summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/random/RandomDataGenerator.java
blob: 5d485802938e28543a8de6542a74ea00abb519ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.random;

import org.apache.commons.math3.distribution.BetaDistribution;
import org.apache.commons.math3.distribution.BinomialDistribution;
import org.apache.commons.math3.distribution.CauchyDistribution;
import org.apache.commons.math3.distribution.ChiSquaredDistribution;
import org.apache.commons.math3.distribution.ExponentialDistribution;
import org.apache.commons.math3.distribution.FDistribution;
import org.apache.commons.math3.distribution.GammaDistribution;
import org.apache.commons.math3.distribution.HypergeometricDistribution;
import org.apache.commons.math3.distribution.PascalDistribution;
import org.apache.commons.math3.distribution.PoissonDistribution;
import org.apache.commons.math3.distribution.TDistribution;
import org.apache.commons.math3.distribution.UniformIntegerDistribution;
import org.apache.commons.math3.distribution.WeibullDistribution;
import org.apache.commons.math3.distribution.ZipfDistribution;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.exception.NotANumberException;
import org.apache.commons.math3.exception.NotFiniteNumberException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.MathArrays;

import java.io.Serializable;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.SecureRandom;
import java.util.Collection;

/**
 * Implements the {@link RandomData} interface using a {@link RandomGenerator} instance to generate
 * non-secure data and a {@link java.security.SecureRandom} instance to provide data for the <code>
 * nextSecureXxx</code> methods. If no <code>RandomGenerator</code> is provided in the constructor,
 * the default is to use a {@link Well19937c} generator. To plug in a different implementation,
 * either implement <code>RandomGenerator</code> directly or extend {@link AbstractRandomGenerator}.
 *
 * <p>Supports reseeding the underlying pseudo-random number generator (PRNG). The <code>
 * SecurityProvider</code> and <code>Algorithm</code> used by the <code>SecureRandom</code> instance
 * can also be reset.
 *
 * <p>For details on the default PRNGs, see {@link java.util.Random} and {@link
 * java.security.SecureRandom}.
 *
 * <p><strong>Usage Notes</strong>:
 *
 * <ul>
 *   <li>Instance variables are used to maintain <code>RandomGenerator</code> and <code>SecureRandom
 *       </code> instances used in data generation. Therefore, to generate a random sequence of
 *       values or strings, you should use just <strong>one</strong> <code>RandomDataImpl</code>
 *       instance repeatedly.
 *   <li>The "secure" methods are *much* slower. These should be used only when a cryptographically
 *       secure random sequence is required. A secure random sequence is a sequence of pseudo-random
 *       values which, in addition to being well-dispersed (so no subsequence of values is an any
 *       more likely than other subsequence of the the same length), also has the additional
 *       property that knowledge of values generated up to any point in the sequence does not make
 *       it any easier to predict subsequent values.
 *   <li>When a new <code>RandomDataImpl</code> is created, the underlying random number generators
 *       are <strong>not</strong> initialized. If you do not explicitly seed the default non-secure
 *       generator, it is seeded with the current time in milliseconds plus the system identity hash
 *       code on first use. The same holds for the secure generator. If you provide a <code>
 *       RandomGenerator</code> to the constructor, however, this generator is not reseeded by the
 *       constructor nor is it reseeded on first use.
 *   <li>The <code>reSeed</code> and <code>reSeedSecure</code> methods delegate to the corresponding
 *       methods on the underlying <code>RandomGenerator</code> and <code>SecureRandom</code>
 *       instances. Therefore, <code>reSeed(long)</code> fully resets the initial state of the
 *       non-secure random number generator (so that reseeding with a specific value always results
 *       in the same subsequent random sequence); whereas reSeedSecure(long) does
 *       <strong>not</strong> reinitialize the secure random number generator (so secure sequences
 *       started with calls to reseedSecure(long) won't be identical).
 *   <li>This implementation is not synchronized. The underlying <code>RandomGenerator</code> or
 *       <code>SecureRandom</code> instances are not protected by synchronization and are not
 *       guaranteed to be thread-safe. Therefore, if an instance of this class is concurrently
 *       utilized by multiple threads, it is the responsibility of client code to synchronize access
 *       to seeding and data generation methods.
 * </ul>
 *
 * @since 3.1
 */
public class RandomDataGenerator implements RandomData, Serializable {

    /** Serializable version identifier */
    private static final long serialVersionUID = -626730818244969716L;

    /** underlying random number generator */
    private RandomGenerator rand = null;

    /** underlying secure random number generator */
    private RandomGenerator secRand = null;

    /**
     * Construct a RandomDataGenerator, using a default random generator as the source of
     * randomness.
     *
     * <p>The default generator is a {@link Well19937c} seeded with {@code
     * System.currentTimeMillis() + System.identityHashCode(this))}. The generator is initialized
     * and seeded on first use.
     */
    public RandomDataGenerator() {}

    /**
     * Construct a RandomDataGenerator using the supplied {@link RandomGenerator} as the source of
     * (non-secure) random data.
     *
     * @param rand the source of (non-secure) random data (may be null, resulting in the default
     *     generator)
     */
    public RandomDataGenerator(RandomGenerator rand) {
        this.rand = rand;
    }

    /**
     * {@inheritDoc}
     *
     * <p><strong>Algorithm Description:</strong> hex strings are generated using a 2-step process.
     *
     * <ol>
     *   <li>{@code len / 2 + 1} binary bytes are generated using the underlying Random
     *   <li>Each binary byte is translated into 2 hex digits
     * </ol>
     *
     * @param len the desired string length.
     * @return the random string.
     * @throws NotStrictlyPositiveException if {@code len <= 0}.
     */
    public String nextHexString(int len) throws NotStrictlyPositiveException {
        if (len <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len);
        }

        // Get a random number generator
        RandomGenerator ran = getRandomGenerator();

        // Initialize output buffer
        StringBuilder outBuffer = new StringBuilder();

        // Get int(len/2)+1 random bytes
        byte[] randomBytes = new byte[(len / 2) + 1];
        ran.nextBytes(randomBytes);

        // Convert each byte to 2 hex digits
        for (int i = 0; i < randomBytes.length; i++) {
            Integer c = Integer.valueOf(randomBytes[i]);

            /*
             * Add 128 to byte value to make interval 0-255 before doing hex
             * conversion. This guarantees <= 2 hex digits from toHexString()
             * toHexString would otherwise add 2^32 to negative arguments.
             */
            String hex = Integer.toHexString(c.intValue() + 128);

            // Make sure we add 2 hex digits for each byte
            if (hex.length() == 1) {
                hex = "0" + hex;
            }
            outBuffer.append(hex);
        }
        return outBuffer.toString().substring(0, len);
    }

    /** {@inheritDoc} */
    public int nextInt(final int lower, final int upper) throws NumberIsTooLargeException {
        return new UniformIntegerDistribution(getRandomGenerator(), lower, upper).sample();
    }

    /** {@inheritDoc} */
    public long nextLong(final long lower, final long upper) throws NumberIsTooLargeException {
        if (lower >= upper) {
            throw new NumberIsTooLargeException(
                    LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false);
        }
        final long max = (upper - lower) + 1;
        if (max <= 0) {
            // the range is too wide to fit in a positive long (larger than 2^63); as it covers
            // more than half the long range, we use directly a simple rejection method
            final RandomGenerator rng = getRandomGenerator();
            while (true) {
                final long r = rng.nextLong();
                if (r >= lower && r <= upper) {
                    return r;
                }
            }
        } else if (max < Integer.MAX_VALUE) {
            // we can shift the range and generate directly a positive int
            return lower + getRandomGenerator().nextInt((int) max);
        } else {
            // we can shift the range and generate directly a positive long
            return lower + nextLong(getRandomGenerator(), max);
        }
    }

    /**
     * Returns a pseudorandom, uniformly distributed {@code long} value between 0 (inclusive) and
     * the specified value (exclusive), drawn from this random number generator's sequence.
     *
     * @param rng random generator to use
     * @param n the bound on the random number to be returned. Must be positive.
     * @return a pseudorandom, uniformly distributed {@code long} value between 0 (inclusive) and n
     *     (exclusive).
     * @throws IllegalArgumentException if n is not positive.
     */
    private static long nextLong(final RandomGenerator rng, final long n)
            throws IllegalArgumentException {
        if (n > 0) {
            final byte[] byteArray = new byte[8];
            long bits;
            long val;
            do {
                rng.nextBytes(byteArray);
                bits = 0;
                for (final byte b : byteArray) {
                    bits = (bits << 8) | (((long) b) & 0xffL);
                }
                bits &= 0x7fffffffffffffffL;
                val = bits % n;
            } while (bits - val + (n - 1) < 0);
            return val;
        }
        throw new NotStrictlyPositiveException(n);
    }

    /**
     * {@inheritDoc}
     *
     * <p><strong>Algorithm Description:</strong> hex strings are generated in 40-byte segments
     * using a 3-step process.
     *
     * <ol>
     *   <li>20 random bytes are generated using the underlying <code>SecureRandom</code>.
     *   <li>SHA-1 hash is applied to yield a 20-byte binary digest.
     *   <li>Each byte of the binary digest is converted to 2 hex digits.
     * </ol>
     *
     * @throws NotStrictlyPositiveException if {@code len <= 0}
     */
    public String nextSecureHexString(int len) throws NotStrictlyPositiveException {
        if (len <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len);
        }

        // Get SecureRandom and setup Digest provider
        final RandomGenerator secRan = getSecRan();
        MessageDigest alg = null;
        try {
            alg = MessageDigest.getInstance("SHA-1");
        } catch (NoSuchAlgorithmException ex) {
            // this should never happen
            throw new MathInternalError(ex);
        }
        alg.reset();

        // Compute number of iterations required (40 bytes each)
        int numIter = (len / 40) + 1;

        StringBuilder outBuffer = new StringBuilder();
        for (int iter = 1; iter < numIter + 1; iter++) {
            byte[] randomBytes = new byte[40];
            secRan.nextBytes(randomBytes);
            alg.update(randomBytes);

            // Compute hash -- will create 20-byte binary hash
            byte[] hash = alg.digest();

            // Loop over the hash, converting each byte to 2 hex digits
            for (int i = 0; i < hash.length; i++) {
                Integer c = Integer.valueOf(hash[i]);

                /*
                 * Add 128 to byte value to make interval 0-255 This guarantees
                 * <= 2 hex digits from toHexString() toHexString would
                 * otherwise add 2^32 to negative arguments
                 */
                String hex = Integer.toHexString(c.intValue() + 128);

                // Keep strings uniform length -- guarantees 40 bytes
                if (hex.length() == 1) {
                    hex = "0" + hex;
                }
                outBuffer.append(hex);
            }
        }
        return outBuffer.toString().substring(0, len);
    }

    /** {@inheritDoc} */
    public int nextSecureInt(final int lower, final int upper) throws NumberIsTooLargeException {
        return new UniformIntegerDistribution(getSecRan(), lower, upper).sample();
    }

    /** {@inheritDoc} */
    public long nextSecureLong(final long lower, final long upper)
            throws NumberIsTooLargeException {
        if (lower >= upper) {
            throw new NumberIsTooLargeException(
                    LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false);
        }
        final RandomGenerator rng = getSecRan();
        final long max = (upper - lower) + 1;
        if (max <= 0) {
            // the range is too wide to fit in a positive long (larger than 2^63); as it covers
            // more than half the long range, we use directly a simple rejection method
            while (true) {
                final long r = rng.nextLong();
                if (r >= lower && r <= upper) {
                    return r;
                }
            }
        } else if (max < Integer.MAX_VALUE) {
            // we can shift the range and generate directly a positive int
            return lower + rng.nextInt((int) max);
        } else {
            // we can shift the range and generate directly a positive long
            return lower + nextLong(rng, max);
        }
    }

    /**
     * {@inheritDoc}
     *
     * <p><strong>Algorithm Description</strong>:
     *
     * <ul>
     *   <li>For small means, uses simulation of a Poisson process using Uniform deviates, as
     *       described <a href="http://irmi.epfl.ch/cmos/Pmmi/interactive/rng7.htm">here.</a> The
     *       Poisson process (and hence value returned) is bounded by 1000 * mean.
     *   <li>For large means, uses the rejection algorithm described in <br>
     *       Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i>
     *       <strong>Computing</strong> vol. 26 pp. 197-207.
     * </ul>
     *
     * @throws NotStrictlyPositiveException if {@code len <= 0}
     */
    public long nextPoisson(double mean) throws NotStrictlyPositiveException {
        return new PoissonDistribution(
                        getRandomGenerator(),
                        mean,
                        PoissonDistribution.DEFAULT_EPSILON,
                        PoissonDistribution.DEFAULT_MAX_ITERATIONS)
                .sample();
    }

    /** {@inheritDoc} */
    public double nextGaussian(double mu, double sigma) throws NotStrictlyPositiveException {
        if (sigma <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sigma);
        }
        return sigma * getRandomGenerator().nextGaussian() + mu;
    }

    /**
     * {@inheritDoc}
     *
     * <p><strong>Algorithm Description</strong>: Uses the Algorithm SA (Ahrens) from p. 876 in:
     * [1]: Ahrens, J. H. and Dieter, U. (1972). Computer methods for sampling from the exponential
     * and normal distributions. Communications of the ACM, 15, 873-882.
     */
    public double nextExponential(double mean) throws NotStrictlyPositiveException {
        return new ExponentialDistribution(
                        getRandomGenerator(),
                        mean,
                        ExponentialDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
                .sample();
    }

    /**
     * Generates a random value from the {@link
     * org.apache.commons.math3.distribution.GammaDistribution Gamma Distribution}.
     *
     * <p>This implementation uses the following algorithms:
     *
     * <p>For 0 < shape < 1: <br>
     * Ahrens, J. H. and Dieter, U., <i>Computer methods for sampling from gamma, beta, Poisson and
     * binomial distributions.</i> Computing, 12, 223-246, 1974.
     *
     * <p>For shape >= 1: <br>
     * Marsaglia and Tsang, <i>A Simple Method for Generating Gamma Variables.</i> ACM Transactions
     * on Mathematical Software, Volume 26 Issue 3, September, 2000.
     *
     * @param shape the median of the Gamma distribution
     * @param scale the scale parameter of the Gamma distribution
     * @return random value sampled from the Gamma(shape, scale) distribution
     * @throws NotStrictlyPositiveException if {@code shape <= 0} or {@code scale <= 0}.
     */
    public double nextGamma(double shape, double scale) throws NotStrictlyPositiveException {
        return new GammaDistribution(
                        getRandomGenerator(),
                        shape,
                        scale,
                        GammaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
                .sample();
    }

    /**
     * Generates a random value from the {@link HypergeometricDistribution Hypergeometric
     * Distribution}.
     *
     * @param populationSize the population size of the Hypergeometric distribution
     * @param numberOfSuccesses number of successes in the population of the Hypergeometric
     *     distribution
     * @param sampleSize the sample size of the Hypergeometric distribution
     * @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize)
     *     distribution
     * @throws NumberIsTooLargeException if {@code numberOfSuccesses > populationSize}, or {@code
     *     sampleSize > populationSize}.
     * @throws NotStrictlyPositiveException if {@code populationSize <= 0}.
     * @throws NotPositiveException if {@code numberOfSuccesses < 0}.
     */
    public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize)
            throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException {
        return new HypergeometricDistribution(
                        getRandomGenerator(), populationSize, numberOfSuccesses, sampleSize)
                .sample();
    }

    /**
     * Generates a random value from the {@link PascalDistribution Pascal Distribution}.
     *
     * @param r the number of successes of the Pascal distribution
     * @param p the probability of success of the Pascal distribution
     * @return random value sampled from the Pascal(r, p) distribution
     * @throws NotStrictlyPositiveException if the number of successes is not positive
     * @throws OutOfRangeException if the probability of success is not in the range {@code [0, 1]}.
     */
    public int nextPascal(int r, double p)
            throws NotStrictlyPositiveException, OutOfRangeException {
        return new PascalDistribution(getRandomGenerator(), r, p).sample();
    }

    /**
     * Generates a random value from the {@link TDistribution T Distribution}.
     *
     * @param df the degrees of freedom of the T distribution
     * @return random value from the T(df) distribution
     * @throws NotStrictlyPositiveException if {@code df <= 0}
     */
    public double nextT(double df) throws NotStrictlyPositiveException {
        return new TDistribution(
                        getRandomGenerator(), df, TDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
                .sample();
    }

    /**
     * Generates a random value from the {@link WeibullDistribution Weibull Distribution}.
     *
     * @param shape the shape parameter of the Weibull distribution
     * @param scale the scale parameter of the Weibull distribution
     * @return random value sampled from the Weibull(shape, size) distribution
     * @throws NotStrictlyPositiveException if {@code shape <= 0} or {@code scale <= 0}.
     */
    public double nextWeibull(double shape, double scale) throws NotStrictlyPositiveException {
        return new WeibullDistribution(
                        getRandomGenerator(),
                        shape,
                        scale,
                        WeibullDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
                .sample();
    }

    /**
     * Generates a random value from the {@link ZipfDistribution Zipf Distribution}.
     *
     * @param numberOfElements the number of elements of the ZipfDistribution
     * @param exponent the exponent of the ZipfDistribution
     * @return random value sampled from the Zipf(numberOfElements, exponent) distribution
     * @exception NotStrictlyPositiveException if {@code numberOfElements <= 0} or {@code exponent
     *     <= 0}.
     */
    public int nextZipf(int numberOfElements, double exponent) throws NotStrictlyPositiveException {
        return new ZipfDistribution(getRandomGenerator(), numberOfElements, exponent).sample();
    }

    /**
     * Generates a random value from the {@link BetaDistribution Beta Distribution}.
     *
     * @param alpha first distribution shape parameter
     * @param beta second distribution shape parameter
     * @return random value sampled from the beta(alpha, beta) distribution
     */
    public double nextBeta(double alpha, double beta) {
        return new BetaDistribution(
                        getRandomGenerator(),
                        alpha,
                        beta,
                        BetaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
                .sample();
    }

    /**
     * Generates a random value from the {@link BinomialDistribution Binomial Distribution}.
     *
     * @param numberOfTrials number of trials of the Binomial distribution
     * @param probabilityOfSuccess probability of success of the Binomial distribution
     * @return random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess)
     *     distribution
     */
    public int nextBinomial(int numberOfTrials, double probabilityOfSuccess) {
        return new BinomialDistribution(getRandomGenerator(), numberOfTrials, probabilityOfSuccess)
                .sample();
    }

    /**
     * Generates a random value from the {@link CauchyDistribution Cauchy Distribution}.
     *
     * @param median the median of the Cauchy distribution
     * @param scale the scale parameter of the Cauchy distribution
     * @return random value sampled from the Cauchy(median, scale) distribution
     */
    public double nextCauchy(double median, double scale) {
        return new CauchyDistribution(
                        getRandomGenerator(),
                        median,
                        scale,
                        CauchyDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
                .sample();
    }

    /**
     * Generates a random value from the {@link ChiSquaredDistribution ChiSquare Distribution}.
     *
     * @param df the degrees of freedom of the ChiSquare distribution
     * @return random value sampled from the ChiSquare(df) distribution
     */
    public double nextChiSquare(double df) {
        return new ChiSquaredDistribution(
                        getRandomGenerator(),
                        df,
                        ChiSquaredDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
                .sample();
    }

    /**
     * Generates a random value from the {@link FDistribution F Distribution}.
     *
     * @param numeratorDf the numerator degrees of freedom of the F distribution
     * @param denominatorDf the denominator degrees of freedom of the F distribution
     * @return random value sampled from the F(numeratorDf, denominatorDf) distribution
     * @throws NotStrictlyPositiveException if {@code numeratorDf <= 0} or {@code denominatorDf <=
     *     0}.
     */
    public double nextF(double numeratorDf, double denominatorDf)
            throws NotStrictlyPositiveException {
        return new FDistribution(
                        getRandomGenerator(),
                        numeratorDf,
                        denominatorDf,
                        FDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
                .sample();
    }

    /**
     * {@inheritDoc}
     *
     * <p><strong>Algorithm Description</strong>: scales the output of Random.nextDouble(), but
     * rejects 0 values (i.e., will generate another random double if Random.nextDouble() returns
     * 0). This is necessary to provide a symmetric output interval (both endpoints excluded).
     *
     * @throws NumberIsTooLargeException if {@code lower >= upper}
     * @throws NotFiniteNumberException if one of the bounds is infinite
     * @throws NotANumberException if one of the bounds is NaN
     */
    public double nextUniform(double lower, double upper)
            throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException {
        return nextUniform(lower, upper, false);
    }

    /**
     * {@inheritDoc}
     *
     * <p><strong>Algorithm Description</strong>: if the lower bound is excluded, scales the output
     * of Random.nextDouble(), but rejects 0 values (i.e., will generate another random double if
     * Random.nextDouble() returns 0). This is necessary to provide a symmetric output interval
     * (both endpoints excluded).
     *
     * @throws NumberIsTooLargeException if {@code lower >= upper}
     * @throws NotFiniteNumberException if one of the bounds is infinite
     * @throws NotANumberException if one of the bounds is NaN
     */
    public double nextUniform(double lower, double upper, boolean lowerInclusive)
            throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException {

        if (lower >= upper) {
            throw new NumberIsTooLargeException(
                    LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false);
        }

        if (Double.isInfinite(lower)) {
            throw new NotFiniteNumberException(LocalizedFormats.INFINITE_BOUND, lower);
        }
        if (Double.isInfinite(upper)) {
            throw new NotFiniteNumberException(LocalizedFormats.INFINITE_BOUND, upper);
        }

        if (Double.isNaN(lower) || Double.isNaN(upper)) {
            throw new NotANumberException();
        }

        final RandomGenerator generator = getRandomGenerator();

        // ensure nextDouble() isn't 0.0
        double u = generator.nextDouble();
        while (!lowerInclusive && u <= 0.0) {
            u = generator.nextDouble();
        }

        return u * upper + (1.0 - u) * lower;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This method calls {@link MathArrays#shuffle(int[],RandomGenerator) MathArrays.shuffle} in
     * order to create a random shuffle of the set of natural numbers {@code { 0, 1, ..., n - 1 }}.
     *
     * @throws NumberIsTooLargeException if {@code k > n}.
     * @throws NotStrictlyPositiveException if {@code k <= 0}.
     */
    public int[] nextPermutation(int n, int k)
            throws NumberIsTooLargeException, NotStrictlyPositiveException {
        if (k > n) {
            throw new NumberIsTooLargeException(LocalizedFormats.PERMUTATION_EXCEEDS_N, k, n, true);
        }
        if (k <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.PERMUTATION_SIZE, k);
        }

        int[] index = MathArrays.natural(n);
        MathArrays.shuffle(index, getRandomGenerator());

        // Return a new array containing the first "k" entries of "index".
        return MathArrays.copyOf(index, k);
    }

    /**
     * {@inheritDoc}
     *
     * <p>This method calls {@link #nextPermutation(int,int) nextPermutation(c.size(), k)} in order
     * to sample the collection.
     */
    public Object[] nextSample(Collection<?> c, int k)
            throws NumberIsTooLargeException, NotStrictlyPositiveException {

        int len = c.size();
        if (k > len) {
            throw new NumberIsTooLargeException(
                    LocalizedFormats.SAMPLE_SIZE_EXCEEDS_COLLECTION_SIZE, k, len, true);
        }
        if (k <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, k);
        }

        Object[] objects = c.toArray();
        int[] index = nextPermutation(len, k);
        Object[] result = new Object[k];
        for (int i = 0; i < k; i++) {
            result[i] = objects[index[i]];
        }
        return result;
    }

    /**
     * Reseeds the random number generator with the supplied seed.
     *
     * <p>Will create and initialize if null.
     *
     * @param seed the seed value to use
     */
    public void reSeed(long seed) {
        getRandomGenerator().setSeed(seed);
    }

    /**
     * Reseeds the secure random number generator with the current time in milliseconds.
     *
     * <p>Will create and initialize if null.
     */
    public void reSeedSecure() {
        getSecRan().setSeed(System.currentTimeMillis());
    }

    /**
     * Reseeds the secure random number generator with the supplied seed.
     *
     * <p>Will create and initialize if null.
     *
     * @param seed the seed value to use
     */
    public void reSeedSecure(long seed) {
        getSecRan().setSeed(seed);
    }

    /**
     * Reseeds the random number generator with {@code System.currentTimeMillis() +
     * System.identityHashCode(this))}.
     */
    public void reSeed() {
        getRandomGenerator().setSeed(System.currentTimeMillis() + System.identityHashCode(this));
    }

    /**
     * Sets the PRNG algorithm for the underlying SecureRandom instance using the Security Provider
     * API. The Security Provider API is defined in <a href =
     * "http://java.sun.com/j2se/1.3/docs/guide/security/CryptoSpec.html#AppA"> Java Cryptography
     * Architecture API Specification & Reference.</a>
     *
     * <p><strong>USAGE NOTE:</strong> This method carries <i>significant</i> overhead and may take
     * several seconds to execute.
     *
     * @param algorithm the name of the PRNG algorithm
     * @param provider the name of the provider
     * @throws NoSuchAlgorithmException if the specified algorithm is not available
     * @throws NoSuchProviderException if the specified provider is not installed
     */
    public void setSecureAlgorithm(String algorithm, String provider)
            throws NoSuchAlgorithmException, NoSuchProviderException {
        secRand =
                RandomGeneratorFactory.createRandomGenerator(
                        SecureRandom.getInstance(algorithm, provider));
    }

    /**
     * Returns the RandomGenerator used to generate non-secure random data.
     *
     * <p>Creates and initializes a default generator if null. Uses a {@link Well19937c} generator
     * with {@code System.currentTimeMillis() + System.identityHashCode(this))} as the default seed.
     *
     * @return the Random used to generate random data
     * @since 3.2
     */
    public RandomGenerator getRandomGenerator() {
        if (rand == null) {
            initRan();
        }
        return rand;
    }

    /**
     * Sets the default generator to a {@link Well19937c} generator seeded with {@code
     * System.currentTimeMillis() + System.identityHashCode(this))}.
     */
    private void initRan() {
        rand = new Well19937c(System.currentTimeMillis() + System.identityHashCode(this));
    }

    /**
     * Returns the SecureRandom used to generate secure random data.
     *
     * <p>Creates and initializes if null. Uses {@code System.currentTimeMillis() +
     * System.identityHashCode(this)} as the default seed.
     *
     * @return the SecureRandom used to generate secure random data, wrapped in a {@link
     *     RandomGenerator}.
     */
    private RandomGenerator getSecRan() {
        if (secRand == null) {
            secRand = RandomGeneratorFactory.createRandomGenerator(new SecureRandom());
            secRand.setSeed(System.currentTimeMillis() + System.identityHashCode(this));
        }
        return secRand;
    }
}