    /** {@inheritDoc} */
    public int getMaximalIterationCount() {
        return maxIterations;
    }

    /** {@inheritDoc} */
    public int getMaxEvaluations() {
        return maxEvaluations;
    }

    /** {@inheritDoc} */
    public int getEvaluations() {
        return totalEvaluations;
    }

    /** {@inheritDoc} */
    public double getRelativeAccuracy() {
        return optimizer.getRelativeAccuracy();
    }

    /** {@inheritDoc} */
    public void resetAbsoluteAccuracy() {
        optimizer.resetAbsoluteAccuracy();
    }

    /** {@inheritDoc} */
    public void resetMaximalIterationCount() {
        optimizer.resetMaximalIterationCount();
    }

    /** {@inheritDoc} */
    public void resetRelativeAccuracy() {
        optimizer.resetRelativeAccuracy();
    }

    /** {@inheritDoc} */
    public void setAbsoluteAccuracy(double accuracy) {
        optimizer.setAbsoluteAccuracy(accuracy);
    }

    /** {@inheritDoc} */
    public void setMaximalIterationCount(int count) {
        this.maxIterations = count;
    }

    /** {@inheritDoc} */
    public void setMaxEvaluations(int maxEvaluations) {
        this.maxEvaluations = maxEvaluations;
    }

    /** {@inheritDoc} */
    public void setRelativeAccuracy(double accuracy) {
        optimizer.setRelativeAccuracy(accuracy);
    }

    /** Get all the optima found during the last call to {@link
     * #optimize(UnivariateRealFunction, GoalType, double, double) optimize}.
     * <p>The optimizer stores all the optima found during a set of
     * restarts. The {@link #optimize(UnivariateRealFunction, GoalType,
     * double, double) optimize} method returns the best point only. This
     * method returns all the points found at the end of each starts,
     * including the best one already returned by the {@link
     * #optimize(UnivariateRealFunction, GoalType, double, double) optimize}
     * method.
     * </p>
     * <p>
     * The returned array as one element for each start as specified
     * in the constructor. It is ordered with the results from the
     * runs that did converge first, sorted from best to worst
     * objective value (i.e in ascending order if minimizing and in
     * descending order if maximizing), followed by Double.NaN elements
     * corresponding to the runs that did not converge. This means all
     * elements will be NaN if the {@link #optimize(UnivariateRealFunction,
     * GoalType, double, double) optimize} method did throw a {@link
     * ConvergenceException ConvergenceException}). This also means that
     * if the first element is not NaN, it is the best point found across
     * all starts.</p>
     * @return array containing the optima
     * @exception IllegalStateException if {@link #optimize(UnivariateRealFunction,
     * GoalType, double, double) optimize} has not been called
     * @see #getOptimaValues()
     */
    public double[] getOptima() throws IllegalStateException {
        if (optima == null) {
            throw MathRuntimeException.createIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
        }
        return optima.clone();
    }

    /** Get all the function values at optima found during the last call to {@link
     * #optimize(UnivariateRealFunction, GoalType, double, double) optimize}.
     * <p>
     * The returned array as one element for each start as specified
     * in the constructor. It is ordered with the results from the
     * runs that did converge first, sorted from best to worst
     * objective value (i.e in ascending order if minimizing and in
     * descending order if maximizing), followed by Double.NaN elements
     * corresponding to the runs that did not converge. This means all
     * elements will be NaN if the {@link #optimize(UnivariateRealFunction,
     * GoalType, double, double) optimize} method did throw a {@link
     * ConvergenceException ConvergenceException}). This also means that
     * if the first element is not NaN, it is the best point found across
     * all starts.</p>
     * @return array containing the optima
     * @exception IllegalStateException if {@link #optimize(UnivariateRealFunction,
     * GoalType, double, double) optimize} has not been called
     * @see #getOptima()
     */
    public double[] getOptimaValues() throws IllegalStateException {
        if (optimaValues == null) {
            throw MathRuntimeException.createIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
        }
        return optimaValues.clone();
    }

    /** {@inheritDoc} */
    public double optimize(final UnivariateRealFunction f, final GoalType goalType,
                           final double min, final double max)
        throws ConvergenceException, FunctionEvaluationException {

        optima           = new double[starts];
        optimaValues     = new double[starts];
        totalIterations  = 0;
        totalEvaluations = 0;

        // multi-start loop
        for (int i = 0; i < starts; ++i) {

            try {
                optimizer.setMaximalIterationCount(maxIterations - totalIterations);
                optimizer.setMaxEvaluations(maxEvaluations - totalEvaluations);
                final double bound1 = (i == 0) ? min : min + generator.nextDouble() * (max - min);
                final double bound2 = (i == 0) ? max : min + generator.nextDouble() * (max - min);
                optima[i]       = optimizer.optimize(f, goalType,
                                                     FastMath.min(bound1, bound2),
                                                     FastMath.max(bound1, bound2));
                optimaValues[i] = optimizer.getFunctionValue();
            } catch (FunctionEvaluationException fee) {
                optima[i]       = Double.NaN;
                optimaValues[i] = Double.NaN;
            } catch (ConvergenceException ce) {
                optima[i]       = Double.NaN;
                optimaValues[i] = Double.NaN;
            }

            totalIterations  += optimizer.getIterationCount();
            totalEvaluations += optimizer.getEvaluations();

        }

        // sort the optima from best to worst, followed by NaN elements
        int lastNaN = optima.length;
        for (int i = 0; i < lastNaN; ++i) {
            if (Double.isNaN(optima[i])) {
                optima[i] = optima[--lastNaN];
                optima[lastNaN + 1] = Double.NaN;
                optimaValues[i] = optimaValues[--lastNaN];
                optimaValues[lastNaN + 1] = Double.NaN;
            }
        }

        double currX = optima[0];
        double currY = optimaValues[0];
        for (int j = 1; j < lastNaN; ++j) {
            final double prevY = currY;
            currX = optima[j];
            currY = optimaValues[j];
            if ((goalType == GoalType.MAXIMIZE) ^ (currY < prevY)) {
                // the current element should be inserted closer to the beginning
                int i = j - 1;
                double mIX = optima[i];
                double mIY = optimaValues[i];
                while ((i >= 0) && ((goalType == GoalType.MAXIMIZE) ^ (currY < mIY))) {
                    optima[i + 1]       = mIX;
                    optimaValues[i + 1] = mIY;
                    if (i-- != 0) {
                        mIX = optima[i];
                        mIY = optimaValues[i];
                    } else {
                        mIX = Double.NaN;
                        mIY = Double.NaN;
                    }
                }
                optima[i + 1]       = currX;
                optimaValues[i + 1] = currY;
                currX = optima[j];
                currY = optimaValues[j];
            }
        }

        if (Double.isNaN(optima[0])) {
            throw new OptimizationException(
                    LocalizedFormats.NO_CONVERGENCE_WITH_ANY_START_POINT,
                    starts);
        }

        // return the found point given the best objective function value
        return optima[0];

    }

    /** {@inheritDoc} */
    public double optimize(final UnivariateRealFunction f, final GoalType goalType,
                           final double min, final double max, final double startValue)
            throws ConvergenceException, FunctionEvaluationException {
        return optimize(f, goalType, min, max);
    }
}