summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/EmbeddedRungeKuttaIntegrator.java
blob: 098d2e5ee01639b58f2573c26feece8f85183832 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.ode.ExpandableStatefulODE;
import org.apache.commons.math3.util.FastMath;

/**
 * This class implements the common part of all embedded Runge-Kutta
 * integrators for Ordinary Differential Equations.
 *
 * <p>These methods are embedded explicit Runge-Kutta methods with two
 * sets of coefficients allowing to estimate the error, their Butcher
 * arrays are as follows :
 * <pre>
 *    0  |
 *   c2  | a21
 *   c3  | a31  a32
 *   ... |        ...
 *   cs  | as1  as2  ...  ass-1
 *       |--------------------------
 *       |  b1   b2  ...   bs-1  bs
 *       |  b'1  b'2 ...   b's-1 b's
 * </pre>
 * </p>
 *
 * <p>In fact, we rather use the array defined by ej = bj - b'j to
 * compute directly the error rather than computing two estimates and
 * then comparing them.</p>
 *
 * <p>Some methods are qualified as <i>fsal</i> (first same as last)
 * methods. This means the last evaluation of the derivatives in one
 * step is the same as the first in the next step. Then, this
 * evaluation can be reused from one step to the next one and the cost
 * of such a method is really s-1 evaluations despite the method still
 * has s stages. This behaviour is true only for successful steps, if
 * the step is rejected after the error estimation phase, no
 * evaluation is saved. For an <i>fsal</i> method, we have cs = 1 and
 * asi = bi for all i.</p>
 *
 * @since 1.2
 */

public abstract class EmbeddedRungeKuttaIntegrator
  extends AdaptiveStepsizeIntegrator {

    /** Indicator for <i>fsal</i> methods. */
    private final boolean fsal;

    /** Time steps from Butcher array (without the first zero). */
    private final double[] c;

    /** Internal weights from Butcher array (without the first empty row). */
    private final double[][] a;

    /** External weights for the high order method from Butcher array. */
    private final double[] b;

    /** Prototype of the step interpolator. */
    private final RungeKuttaStepInterpolator prototype;

    /** Stepsize control exponent. */
    private final double exp;

    /** Safety factor for stepsize control. */
    private double safety;

    /** Minimal reduction factor for stepsize control. */
    private double minReduction;

    /** Maximal growth factor for stepsize control. */
    private double maxGrowth;

  /** Build a Runge-Kutta integrator with the given Butcher array.
   * @param name name of the method
   * @param fsal indicate that the method is an <i>fsal</i>
   * @param c time steps from Butcher array (without the first zero)
   * @param a internal weights from Butcher array (without the first empty row)
   * @param b propagation weights for the high order method from Butcher array
   * @param prototype prototype of the step interpolator to use
   * @param minStep minimal step (sign is irrelevant, regardless of
   * integration direction, forward or backward), the last step can
   * be smaller than this
   * @param maxStep maximal step (sign is irrelevant, regardless of
   * integration direction, forward or backward), the last step can
   * be smaller than this
   * @param scalAbsoluteTolerance allowed absolute error
   * @param scalRelativeTolerance allowed relative error
   */
  protected EmbeddedRungeKuttaIntegrator(final String name, final boolean fsal,
                                         final double[] c, final double[][] a, final double[] b,
                                         final RungeKuttaStepInterpolator prototype,
                                         final double minStep, final double maxStep,
                                         final double scalAbsoluteTolerance,
                                         final double scalRelativeTolerance) {

    super(name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);

    this.fsal      = fsal;
    this.c         = c;
    this.a         = a;
    this.b         = b;
    this.prototype = prototype;

    exp = -1.0 / getOrder();

    // set the default values of the algorithm control parameters
    setSafety(0.9);
    setMinReduction(0.2);
    setMaxGrowth(10.0);

  }

  /** Build a Runge-Kutta integrator with the given Butcher array.
   * @param name name of the method
   * @param fsal indicate that the method is an <i>fsal</i>
   * @param c time steps from Butcher array (without the first zero)
   * @param a internal weights from Butcher array (without the first empty row)
   * @param b propagation weights for the high order method from Butcher array
   * @param prototype prototype of the step interpolator to use
   * @param minStep minimal step (must be positive even for backward
   * integration), the last step can be smaller than this
   * @param maxStep maximal step (must be positive even for backward
   * integration)
   * @param vecAbsoluteTolerance allowed absolute error
   * @param vecRelativeTolerance allowed relative error
   */
  protected EmbeddedRungeKuttaIntegrator(final String name, final boolean fsal,
                                         final double[] c, final double[][] a, final double[] b,
                                         final RungeKuttaStepInterpolator prototype,
                                         final double   minStep, final double maxStep,
                                         final double[] vecAbsoluteTolerance,
                                         final double[] vecRelativeTolerance) {

    super(name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);

    this.fsal      = fsal;
    this.c         = c;
    this.a         = a;
    this.b         = b;
    this.prototype = prototype;

    exp = -1.0 / getOrder();

    // set the default values of the algorithm control parameters
    setSafety(0.9);
    setMinReduction(0.2);
    setMaxGrowth(10.0);

  }

  /** Get the order of the method.
   * @return order of the method
   */
  public abstract int getOrder();

  /** Get the safety factor for stepsize control.
   * @return safety factor
   */
  public double getSafety() {
    return safety;
  }

  /** Set the safety factor for stepsize control.
   * @param safety safety factor
   */
  public void setSafety(final double safety) {
    this.safety = safety;
  }

  /** {@inheritDoc} */
  @Override
  public void integrate(final ExpandableStatefulODE equations, final double t)
      throws NumberIsTooSmallException, DimensionMismatchException,
             MaxCountExceededException, NoBracketingException {

    sanityChecks(equations, t);
    setEquations(equations);
    final boolean forward = t > equations.getTime();

    // create some internal working arrays
    final double[] y0  = equations.getCompleteState();
    final double[] y = y0.clone();
    final int stages = c.length + 1;
    final double[][] yDotK = new double[stages][y.length];
    final double[] yTmp    = y0.clone();
    final double[] yDotTmp = new double[y.length];

    // set up an interpolator sharing the integrator arrays
    final RungeKuttaStepInterpolator interpolator = (RungeKuttaStepInterpolator) prototype.copy();
    interpolator.reinitialize(this, yTmp, yDotK, forward,
                              equations.getPrimaryMapper(), equations.getSecondaryMappers());
    interpolator.storeTime(equations.getTime());

    // set up integration control objects
    stepStart         = equations.getTime();
    double  hNew      = 0;
    boolean firstTime = true;
    initIntegration(equations.getTime(), y0, t);

    // main integration loop
    isLastStep = false;
    do {

      interpolator.shift();

      // iterate over step size, ensuring local normalized error is smaller than 1
      double error = 10;
      while (error >= 1.0) {

        if (firstTime || !fsal) {
          // first stage
          computeDerivatives(stepStart, y, yDotK[0]);
        }

        if (firstTime) {
          final double[] scale = new double[mainSetDimension];
          if (vecAbsoluteTolerance == null) {
              for (int i = 0; i < scale.length; ++i) {
                scale[i] = scalAbsoluteTolerance + scalRelativeTolerance * FastMath.abs(y[i]);
              }
          } else {
              for (int i = 0; i < scale.length; ++i) {
                scale[i] = vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * FastMath.abs(y[i]);
              }
          }
          hNew = initializeStep(forward, getOrder(), scale,
                                stepStart, y, yDotK[0], yTmp, yDotK[1]);
          firstTime = false;
        }

        stepSize = hNew;
        if (forward) {
            if (stepStart + stepSize >= t) {
                stepSize = t - stepStart;
            }
        } else {
            if (stepStart + stepSize <= t) {
                stepSize = t - stepStart;
            }
        }

        // next stages
        for (int k = 1; k < stages; ++k) {

          for (int j = 0; j < y0.length; ++j) {
            double sum = a[k-1][0] * yDotK[0][j];
            for (int l = 1; l < k; ++l) {
              sum += a[k-1][l] * yDotK[l][j];
            }
            yTmp[j] = y[j] + stepSize * sum;
          }

          computeDerivatives(stepStart + c[k-1] * stepSize, yTmp, yDotK[k]);

        }

        // estimate the state at the end of the step
        for (int j = 0; j < y0.length; ++j) {
          double sum    = b[0] * yDotK[0][j];
          for (int l = 1; l < stages; ++l) {
            sum    += b[l] * yDotK[l][j];
          }
          yTmp[j] = y[j] + stepSize * sum;
        }

        // estimate the error at the end of the step
        error = estimateError(yDotK, y, yTmp, stepSize);
        if (error >= 1.0) {
          // reject the step and attempt to reduce error by stepsize control
          final double factor =
              FastMath.min(maxGrowth,
                           FastMath.max(minReduction, safety * FastMath.pow(error, exp)));
          hNew = filterStep(stepSize * factor, forward, false);
        }

      }

      // local error is small enough: accept the step, trigger events and step handlers
      interpolator.storeTime(stepStart + stepSize);
      System.arraycopy(yTmp, 0, y, 0, y0.length);
      System.arraycopy(yDotK[stages - 1], 0, yDotTmp, 0, y0.length);
      stepStart = acceptStep(interpolator, y, yDotTmp, t);
      System.arraycopy(y, 0, yTmp, 0, y.length);

      if (!isLastStep) {

          // prepare next step
          interpolator.storeTime(stepStart);

          if (fsal) {
              // save the last evaluation for the next step
              System.arraycopy(yDotTmp, 0, yDotK[0], 0, y0.length);
          }

          // stepsize control for next step
          final double factor =
              FastMath.min(maxGrowth, FastMath.max(minReduction, safety * FastMath.pow(error, exp)));
          final double  scaledH    = stepSize * factor;
          final double  nextT      = stepStart + scaledH;
          final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t);
          hNew = filterStep(scaledH, forward, nextIsLast);

          final double  filteredNextT      = stepStart + hNew;
          final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t);
          if (filteredNextIsLast) {
              hNew = t - stepStart;
          }

      }

    } while (!isLastStep);

    // dispatch results
    equations.setTime(stepStart);
    equations.setCompleteState(y);

    resetInternalState();

  }

  /** Get the minimal reduction factor for stepsize control.
   * @return minimal reduction factor
   */
  public double getMinReduction() {
    return minReduction;
  }

  /** Set the minimal reduction factor for stepsize control.
   * @param minReduction minimal reduction factor
   */
  public void setMinReduction(final double minReduction) {
    this.minReduction = minReduction;
  }

  /** Get the maximal growth factor for stepsize control.
   * @return maximal growth factor
   */
  public double getMaxGrowth() {
    return maxGrowth;
  }

  /** Set the maximal growth factor for stepsize control.
   * @param maxGrowth maximal growth factor
   */
  public void setMaxGrowth(final double maxGrowth) {
    this.maxGrowth = maxGrowth;
  }

  /** Compute the error ratio.
   * @param yDotK derivatives computed during the first stages
   * @param y0 estimate of the step at the start of the step
   * @param y1 estimate of the step at the end of the step
   * @param h  current step
   * @return error ratio, greater than 1 if step should be rejected
   */
  protected abstract double estimateError(double[][] yDotK,
                                          double[] y0, double[] y1,
                                          double h);

}