summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/distribution/BetaDistribution.java
blob: c7c2663c545ebafdbabe2c0c912e9c284f9e839f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.special.Beta;
import org.apache.commons.math3.special.Gamma;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;

/**
 * Implements the Beta distribution.
 *
 * @see <a href="http://en.wikipedia.org/wiki/Beta_distribution">Beta distribution</a>
 * @since 2.0 (changed to concrete class in 3.0)
 */
public class BetaDistribution extends AbstractRealDistribution {
    /**
     * Default inverse cumulative probability accuracy.
     *
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;

    /** Serializable version identifier. */
    private static final long serialVersionUID = -1221965979403477668L;

    /** First shape parameter. */
    private final double alpha;

    /** Second shape parameter. */
    private final double beta;

    /**
     * Normalizing factor used in density computations. updated whenever alpha or beta are changed.
     */
    private double z;

    /** Inverse cumulative probability accuracy. */
    private final double solverAbsoluteAccuracy;

    /**
     * Build a new instance.
     *
     * <p><b>Note:</b> this constructor will implicitly create an instance of {@link Well19937c} as
     * random generator to be used for sampling only (see {@link #sample()} and {@link
     * #sample(int)}). In case no sampling is needed for the created distribution, it is advised to
     * pass {@code null} as random generator via the appropriate constructors to avoid the
     * additional initialisation overhead.
     *
     * @param alpha First shape parameter (must be positive).
     * @param beta Second shape parameter (must be positive).
     */
    public BetaDistribution(double alpha, double beta) {
        this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Build a new instance.
     *
     * <p><b>Note:</b> this constructor will implicitly create an instance of {@link Well19937c} as
     * random generator to be used for sampling only (see {@link #sample()} and {@link
     * #sample(int)}). In case no sampling is needed for the created distribution, it is advised to
     * pass {@code null} as random generator via the appropriate constructors to avoid the
     * additional initialisation overhead.
     *
     * @param alpha First shape parameter (must be positive).
     * @param beta Second shape parameter (must be positive).
     * @param inverseCumAccuracy Maximum absolute error in inverse cumulative probability estimates
     *     (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
     * @since 2.1
     */
    public BetaDistribution(double alpha, double beta, double inverseCumAccuracy) {
        this(new Well19937c(), alpha, beta, inverseCumAccuracy);
    }

    /**
     * Creates a &beta; distribution.
     *
     * @param rng Random number generator.
     * @param alpha First shape parameter (must be positive).
     * @param beta Second shape parameter (must be positive).
     * @since 3.3
     */
    public BetaDistribution(RandomGenerator rng, double alpha, double beta) {
        this(rng, alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Creates a &beta; distribution.
     *
     * @param rng Random number generator.
     * @param alpha First shape parameter (must be positive).
     * @param beta Second shape parameter (must be positive).
     * @param inverseCumAccuracy Maximum absolute error in inverse cumulative probability estimates
     *     (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
     * @since 3.1
     */
    public BetaDistribution(
            RandomGenerator rng, double alpha, double beta, double inverseCumAccuracy) {
        super(rng);

        this.alpha = alpha;
        this.beta = beta;
        z = Double.NaN;
        solverAbsoluteAccuracy = inverseCumAccuracy;
    }

    /**
     * Access the first shape parameter, {@code alpha}.
     *
     * @return the first shape parameter.
     */
    public double getAlpha() {
        return alpha;
    }

    /**
     * Access the second shape parameter, {@code beta}.
     *
     * @return the second shape parameter.
     */
    public double getBeta() {
        return beta;
    }

    /** Recompute the normalization factor. */
    private void recomputeZ() {
        if (Double.isNaN(z)) {
            z = Gamma.logGamma(alpha) + Gamma.logGamma(beta) - Gamma.logGamma(alpha + beta);
        }
    }

    /** {@inheritDoc} */
    public double density(double x) {
        final double logDensity = logDensity(x);
        return logDensity == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logDensity);
    }

    /** {@inheritDoc} * */
    @Override
    public double logDensity(double x) {
        recomputeZ();
        if (x < 0 || x > 1) {
            return Double.NEGATIVE_INFINITY;
        } else if (x == 0) {
            if (alpha < 1) {
                throw new NumberIsTooSmallException(
                        LocalizedFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_0_FOR_SOME_ALPHA,
                        alpha,
                        1,
                        false);
            }
            return Double.NEGATIVE_INFINITY;
        } else if (x == 1) {
            if (beta < 1) {
                throw new NumberIsTooSmallException(
                        LocalizedFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_1_FOR_SOME_BETA,
                        beta,
                        1,
                        false);
            }
            return Double.NEGATIVE_INFINITY;
        } else {
            double logX = FastMath.log(x);
            double log1mX = FastMath.log1p(-x);
            return (alpha - 1) * logX + (beta - 1) * log1mX - z;
        }
    }

    /** {@inheritDoc} */
    public double cumulativeProbability(double x) {
        if (x <= 0) {
            return 0;
        } else if (x >= 1) {
            return 1;
        } else {
            return Beta.regularizedBeta(x, alpha, beta);
        }
    }

    /**
     * Return the absolute accuracy setting of the solver used to estimate inverse cumulative
     * probabilities.
     *
     * @return the solver absolute accuracy.
     * @since 2.1
     */
    @Override
    protected double getSolverAbsoluteAccuracy() {
        return solverAbsoluteAccuracy;
    }

    /**
     * {@inheritDoc}
     *
     * <p>For first shape parameter {@code alpha} and second shape parameter {@code beta}, the mean
     * is {@code alpha / (alpha + beta)}.
     */
    public double getNumericalMean() {
        final double a = getAlpha();
        return a / (a + getBeta());
    }

    /**
     * {@inheritDoc}
     *
     * <p>For first shape parameter {@code alpha} and second shape parameter {@code beta}, the
     * variance is {@code (alpha * beta) / [(alpha + beta)^2 * (alpha + beta + 1)]}.
     */
    public double getNumericalVariance() {
        final double a = getAlpha();
        final double b = getBeta();
        final double alphabetasum = a + b;
        return (a * b) / ((alphabetasum * alphabetasum) * (alphabetasum + 1));
    }

    /**
     * {@inheritDoc}
     *
     * <p>The lower bound of the support is always 0 no matter the parameters.
     *
     * @return lower bound of the support (always 0)
     */
    public double getSupportLowerBound() {
        return 0;
    }

    /**
     * {@inheritDoc}
     *
     * <p>The upper bound of the support is always 1 no matter the parameters.
     *
     * @return upper bound of the support (always 1)
     */
    public double getSupportUpperBound() {
        return 1;
    }

    /** {@inheritDoc} */
    public boolean isSupportLowerBoundInclusive() {
        return false;
    }

    /** {@inheritDoc} */
    public boolean isSupportUpperBoundInclusive() {
        return false;
    }

    /**
     * {@inheritDoc}
     *
     * <p>The support of this distribution is connected.
     *
     * @return {@code true}
     */
    public boolean isSupportConnected() {
        return true;
    }

    /**
     * {@inheritDoc}
     *
     * <p>Sampling is performed using Cheng algorithms:
     *
     * <p>R. C. H. Cheng, "Generating beta variates with nonintegral shape parameters.".
     * Communications of the ACM, 21, 317–322, 1978.
     */
    @Override
    public double sample() {
        return ChengBetaSampler.sample(random, alpha, beta);
    }

    /**
     * Utility class implementing Cheng's algorithms for beta distribution sampling.
     *
     * <p>R. C. H. Cheng, "Generating beta variates with nonintegral shape parameters.".
     * Communications of the ACM, 21, 317–322, 1978.
     *
     * @since 3.6
     */
    private static final class ChengBetaSampler {

        /**
         * Returns one sample using Cheng's sampling algorithm.
         *
         * @param random random generator to use
         * @param alpha distribution first shape parameter
         * @param beta distribution second shape parameter
         * @return sampled value
         */
        static double sample(RandomGenerator random, final double alpha, final double beta) {
            final double a = FastMath.min(alpha, beta);
            final double b = FastMath.max(alpha, beta);

            if (a > 1) {
                return algorithmBB(random, alpha, a, b);
            } else {
                return algorithmBC(random, alpha, b, a);
            }
        }

        /**
         * Returns one sample using Cheng's BB algorithm, when both &alpha; and &beta; are greater
         * than 1.
         *
         * @param random random generator to use
         * @param a0 distribution first shape parameter (&alpha;)
         * @param a min(&alpha;, &beta;) where &alpha;, &beta; are the two distribution shape
         *     parameters
         * @param b max(&alpha;, &beta;) where &alpha;, &beta; are the two distribution shape
         *     parameters
         * @return sampled value
         */
        private static double algorithmBB(
                RandomGenerator random, final double a0, final double a, final double b) {
            final double alpha = a + b;
            final double beta = FastMath.sqrt((alpha - 2.) / (2. * a * b - alpha));
            final double gamma = a + 1. / beta;

            double r;
            double w;
            double t;
            do {
                final double u1 = random.nextDouble();
                final double u2 = random.nextDouble();
                final double v = beta * (FastMath.log(u1) - FastMath.log1p(-u1));
                w = a * FastMath.exp(v);
                final double z = u1 * u1 * u2;
                r = gamma * v - 1.3862944;
                final double s = a + r - w;
                if (s + 2.609438 >= 5 * z) {
                    break;
                }

                t = FastMath.log(z);
                if (s >= t) {
                    break;
                }
            } while (r + alpha * (FastMath.log(alpha) - FastMath.log(b + w)) < t);

            w = FastMath.min(w, Double.MAX_VALUE);
            return Precision.equals(a, a0) ? w / (b + w) : b / (b + w);
        }

        /**
         * Returns one sample using Cheng's BC algorithm, when at least one of &alpha; and &beta; is
         * smaller than 1.
         *
         * @param random random generator to use
         * @param a0 distribution first shape parameter (&alpha;)
         * @param a max(&alpha;, &beta;) where &alpha;, &beta; are the two distribution shape
         *     parameters
         * @param b min(&alpha;, &beta;) where &alpha;, &beta; are the two distribution shape
         *     parameters
         * @return sampled value
         */
        private static double algorithmBC(
                RandomGenerator random, final double a0, final double a, final double b) {
            final double alpha = a + b;
            final double beta = 1. / b;
            final double delta = 1. + a - b;
            final double k1 = delta * (0.0138889 + 0.0416667 * b) / (a * beta - 0.777778);
            final double k2 = 0.25 + (0.5 + 0.25 / delta) * b;

            double w;
            for (; ; ) {
                final double u1 = random.nextDouble();
                final double u2 = random.nextDouble();
                final double y = u1 * u2;
                final double z = u1 * y;
                if (u1 < 0.5) {
                    if (0.25 * u2 + z - y >= k1) {
                        continue;
                    }
                } else {
                    if (z <= 0.25) {
                        final double v = beta * (FastMath.log(u1) - FastMath.log1p(-u1));
                        w = a * FastMath.exp(v);
                        break;
                    }

                    if (z >= k2) {
                        continue;
                    }
                }

                final double v = beta * (FastMath.log(u1) - FastMath.log1p(-u1));
                w = a * FastMath.exp(v);
                if (alpha * (FastMath.log(alpha) - FastMath.log(b + w) + v) - 1.3862944
                        >= FastMath.log(z)) {
                    break;
                }
            }

            w = FastMath.min(w, Double.MAX_VALUE);
            return Precision.equals(a, a0) ? w / (b + w) : b / (b + w);
        }
    }
}