summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/optimization/direct/MultiDirectional.java
blob: ea8816bba46114d83010bc138fede92b4c38554e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.optimization.direct;

import java.util.Comparator;

import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.optimization.OptimizationException;
import org.apache.commons.math.optimization.RealConvergenceChecker;
import org.apache.commons.math.optimization.RealPointValuePair;

/**
 * This class implements the multi-directional direct search method.
 *
 * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $
 * @see NelderMead
 * @since 1.2
 */
public class MultiDirectional extends DirectSearchOptimizer {

    /** Expansion coefficient. */
    private final double khi;

    /** Contraction coefficient. */
    private final double gamma;

    /** Build a multi-directional optimizer with default coefficients.
     * <p>The default values are 2.0 for khi and 0.5 for gamma.</p>
     */
    public MultiDirectional() {
        this.khi   = 2.0;
        this.gamma = 0.5;
    }

    /** Build a multi-directional optimizer with specified coefficients.
     * @param khi expansion coefficient
     * @param gamma contraction coefficient
     */
    public MultiDirectional(final double khi, final double gamma) {
        this.khi   = khi;
        this.gamma = gamma;
    }

    /** {@inheritDoc} */
    @Override
    protected void iterateSimplex(final Comparator<RealPointValuePair> comparator)
        throws FunctionEvaluationException, OptimizationException, IllegalArgumentException {

        final RealConvergenceChecker checker = getConvergenceChecker();
        while (true) {

            incrementIterationsCounter();

            // save the original vertex
            final RealPointValuePair[] original = simplex;
            final RealPointValuePair best = original[0];

            // perform a reflection step
            final RealPointValuePair reflected = evaluateNewSimplex(original, 1.0, comparator);
            if (comparator.compare(reflected, best) < 0) {

                // compute the expanded simplex
                final RealPointValuePair[] reflectedSimplex = simplex;
                final RealPointValuePair expanded = evaluateNewSimplex(original, khi, comparator);
                if (comparator.compare(reflected, expanded) <= 0) {
                    // accept the reflected simplex
                    simplex = reflectedSimplex;
                }

                return;

            }

            // compute the contracted simplex
            final RealPointValuePair contracted = evaluateNewSimplex(original, gamma, comparator);
            if (comparator.compare(contracted, best) < 0) {
                // accept the contracted simplex
                return;
            }

            // check convergence
            final int iter = getIterations();
            boolean converged = true;
            for (int i = 0; i < simplex.length; ++i) {
                converged &= checker.converged(iter, original[i], simplex[i]);
            }
            if (converged) {
                return;
            }

        }

    }

    /** Compute and evaluate a new simplex.
     * @param original original simplex (to be preserved)
     * @param coeff linear coefficient
     * @param comparator comparator to use to sort simplex vertices from best to poorest
     * @return best point in the transformed simplex
     * @exception FunctionEvaluationException if the function cannot be evaluated at some point
     * @exception OptimizationException if the maximal number of evaluations is exceeded
     */
    private RealPointValuePair evaluateNewSimplex(final RealPointValuePair[] original,
                                              final double coeff,
                                              final Comparator<RealPointValuePair> comparator)
        throws FunctionEvaluationException, OptimizationException {

        final double[] xSmallest = original[0].getPointRef();
        final int n = xSmallest.length;

        // create the linearly transformed simplex
        simplex = new RealPointValuePair[n + 1];
        simplex[0] = original[0];
        for (int i = 1; i <= n; ++i) {
            final double[] xOriginal    = original[i].getPointRef();
            final double[] xTransformed = new double[n];
            for (int j = 0; j < n; ++j) {
                xTransformed[j] = xSmallest[j] + coeff * (xSmallest[j] - xOriginal[j]);
            }
            simplex[i] = new RealPointValuePair(xTransformed, Double.NaN, false);
        }

        // evaluate it
        evaluateSimplex(comparator);
        return simplex[0];

    }

}