summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/optimization/direct/PowellOptimizer.java
blob: 63329517aeef20708facc37dc94b51096ab479b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.optimization.direct;

import org.apache.commons.math.MaxIterationsExceededException;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.optimization.GoalType;
import org.apache.commons.math.optimization.OptimizationException;
import org.apache.commons.math.optimization.RealPointValuePair;
import org.apache.commons.math.optimization.general.AbstractScalarDifferentiableOptimizer;
import org.apache.commons.math.optimization.univariate.AbstractUnivariateRealOptimizer;
import org.apache.commons.math.optimization.univariate.BracketFinder;
import org.apache.commons.math.optimization.univariate.BrentOptimizer;

/**
 * Powell algorithm.
 * This code is translated and adapted from the Python version of this
 * algorithm (as implemented in module {@code optimize.py} v0.5 of
 * <em>SciPy</em>).
 *
 * @version $Revision$ $Date$
 * @since 2.2
 */
public class PowellOptimizer
    extends AbstractScalarDifferentiableOptimizer {
    /**
     * Default relative tolerance for line search ({@value}).
     */
    public static final double DEFAULT_LS_RELATIVE_TOLERANCE = 1e-7;
    /**
     * Default absolute tolerance for line search ({@value}).
     */
    public static final double DEFAULT_LS_ABSOLUTE_TOLERANCE = 1e-11;
    /**
     * Line search.
     */
    private final LineSearch line;

    /**
     * Constructor with default line search tolerances (see the
     * {@link #PowellOptimizer(double,double) other constructor}).
     */
    public PowellOptimizer() {
        this(DEFAULT_LS_RELATIVE_TOLERANCE,
             DEFAULT_LS_ABSOLUTE_TOLERANCE);
    }

    /**
     * Constructor with default absolute line search tolerances (see
     * the {@link #PowellOptimizer(double,double) other constructor}).
     *
     * @param lsRelativeTolerance Relative error tolerance for
     * the line search algorithm ({@link BrentOptimizer}).
     */
    public PowellOptimizer(double lsRelativeTolerance) {
        this(lsRelativeTolerance,
             DEFAULT_LS_ABSOLUTE_TOLERANCE);
    }

    /**
     * @param lsRelativeTolerance Relative error tolerance for
     * the line search algorithm ({@link BrentOptimizer}).
     * @param lsAbsoluteTolerance Relative error tolerance for
     * the line search algorithm ({@link BrentOptimizer}).
     */
    public PowellOptimizer(double lsRelativeTolerance,
                           double lsAbsoluteTolerance) {
        line = new LineSearch(lsRelativeTolerance,
                              lsAbsoluteTolerance);
    }

    /** {@inheritDoc} */
    @Override
    protected RealPointValuePair doOptimize()
        throws FunctionEvaluationException,
               OptimizationException {
        final double[] guess = point.clone();
        final int n = guess.length;

        final double[][] direc = new double[n][n];
        for (int i = 0; i < n; i++) {
            direc[i][i] = 1;
        }

        double[] x = guess;
        double fVal = computeObjectiveValue(x);
        double[] x1 = x.clone();
        while (true) {
            incrementIterationsCounter();

            double fX = fVal;
            double fX2 = 0;
            double delta = 0;
            int bigInd = 0;
            double alphaMin = 0;

            for (int i = 0; i < n; i++) {
                final double[] d = /* Arrays.*/ copyOf(direc[i], n); // Java 1.5 does not support Arrays.copyOf()

                fX2 = fVal;

                line.search(x, d);
                fVal = line.getValueAtOptimum();
                alphaMin = line.getOptimum();
                final double[][] result = newPointAndDirection(x, d, alphaMin);
                x = result[0];

                if ((fX2 - fVal) > delta) {
                    delta = fX2 - fVal;
                    bigInd = i;
                }
            }

            final RealPointValuePair previous = new RealPointValuePair(x1, fX);
            final RealPointValuePair current = new RealPointValuePair(x, fVal);
            if (getConvergenceChecker().converged(getIterations(), previous, current)) {
                if (goal == GoalType.MINIMIZE) {
                    return (fVal < fX) ? current : previous;
                } else {
                    return (fVal > fX) ? current : previous;
                }
            }

            final double[] d = new double[n];
            final double[] x2 = new double[n];
            for (int i = 0; i < n; i++) {
                d[i] = x[i] - x1[i];
                x2[i] = 2 * x[i] - x1[i];
            }

            x1 = x.clone();
            fX2 = computeObjectiveValue(x2);

            if (fX > fX2) {
                double t = 2 * (fX + fX2 - 2 * fVal);
                double temp = fX - fVal - delta;
                t *= temp * temp;
                temp = fX - fX2;
                t -= delta * temp * temp;

                if (t < 0.0) {
                    line.search(x, d);
                    fVal = line.getValueAtOptimum();
                    alphaMin = line.getOptimum();
                    final double[][] result = newPointAndDirection(x, d, alphaMin);
                    x = result[0];

                    final int lastInd = n - 1;
                    direc[bigInd] = direc[lastInd];
                    direc[lastInd] = result[1];
                }
            }
        }
    }

    /**
     * Compute a new point (in the original space) and a new direction
     * vector, resulting from the line search.
     * The parameters {@code p} and {@code d} will be changed in-place.
     *
     * @param p Point used in the line search.
     * @param d Direction used in the line search.
     * @param optimum Optimum found by the line search.
     * @return a 2-element array containing the new point (at index 0) and
     * the new direction (at index 1).
     */
    private double[][] newPointAndDirection(double[] p,
                                            double[] d,
                                            double optimum) {
        final int n = p.length;
        final double[][] result = new double[2][n];
        final double[] nP = result[0];
        final double[] nD = result[1];
        for (int i = 0; i < n; i++) {
            nD[i] = d[i] * optimum;
            nP[i] = p[i] + nD[i];
        }
        return result;
    }

    /**
     * Class for finding the minimum of the objective function along a given
     * direction.
     */
    private class LineSearch {
        /**
         * Optimizer.
         */
        private final AbstractUnivariateRealOptimizer optim = new BrentOptimizer();
        /**
         * Automatic bracketing.
         */
        private final BracketFinder bracket = new BracketFinder();
        /**
         * Value of the optimum.
         */
        private double optimum = Double.NaN;
        /**
         * Value of the objective function at the optimum.
         */
        private double valueAtOptimum = Double.NaN;

        /**
         * @param relativeTolerance Relative tolerance.
         * @param absoluteTolerance Absolute tolerance.
         */
        public LineSearch(double relativeTolerance,
                          double absoluteTolerance) {
            optim.setRelativeAccuracy(relativeTolerance);
            optim.setAbsoluteAccuracy(absoluteTolerance);
        }

        /**
         * Find the minimum of the function {@code f(p + alpha * d)}.
         *
         * @param p Starting point.
         * @param d Search direction.
         * @throws FunctionEvaluationException if function cannot be evaluated at some test point
         * @throws OptimizationException if algorithm fails to converge
         */
        public void search(final double[] p, final double[] d)
            throws OptimizationException, FunctionEvaluationException {

            // Reset.
            optimum = Double.NaN;
            valueAtOptimum = Double.NaN;

            try {
                final int n = p.length;
                final UnivariateRealFunction f = new UnivariateRealFunction() {
                        public double value(double alpha)
                            throws FunctionEvaluationException {

                            final double[] x = new double[n];
                            for (int i = 0; i < n; i++) {
                                x[i] = p[i] + alpha * d[i];
                            }
                            final double obj;
                            obj = computeObjectiveValue(x);
                            return obj;
                        }
                    };

                bracket.search(f, goal, 0, 1);
                optimum = optim.optimize(f, goal,
                                         bracket.getLo(),
                                         bracket.getHi(),
                                         bracket.getMid());
                valueAtOptimum = optim.getFunctionValue();
            } catch (MaxIterationsExceededException e) {
                throw new OptimizationException(e);
            }
        }

        /**
         * @return the optimum.
         */
        public double getOptimum() {
            return optimum;
        }
        /**
         * @return the value of the function at the optimum.
         */
        public double getValueAtOptimum() {
            return valueAtOptimum;
        }
    }

    /**
     * Java 1.5 does not support Arrays.copyOf()
     *
     * @param source the array to be copied
     * @param newLen the length of the copy to be returned
     * @return the copied array, truncated or padded as necessary.
     */
     private double[] copyOf(double[] source, int newLen) {
         double[] output = new double[newLen];
         System.arraycopy(source, 0, output, 0, Math.min(source.length, newLen));
         return output;
     }

}