summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/random/RandomDataImpl.java
blob: e9ccab7a15fcbc02ccad2843a342661ecdafed4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.random;

import java.io.Serializable;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.SecureRandom;
import java.util.Collection;

import org.apache.commons.math.MathException;
import org.apache.commons.math.distribution.BetaDistributionImpl;
import org.apache.commons.math.distribution.BinomialDistributionImpl;
import org.apache.commons.math.distribution.CauchyDistributionImpl;
import org.apache.commons.math.distribution.ChiSquaredDistributionImpl;
import org.apache.commons.math.distribution.ContinuousDistribution;
import org.apache.commons.math.distribution.FDistributionImpl;
import org.apache.commons.math.distribution.GammaDistributionImpl;
import org.apache.commons.math.distribution.HypergeometricDistributionImpl;
import org.apache.commons.math.distribution.IntegerDistribution;
import org.apache.commons.math.distribution.PascalDistributionImpl;
import org.apache.commons.math.distribution.TDistributionImpl;
import org.apache.commons.math.distribution.WeibullDistributionImpl;
import org.apache.commons.math.distribution.ZipfDistributionImpl;
import org.apache.commons.math.exception.MathInternalError;
import org.apache.commons.math.exception.NotStrictlyPositiveException;
import org.apache.commons.math.exception.NumberIsTooLargeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;
import org.apache.commons.math.util.MathUtils;

/**
 * Implements the {@link RandomData} interface using a {@link RandomGenerator}
 * instance to generate non-secure data and a {@link java.security.SecureRandom}
 * instance to provide data for the <code>nextSecureXxx</code> methods. If no
 * <code>RandomGenerator</code> is provided in the constructor, the default is
 * to use a generator based on {@link java.util.Random}. To plug in a different
 * implementation, either implement <code>RandomGenerator</code> directly or
 * extend {@link AbstractRandomGenerator}.
 * <p>
 * Supports reseeding the underlying pseudo-random number generator (PRNG). The
 * <code>SecurityProvider</code> and <code>Algorithm</code> used by the
 * <code>SecureRandom</code> instance can also be reset.
 * </p>
 * <p>
 * For details on the default PRNGs, see {@link java.util.Random} and
 * {@link java.security.SecureRandom}.
 * </p>
 * <p>
 * <strong>Usage Notes</strong>:
 * <ul>
 * <li>
 * Instance variables are used to maintain <code>RandomGenerator</code> and
 * <code>SecureRandom</code> instances used in data generation. Therefore, to
 * generate a random sequence of values or strings, you should use just
 * <strong>one</strong> <code>RandomDataImpl</code> instance repeatedly.</li>
 * <li>
 * The "secure" methods are *much* slower. These should be used only when a
 * cryptographically secure random sequence is required. A secure random
 * sequence is a sequence of pseudo-random values which, in addition to being
 * well-dispersed (so no subsequence of values is an any more likely than other
 * subsequence of the the same length), also has the additional property that
 * knowledge of values generated up to any point in the sequence does not make
 * it any easier to predict subsequent values.</li>
 * <li>
 * When a new <code>RandomDataImpl</code> is created, the underlying random
 * number generators are <strong>not</strong> initialized. If you do not
 * explicitly seed the default non-secure generator, it is seeded with the
 * current time in milliseconds on first use. The same holds for the secure
 * generator. If you provide a <code>RandomGenerator</code> to the constructor,
 * however, this generator is not reseeded by the constructor nor is it reseeded
 * on first use.</li>
 * <li>
 * The <code>reSeed</code> and <code>reSeedSecure</code> methods delegate to the
 * corresponding methods on the underlying <code>RandomGenerator</code> and
 * <code>SecureRandom</code> instances. Therefore, <code>reSeed(long)</code>
 * fully resets the initial state of the non-secure random number generator (so
 * that reseeding with a specific value always results in the same subsequent
 * random sequence); whereas reSeedSecure(long) does <strong>not</strong>
 * reinitialize the secure random number generator (so secure sequences started
 * with calls to reseedSecure(long) won't be identical).</li>
 * <li>
 * This implementation is not synchronized.
 * </ul>
 * </p>
 *
 * @version $Revision: 1061496 $ $Date: 2011-01-20 21:32:16 +0100 (jeu. 20 janv. 2011) $
 */
public class RandomDataImpl implements RandomData, Serializable {

    /** Serializable version identifier */
    private static final long serialVersionUID = -626730818244969716L;

    /** underlying random number generator */
    private RandomGenerator rand = null;

    /** underlying secure random number generator */
    private SecureRandom secRand = null;

    /**
     * Construct a RandomDataImpl.
     */
    public RandomDataImpl() {
    }

    /**
     * Construct a RandomDataImpl using the supplied {@link RandomGenerator} as
     * the source of (non-secure) random data.
     *
     * @param rand
     *            the source of (non-secure) random data
     * @since 1.1
     */
    public RandomDataImpl(RandomGenerator rand) {
        super();
        this.rand = rand;
    }

    /**
     * {@inheritDoc}
     * <p>
     * <strong>Algorithm Description:</strong> hex strings are generated using a
     * 2-step process.
     * <ol>
     * <li>
     * len/2+1 binary bytes are generated using the underlying Random</li>
     * <li>
     * Each binary byte is translated into 2 hex digits</li>
     * </ol>
     * </p>
     *
     * @param len
     *            the desired string length.
     * @return the random string.
     * @throws NotStrictlyPositiveException if {@code len <= 0}.
     */
    public String nextHexString(int len) {
        if (len <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len);
        }

        // Get a random number generator
        RandomGenerator ran = getRan();

        // Initialize output buffer
        StringBuilder outBuffer = new StringBuilder();

        // Get int(len/2)+1 random bytes
        byte[] randomBytes = new byte[(len / 2) + 1];
        ran.nextBytes(randomBytes);

        // Convert each byte to 2 hex digits
        for (int i = 0; i < randomBytes.length; i++) {
            Integer c = Integer.valueOf(randomBytes[i]);

            /*
             * Add 128 to byte value to make interval 0-255 before doing hex
             * conversion. This guarantees <= 2 hex digits from toHexString()
             * toHexString would otherwise add 2^32 to negative arguments.
             */
            String hex = Integer.toHexString(c.intValue() + 128);

            // Make sure we add 2 hex digits for each byte
            if (hex.length() == 1) {
                hex = "0" + hex;
            }
            outBuffer.append(hex);
        }
        return outBuffer.toString().substring(0, len);
    }

    /**
     * Generate a random int value uniformly distributed between
     * <code>lower</code> and <code>upper</code>, inclusive.
     *
     * @param lower
     *            the lower bound.
     * @param upper
     *            the upper bound.
     * @return the random integer.
     * @throws NumberIsTooLargeException if {@code lower >= upper}.
     */
    public int nextInt(int lower, int upper) {
        if (lower >= upper) {
            throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
                                                lower, upper, false);
        }
        double r = getRan().nextDouble();
        return (int) ((r * upper) + ((1.0 - r) * lower) + r);
    }

    /**
     * Generate a random long value uniformly distributed between
     * <code>lower</code> and <code>upper</code>, inclusive.
     *
     * @param lower
     *            the lower bound.
     * @param upper
     *            the upper bound.
     * @return the random integer.
     * @throws NumberIsTooLargeException if {@code lower >= upper}.
     */
    public long nextLong(long lower, long upper) {
        if (lower >= upper) {
            throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
                                                lower, upper, false);
        }
        double r = getRan().nextDouble();
        return (long) ((r * upper) + ((1.0 - r) * lower) + r);
    }

    /**
     * {@inheritDoc}
     * <p>
     * <strong>Algorithm Description:</strong> hex strings are generated in
     * 40-byte segments using a 3-step process.
     * <ol>
     * <li>
     * 20 random bytes are generated using the underlying
     * <code>SecureRandom</code>.</li>
     * <li>
     * SHA-1 hash is applied to yield a 20-byte binary digest.</li>
     * <li>
     * Each byte of the binary digest is converted to 2 hex digits.</li>
     * </ol>
     * </p>
     *
     * @param len
     *            the length of the generated string
     * @return the random string
     * @throws NotStrictlyPositiveException if {@code len <= 0}.
     */
    public String nextSecureHexString(int len) {
        if (len <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len);
        }

        // Get SecureRandom and setup Digest provider
        SecureRandom secRan = getSecRan();
        MessageDigest alg = null;
        try {
            alg = MessageDigest.getInstance("SHA-1");
        } catch (NoSuchAlgorithmException ex) {
            // this should never happen
            throw new MathInternalError(ex);
        }
        alg.reset();

        // Compute number of iterations required (40 bytes each)
        int numIter = (len / 40) + 1;

        StringBuilder outBuffer = new StringBuilder();
        for (int iter = 1; iter < numIter + 1; iter++) {
            byte[] randomBytes = new byte[40];
            secRan.nextBytes(randomBytes);
            alg.update(randomBytes);

            // Compute hash -- will create 20-byte binary hash
            byte hash[] = alg.digest();

            // Loop over the hash, converting each byte to 2 hex digits
            for (int i = 0; i < hash.length; i++) {
                Integer c = Integer.valueOf(hash[i]);

                /*
                 * Add 128 to byte value to make interval 0-255 This guarantees
                 * <= 2 hex digits from toHexString() toHexString would
                 * otherwise add 2^32 to negative arguments
                 */
                String hex = Integer.toHexString(c.intValue() + 128);

                // Keep strings uniform length -- guarantees 40 bytes
                if (hex.length() == 1) {
                    hex = "0" + hex;
                }
                outBuffer.append(hex);
            }
        }
        return outBuffer.toString().substring(0, len);
    }

    /**
     * Generate a random int value uniformly distributed between
     * <code>lower</code> and <code>upper</code>, inclusive. This algorithm uses
     * a secure random number generator.
     *
     * @param lower
     *            the lower bound.
     * @param upper
     *            the upper bound.
     * @return the random integer.
     * @throws NumberIsTooLargeException if {@code lower >= upper}.
     */
    public int nextSecureInt(int lower, int upper) {
        if (lower >= upper) {
            throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
                                                lower, upper, false);
        }
        SecureRandom sec = getSecRan();
        return lower + (int) (sec.nextDouble() * (upper - lower + 1));
    }

    /**
     * Generate a random long value uniformly distributed between
     * <code>lower</code> and <code>upper</code>, inclusive. This algorithm uses
     * a secure random number generator.
     *
     * @param lower
     *            the lower bound.
     * @param upper
     *            the upper bound.
     * @return the random integer.
     * @throws NumberIsTooLargeException if {@code lower >= upper}.
     */
    public long nextSecureLong(long lower, long upper) {
        if (lower >= upper) {
            throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
                                                lower, upper, false);
        }
        SecureRandom sec = getSecRan();
        return lower + (long) (sec.nextDouble() * (upper - lower + 1));
    }

    /**
     * {@inheritDoc}
     * <p>
     * <strong>Algorithm Description</strong>:
     * <ul><li> For small means, uses simulation of a Poisson process
     * using Uniform deviates, as described
     * <a href="http://irmi.epfl.ch/cmos/Pmmi/interactive/rng7.htm"> here.</a>
     * The Poisson process (and hence value returned) is bounded by 1000 * mean.</li>
     *
     * <li> For large means, uses the rejection algorithm described in <br/>
     * Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i>
     * <strong>Computing</strong> vol. 26 pp. 197-207.</li></ul></p>
     *
     * @param mean mean of the Poisson distribution.
     * @return the random Poisson value.
     * @throws NotStrictlyPositiveException if {@code mean <= 0}.
     */
    public long nextPoisson(double mean) {
        if (mean <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean);
        }

        final RandomGenerator generator = getRan();

        final double pivot = 40.0d;
        if (mean < pivot) {
            double p = FastMath.exp(-mean);
            long n = 0;
            double r = 1.0d;
            double rnd = 1.0d;

            while (n < 1000 * mean) {
                rnd = generator.nextDouble();
                r = r * rnd;
                if (r >= p) {
                    n++;
                } else {
                    return n;
                }
            }
            return n;
        } else {
            final double lambda = FastMath.floor(mean);
            final double lambdaFractional = mean - lambda;
            final double logLambda = FastMath.log(lambda);
            final double logLambdaFactorial = MathUtils.factorialLog((int) lambda);
            final long y2 = lambdaFractional < Double.MIN_VALUE ? 0 : nextPoisson(lambdaFractional);
            final double delta = FastMath.sqrt(lambda * FastMath.log(32 * lambda / FastMath.PI + 1));
            final double halfDelta = delta / 2;
            final double twolpd = 2 * lambda + delta;
            final double a1 = FastMath.sqrt(FastMath.PI * twolpd) * FastMath.exp(1 / 8 * lambda);
            final double a2 = (twolpd / delta) * FastMath.exp(-delta * (1 + delta) / twolpd);
            final double aSum = a1 + a2 + 1;
            final double p1 = a1 / aSum;
            final double p2 = a2 / aSum;
            final double c1 = 1 / (8 * lambda);

            double x = 0;
            double y = 0;
            double v = 0;
            int a = 0;
            double t = 0;
            double qr = 0;
            double qa = 0;
            for (;;) {
                final double u = nextUniform(0.0, 1);
                if (u <= p1) {
                    final double n = nextGaussian(0d, 1d);
                    x = n * FastMath.sqrt(lambda + halfDelta) - 0.5d;
                    if (x > delta || x < -lambda) {
                        continue;
                    }
                    y = x < 0 ? FastMath.floor(x) : FastMath.ceil(x);
                    final double e = nextExponential(1d);
                    v = -e - (n * n / 2) + c1;
                } else {
                    if (u > p1 + p2) {
                        y = lambda;
                        break;
                    } else {
                        x = delta + (twolpd / delta) * nextExponential(1d);
                        y = FastMath.ceil(x);
                        v = -nextExponential(1d) - delta * (x + 1) / twolpd;
                    }
                }
                a = x < 0 ? 1 : 0;
                t = y * (y + 1) / (2 * lambda);
                if (v < -t && a == 0) {
                    y = lambda + y;
                    break;
                }
                qr = t * ((2 * y + 1) / (6 * lambda) - 1);
                qa = qr - (t * t) / (3 * (lambda + a * (y + 1)));
                if (v < qa) {
                    y = lambda + y;
                    break;
                }
                if (v > qr) {
                    continue;
                }
                if (v < y * logLambda - MathUtils.factorialLog((int) (y + lambda)) + logLambdaFactorial) {
                    y = lambda + y;
                    break;
                }
            }
            return y2 + (long) y;
        }
    }

    /**
     * Generate a random value from a Normal (a.k.a. Gaussian) distribution with
     * the given mean, <code>mu</code> and the given standard deviation,
     * <code>sigma</code>.
     *
     * @param mu
     *            the mean of the distribution
     * @param sigma
     *            the standard deviation of the distribution
     * @return the random Normal value
     * @throws NotStrictlyPositiveException if {@code sigma <= 0}.
     */
    public double nextGaussian(double mu, double sigma) {
        if (sigma <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sigma);
        }
        return sigma * getRan().nextGaussian() + mu;
    }

    /**
     * Returns a random value from an Exponential distribution with the given
     * mean.
     * <p>
     * <strong>Algorithm Description</strong>: Uses the <a
     * href="http://www.jesus.ox.ac.uk/~clifford/a5/chap1/node5.html"> Inversion
     * Method</a> to generate exponentially distributed random values from
     * uniform deviates.
     * </p>
     *
     * @param mean the mean of the distribution
     * @return the random Exponential value
     * @throws NotStrictlyPositiveException if {@code mean <= 0}.
     */
    public double nextExponential(double mean) {
        if (mean <= 0.0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean);
        }
        final RandomGenerator generator = getRan();
        double unif = generator.nextDouble();
        while (unif == 0.0d) {
            unif = generator.nextDouble();
        }
        return -mean * FastMath.log(unif);
    }

    /**
     * {@inheritDoc}
     * <p>
     * <strong>Algorithm Description</strong>: scales the output of
     * Random.nextDouble(), but rejects 0 values (i.e., will generate another
     * random double if Random.nextDouble() returns 0). This is necessary to
     * provide a symmetric output interval (both endpoints excluded).
     * </p>
     *
     * @param lower
     *            the lower bound.
     * @param upper
     *            the upper bound.
     * @return a uniformly distributed random value from the interval (lower,
     *         upper)
     * @throws NumberIsTooLargeException if {@code lower >= upper}.
     */
    public double nextUniform(double lower, double upper) {
        if (lower >= upper) {
            throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
                                                lower, upper, false);
        }
        final RandomGenerator generator = getRan();

        // ensure nextDouble() isn't 0.0
        double u = generator.nextDouble();
        while (u <= 0.0) {
            u = generator.nextDouble();
        }

        return lower + u * (upper - lower);
    }

    /**
     * Generates a random value from the {@link BetaDistributionImpl Beta Distribution}.
     * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
     * to generate random values.
     *
     * @param alpha first distribution shape parameter
     * @param beta second distribution shape parameter
     * @return random value sampled from the beta(alpha, beta) distribution
     * @throws MathException if an error occurs generating the random value
     * @since 2.2
     */
    public double nextBeta(double alpha, double beta) throws MathException {
        return nextInversionDeviate(new BetaDistributionImpl(alpha, beta));
    }

    /**
     * Generates a random value from the {@link BinomialDistributionImpl Binomial Distribution}.
     * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
     * to generate random values.
     *
     * @param numberOfTrials number of trials of the Binomial distribution
     * @param probabilityOfSuccess probability of success of the Binomial distribution
     * @return random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess) distribution
     * @throws MathException if an error occurs generating the random value
     * @since 2.2
     */
    public int nextBinomial(int numberOfTrials, double probabilityOfSuccess) throws MathException {
        return nextInversionDeviate(new BinomialDistributionImpl(numberOfTrials, probabilityOfSuccess));
    }

    /**
     * Generates a random value from the {@link CauchyDistributionImpl Cauchy Distribution}.
     * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
     * to generate random values.
     *
     * @param median the median of the Cauchy distribution
     * @param scale the scale parameter of the Cauchy distribution
     * @return random value sampled from the Cauchy(median, scale) distribution
     * @throws MathException if an error occurs generating the random value
     * @since 2.2
     */
    public double nextCauchy(double median, double scale) throws MathException {
        return nextInversionDeviate(new CauchyDistributionImpl(median, scale));
    }

    /**
     * Generates a random value from the {@link ChiSquaredDistributionImpl ChiSquare Distribution}.
     * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
     * to generate random values.
     *
     * @param df the degrees of freedom of the ChiSquare distribution
     * @return random value sampled from the ChiSquare(df) distribution
     * @throws MathException if an error occurs generating the random value
     * @since 2.2
     */
    public double nextChiSquare(double df) throws MathException {
        return nextInversionDeviate(new ChiSquaredDistributionImpl(df));
    }

    /**
     * Generates a random value from the {@link FDistributionImpl F Distribution}.
     * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
     * to generate random values.
     *
     * @param numeratorDf the numerator degrees of freedom of the F distribution
     * @param denominatorDf the denominator degrees of freedom of the F distribution
     * @return random value sampled from the F(numeratorDf, denominatorDf) distribution
     * @throws MathException if an error occurs generating the random value
     * @since 2.2
     */
    public double nextF(double numeratorDf, double denominatorDf) throws MathException {
        return nextInversionDeviate(new FDistributionImpl(numeratorDf, denominatorDf));
    }

    /**
     * Generates a random value from the {@link GammaDistributionImpl Gamma Distribution}.
     * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
     * to generate random values.
     *
     * @param shape the median of the Gamma distribution
     * @param scale the scale parameter of the Gamma distribution
     * @return random value sampled from the Gamma(shape, scale) distribution
     * @throws MathException if an error occurs generating the random value
     * @since 2.2
     */
    public double nextGamma(double shape, double scale) throws MathException {
        return nextInversionDeviate(new GammaDistributionImpl(shape, scale));
    }

    /**
     * Generates a random value from the {@link HypergeometricDistributionImpl Hypergeometric Distribution}.
     * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
     * to generate random values.
     *
     * @param populationSize the population size of the Hypergeometric distribution
     * @param numberOfSuccesses number of successes in the population of the Hypergeometric distribution
     * @param sampleSize the sample size of the Hypergeometric distribution
     * @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution
     * @throws MathException if an error occurs generating the random value
     * @since 2.2
     */
    public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) throws MathException {
        return nextInversionDeviate(new HypergeometricDistributionImpl(populationSize, numberOfSuccesses, sampleSize));
    }

    /**
     * Generates a random value from the {@link PascalDistributionImpl Pascal Distribution}.
     * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
     * to generate random values.
     *
     * @param r the number of successes of the Pascal distribution
     * @param p the probability of success of the Pascal distribution
     * @return random value sampled from the Pascal(r, p) distribution
     * @throws MathException if an error occurs generating the random value
     * @since 2.2
     */
    public int nextPascal(int r, double p) throws MathException {
        return nextInversionDeviate(new PascalDistributionImpl(r, p));
    }

    /**
     * Generates a random value from the {@link TDistributionImpl T Distribution}.
     * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
     * to generate random values.
     *
     * @param df the degrees of freedom of the T distribution
     * @return random value from the T(df) distribution
     * @throws MathException if an error occurs generating the random value
     * @since 2.2
     */
    public double nextT(double df) throws MathException {
        return nextInversionDeviate(new TDistributionImpl(df));
    }

    /**
     * Generates a random value from the {@link WeibullDistributionImpl Weibull Distribution}.
     * This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
     * to generate random values.
     *
     * @param shape the shape parameter of the Weibull distribution
     * @param scale the scale parameter of the Weibull distribution
     * @return random value sampled from the Weibull(shape, size) distribution
     * @throws MathException if an error occurs generating the random value
     * @since 2.2
     */
    public double nextWeibull(double shape, double scale) throws MathException {
        return nextInversionDeviate(new WeibullDistributionImpl(shape, scale));
    }

    /**
     * Generates a random value from the {@link ZipfDistributionImpl Zipf Distribution}.
     * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
     * to generate random values.
     *
     * @param numberOfElements the number of elements of the ZipfDistribution
     * @param exponent the exponent of the ZipfDistribution
     * @return random value sampled from the Zipf(numberOfElements, exponent) distribution
     * @throws MathException if an error occurs generating the random value
     * @since 2.2
     */
    public int nextZipf(int numberOfElements, double exponent) throws MathException {
        return nextInversionDeviate(new ZipfDistributionImpl(numberOfElements, exponent));
    }

    /**
     * Returns the RandomGenerator used to generate non-secure random data.
     * <p>
     * Creates and initializes a default generator if null.
     * </p>
     *
     * @return the Random used to generate random data
     * @since 1.1
     */
    private RandomGenerator getRan() {
        if (rand == null) {
            rand = new JDKRandomGenerator();
            rand.setSeed(System.currentTimeMillis());
        }
        return rand;
    }

    /**
     * Returns the SecureRandom used to generate secure random data.
     * <p>
     * Creates and initializes if null.
     * </p>
     *
     * @return the SecureRandom used to generate secure random data
     */
    private SecureRandom getSecRan() {
        if (secRand == null) {
            secRand = new SecureRandom();
            secRand.setSeed(System.currentTimeMillis());
        }
        return secRand;
    }

    /**
     * Reseeds the random number generator with the supplied seed.
     * <p>
     * Will create and initialize if null.
     * </p>
     *
     * @param seed
     *            the seed value to use
     */
    public void reSeed(long seed) {
        if (rand == null) {
            rand = new JDKRandomGenerator();
        }
        rand.setSeed(seed);
    }

    /**
     * Reseeds the secure random number generator with the current time in
     * milliseconds.
     * <p>
     * Will create and initialize if null.
     * </p>
     */
    public void reSeedSecure() {
        if (secRand == null) {
            secRand = new SecureRandom();
        }
        secRand.setSeed(System.currentTimeMillis());
    }

    /**
     * Reseeds the secure random number generator with the supplied seed.
     * <p>
     * Will create and initialize if null.
     * </p>
     *
     * @param seed
     *            the seed value to use
     */
    public void reSeedSecure(long seed) {
        if (secRand == null) {
            secRand = new SecureRandom();
        }
        secRand.setSeed(seed);
    }

    /**
     * Reseeds the random number generator with the current time in
     * milliseconds.
     */
    public void reSeed() {
        if (rand == null) {
            rand = new JDKRandomGenerator();
        }
        rand.setSeed(System.currentTimeMillis());
    }

    /**
     * Sets the PRNG algorithm for the underlying SecureRandom instance using
     * the Security Provider API. The Security Provider API is defined in <a
     * href =
     * "http://java.sun.com/j2se/1.3/docs/guide/security/CryptoSpec.html#AppA">
     * Java Cryptography Architecture API Specification & Reference.</a>
     * <p>
     * <strong>USAGE NOTE:</strong> This method carries <i>significant</i>
     * overhead and may take several seconds to execute.
     * </p>
     *
     * @param algorithm
     *            the name of the PRNG algorithm
     * @param provider
     *            the name of the provider
     * @throws NoSuchAlgorithmException
     *             if the specified algorithm is not available
     * @throws NoSuchProviderException
     *             if the specified provider is not installed
     */
    public void setSecureAlgorithm(String algorithm, String provider)
            throws NoSuchAlgorithmException, NoSuchProviderException {
        secRand = SecureRandom.getInstance(algorithm, provider);
    }

    /**
     * Generates an integer array of length <code>k</code> whose entries are
     * selected randomly, without repetition, from the integers
     * <code>0 through n-1</code> (inclusive).
     * <p>
     * Generated arrays represent permutations of <code>n</code> taken
     * <code>k</code> at a time.
     * </p>
     * <p>
     * <strong>Preconditions:</strong>
     * <ul>
     * <li> <code>k <= n</code></li>
     * <li> <code>n > 0</code></li>
     * </ul>
     * If the preconditions are not met, an IllegalArgumentException is thrown.
     * </p>
     * <p>
     * Uses a 2-cycle permutation shuffle. The shuffling process is described <a
     * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html">
     * here</a>.
     * </p>
     *
     * @param n
     *            domain of the permutation (must be positive)
     * @param k
     *            size of the permutation (must satisfy 0 < k <= n).
     * @return the random permutation as an int array
     * @throws NumberIsTooLargeException if {@code k > n}.
     * @throws NotStrictlyPositiveException if {@code k <= 0}.
     */
    public int[] nextPermutation(int n, int k) {
        if (k > n) {
            throw new NumberIsTooLargeException(LocalizedFormats.PERMUTATION_EXCEEDS_N,
                                                k, n, true);
        }
        if (k == 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.PERMUTATION_SIZE,
                                                   k);
        }

        int[] index = getNatural(n);
        shuffle(index, n - k);
        int[] result = new int[k];
        for (int i = 0; i < k; i++) {
            result[i] = index[n - i - 1];
        }

        return result;
    }

    /**
     * Uses a 2-cycle permutation shuffle to generate a random permutation.
     * <strong>Algorithm Description</strong>: Uses a 2-cycle permutation
     * shuffle to generate a random permutation of <code>c.size()</code> and
     * then returns the elements whose indexes correspond to the elements of the
     * generated permutation. This technique is described, and proven to
     * generate random samples, <a
     * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html">
     * here</a>
     *
     * @param c
     *            Collection to sample from.
     * @param k
     *            sample size.
     * @return the random sample.
     * @throws NumberIsTooLargeException if {@code k > c.size()}.
     * @throws NotStrictlyPositiveException if {@code k <= 0}.
     */
    public Object[] nextSample(Collection<?> c, int k) {
        int len = c.size();
        if (k > len) {
            throw new NumberIsTooLargeException(LocalizedFormats.SAMPLE_SIZE_EXCEEDS_COLLECTION_SIZE,
                                                k, len, true);
        }
        if (k <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, k);
        }

        Object[] objects = c.toArray();
        int[] index = nextPermutation(len, k);
        Object[] result = new Object[k];
        for (int i = 0; i < k; i++) {
            result[i] = objects[index[i]];
        }
        return result;
    }

    /**
     * Generate a random deviate from the given distribution using the
     * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
     *
     * @param distribution Continuous distribution to generate a random value from
     * @return a random value sampled from the given distribution
     * @throws MathException if an error occurs computing the inverse cumulative distribution function
     * @since 2.2
     */
    public double nextInversionDeviate(ContinuousDistribution distribution) throws MathException {
        return distribution.inverseCumulativeProbability(nextUniform(0, 1));

    }

    /**
     * Generate a random deviate from the given distribution using the
     * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
     *
     * @param distribution Integer distribution to generate a random value from
     * @return a random value sampled from the given distribution
     * @throws MathException if an error occurs computing the inverse cumulative distribution function
     * @since 2.2
     */
    public int nextInversionDeviate(IntegerDistribution distribution) throws MathException {
        final double target = nextUniform(0, 1);
        final int glb = distribution.inverseCumulativeProbability(target);
        if (distribution.cumulativeProbability(glb) == 1.0d) { // No mass above
            return glb;
        } else {
            return glb + 1;
        }
    }

    // ------------------------Private methods----------------------------------

    /**
     * Uses a 2-cycle permutation shuffle to randomly re-order the last elements
     * of list.
     *
     * @param list
     *            list to be shuffled
     * @param end
     *            element past which shuffling begins
     */
    private void shuffle(int[] list, int end) {
        int target = 0;
        for (int i = list.length - 1; i >= end; i--) {
            if (i == 0) {
                target = 0;
            } else {
                target = nextInt(0, i);
            }
            int temp = list[target];
            list[target] = list[i];
            list[i] = temp;
        }
    }

    /**
     * Returns an array representing n.
     *
     * @param n
     *            the natural number to represent
     * @return array with entries = elements of n
     */
    private int[] getNatural(int n) {
        int[] natural = new int[n];
        for (int i = 0; i < n; i++) {
            natural[i] = i;
        }
        return natural;
    }

}