summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/stat/inference/GTest.java
blob: de1fbe3e2e3aa9ef1a74f64ed7b32402e4023b49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.stat.inference;

import org.apache.commons.math3.distribution.ChiSquaredDistribution;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.ZeroException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;

/**
 * Implements <a href="http://en.wikipedia.org/wiki/G-test">G Test</a>
 * statistics.
 *
 * <p>This is known in statistical genetics as the McDonald-Kreitman test.
 * The implementation handles both known and unknown distributions.</p>
 *
 * <p>Two samples tests can be used when the distribution is unknown <i>a priori</i>
 * but provided by one sample, or when the hypothesis under test is that the two
 * samples come from the same underlying distribution.</p>
 *
 * @since 3.1
 */
public class GTest {

    /**
     * Computes the <a href="http://en.wikipedia.org/wiki/G-test">G statistic
     * for Goodness of Fit</a> comparing {@code observed} and {@code expected}
     * frequency counts.
     *
     * <p>This statistic can be used to perform a G test (Log-Likelihood Ratio
     * Test) evaluating the null hypothesis that the observed counts follow the
     * expected distribution.</p>
     *
     * <p><strong>Preconditions</strong>: <ul>
     * <li>Expected counts must all be positive. </li>
     * <li>Observed counts must all be &ge; 0. </li>
     * <li>The observed and expected arrays must have the same length and their
     * common length must be at least 2. </li></ul></p>
     *
     * <p>If any of the preconditions are not met, a
     * {@code MathIllegalArgumentException} is thrown.</p>
     *
     * <p><strong>Note:</strong>This implementation rescales the
     * {@code expected} array if necessary to ensure that the sum of the
     * expected and observed counts are equal.</p>
     *
     * @param observed array of observed frequency counts
     * @param expected array of expected frequency counts
     * @return G-Test statistic
     * @throws NotPositiveException if {@code observed} has negative entries
     * @throws NotStrictlyPositiveException if {@code expected} has entries that
     * are not strictly positive
     * @throws DimensionMismatchException if the array lengths do not match or
     * are less than 2.
     */
    public double g(final double[] expected, final long[] observed)
            throws NotPositiveException, NotStrictlyPositiveException,
            DimensionMismatchException {

        if (expected.length < 2) {
            throw new DimensionMismatchException(expected.length, 2);
        }
        if (expected.length != observed.length) {
            throw new DimensionMismatchException(expected.length, observed.length);
        }
        MathArrays.checkPositive(expected);
        MathArrays.checkNonNegative(observed);

        double sumExpected = 0d;
        double sumObserved = 0d;
        for (int i = 0; i < observed.length; i++) {
            sumExpected += expected[i];
            sumObserved += observed[i];
        }
        double ratio = 1d;
        boolean rescale = false;
        if (FastMath.abs(sumExpected - sumObserved) > 10E-6) {
            ratio = sumObserved / sumExpected;
            rescale = true;
        }
        double sum = 0d;
        for (int i = 0; i < observed.length; i++) {
            final double dev = rescale ?
                    FastMath.log((double) observed[i] / (ratio * expected[i])) :
                        FastMath.log((double) observed[i] / expected[i]);
            sum += ((double) observed[i]) * dev;
        }
        return 2d * sum;
    }

    /**
     * Returns the <i>observed significance level</i>, or <a href=
     * "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue"> p-value</a>,
     * associated with a G-Test for goodness of fit</a> comparing the
     * {@code observed} frequency counts to those in the {@code expected} array.
     *
     * <p>The number returned is the smallest significance level at which one
     * can reject the null hypothesis that the observed counts conform to the
     * frequency distribution described by the expected counts.</p>
     *
     * <p>The probability returned is the tail probability beyond
     * {@link #g(double[], long[]) g(expected, observed)}
     * in the ChiSquare distribution with degrees of freedom one less than the
     * common length of {@code expected} and {@code observed}.</p>
     *
     * <p> <strong>Preconditions</strong>: <ul>
     * <li>Expected counts must all be positive. </li>
     * <li>Observed counts must all be &ge; 0. </li>
     * <li>The observed and expected arrays must have the
     * same length and their common length must be at least 2.</li>
     * </ul></p>
     *
     * <p>If any of the preconditions are not met, a
     * {@code MathIllegalArgumentException} is thrown.</p>
     *
     * <p><strong>Note:</strong>This implementation rescales the
     * {@code expected} array if necessary to ensure that the sum of the
     *  expected and observed counts are equal.</p>
     *
     * @param observed array of observed frequency counts
     * @param expected array of expected frequency counts
     * @return p-value
     * @throws NotPositiveException if {@code observed} has negative entries
     * @throws NotStrictlyPositiveException if {@code expected} has entries that
     * are not strictly positive
     * @throws DimensionMismatchException if the array lengths do not match or
     * are less than 2.
     * @throws MaxCountExceededException if an error occurs computing the
     * p-value.
     */
    public double gTest(final double[] expected, final long[] observed)
            throws NotPositiveException, NotStrictlyPositiveException,
            DimensionMismatchException, MaxCountExceededException {

        // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
        final ChiSquaredDistribution distribution =
                new ChiSquaredDistribution(null, expected.length - 1.0);
        return 1.0 - distribution.cumulativeProbability(g(expected, observed));
    }

    /**
     * Returns the intrinsic (Hardy-Weinberg proportions) p-Value, as described
     * in p64-69 of McDonald, J.H. 2009. Handbook of Biological Statistics
     * (2nd ed.). Sparky House Publishing, Baltimore, Maryland.
     *
     * <p> The probability returned is the tail probability beyond
     * {@link #g(double[], long[]) g(expected, observed)}
     * in the ChiSquare distribution with degrees of freedom two less than the
     * common length of {@code expected} and {@code observed}.</p>
     *
     * @param observed array of observed frequency counts
     * @param expected array of expected frequency counts
     * @return p-value
     * @throws NotPositiveException if {@code observed} has negative entries
     * @throws NotStrictlyPositiveException {@code expected} has entries that are
     * not strictly positive
     * @throws DimensionMismatchException if the array lengths do not match or
     * are less than 2.
     * @throws MaxCountExceededException if an error occurs computing the
     * p-value.
     */
    public double gTestIntrinsic(final double[] expected, final long[] observed)
            throws NotPositiveException, NotStrictlyPositiveException,
            DimensionMismatchException, MaxCountExceededException {

        // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
        final ChiSquaredDistribution distribution =
                new ChiSquaredDistribution(null, expected.length - 2.0);
        return 1.0 - distribution.cumulativeProbability(g(expected, observed));
    }

    /**
     * Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit
     * evaluating the null hypothesis that the observed counts conform to the
     * frequency distribution described by the expected counts, with
     * significance level {@code alpha}. Returns true iff the null
     * hypothesis can be rejected with {@code 100 * (1 - alpha)} percent confidence.
     *
     * <p><strong>Example:</strong><br> To test the hypothesis that
     * {@code observed} follows {@code expected} at the 99% level,
     * use </p><p>
     * {@code gTest(expected, observed, 0.01)}</p>
     *
     * <p>Returns true iff {@link #gTest(double[], long[])
     *  gTestGoodnessOfFitPValue(expected, observed)} < alpha</p>
     *
     * <p><strong>Preconditions</strong>: <ul>
     * <li>Expected counts must all be positive. </li>
     * <li>Observed counts must all be &ge; 0. </li>
     * <li>The observed and expected arrays must have the same length and their
     * common length must be at least 2.
     * <li> {@code 0 < alpha < 0.5} </li></ul></p>
     *
     * <p>If any of the preconditions are not met, a
     * {@code MathIllegalArgumentException} is thrown.</p>
     *
     * <p><strong>Note:</strong>This implementation rescales the
     * {@code expected} array if necessary to ensure that the sum of the
     * expected and observed counts are equal.</p>
     *
     * @param observed array of observed frequency counts
     * @param expected array of expected frequency counts
     * @param alpha significance level of the test
     * @return true iff null hypothesis can be rejected with confidence 1 -
     * alpha
     * @throws NotPositiveException if {@code observed} has negative entries
     * @throws NotStrictlyPositiveException if {@code expected} has entries that
     * are not strictly positive
     * @throws DimensionMismatchException if the array lengths do not match or
     * are less than 2.
     * @throws MaxCountExceededException if an error occurs computing the
     * p-value.
     * @throws OutOfRangeException if alpha is not strictly greater than zero
     * and less than or equal to 0.5
     */
    public boolean gTest(final double[] expected, final long[] observed,
            final double alpha)
            throws NotPositiveException, NotStrictlyPositiveException,
            DimensionMismatchException, OutOfRangeException, MaxCountExceededException {

        if ((alpha <= 0) || (alpha > 0.5)) {
            throw new OutOfRangeException(LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL,
                    alpha, 0, 0.5);
        }
        return gTest(expected, observed) < alpha;
    }

    /**
     * Calculates the <a href=
     * "http://en.wikipedia.org/wiki/Entropy_%28information_theory%29">Shannon
     * entropy</a> for 2 Dimensional Matrix.  The value returned is the entropy
     * of the vector formed by concatenating the rows (or columns) of {@code k}
     * to form a vector. See {@link #entropy(long[])}.
     *
     * @param k 2 Dimensional Matrix of long values (for ex. the counts of a
     * trials)
     * @return Shannon Entropy of the given Matrix
     *
     */
    private double entropy(final long[][] k) {
        double h = 0d;
        double sum_k = 0d;
        for (int i = 0; i < k.length; i++) {
            for (int j = 0; j < k[i].length; j++) {
                sum_k += (double) k[i][j];
            }
        }
        for (int i = 0; i < k.length; i++) {
            for (int j = 0; j < k[i].length; j++) {
                if (k[i][j] != 0) {
                    final double p_ij = (double) k[i][j] / sum_k;
                    h += p_ij * FastMath.log(p_ij);
                }
            }
        }
        return -h;
    }

    /**
     * Calculates the <a href="http://en.wikipedia.org/wiki/Entropy_%28information_theory%29">
     * Shannon entropy</a> for a vector.  The values of {@code k} are taken to be
     * incidence counts of the values of a random variable. What is returned is <br/>
     * &sum;p<sub>i</sub>log(p<sub>i</sub><br/>
     * where p<sub>i</sub> = k[i] / (sum of elements in k)
     *
     * @param k Vector (for ex. Row Sums of a trials)
     * @return Shannon Entropy of the given Vector
     *
     */
    private double entropy(final long[] k) {
        double h = 0d;
        double sum_k = 0d;
        for (int i = 0; i < k.length; i++) {
            sum_k += (double) k[i];
        }
        for (int i = 0; i < k.length; i++) {
            if (k[i] != 0) {
                final double p_i = (double) k[i] / sum_k;
                h += p_i * FastMath.log(p_i);
            }
        }
        return -h;
    }

    /**
     * <p>Computes a G (Log-Likelihood Ratio) two sample test statistic for
     * independence comparing frequency counts in
     * {@code observed1} and {@code observed2}. The sums of frequency
     * counts in the two samples are not required to be the same. The formula
     * used to compute the test statistic is </p>
     *
     * <p>{@code 2 * totalSum * [H(rowSums) + H(colSums) - H(k)]}</p>
     *
     * <p> where {@code H} is the
     * <a href="http://en.wikipedia.org/wiki/Entropy_%28information_theory%29">
     * Shannon Entropy</a> of the random variable formed by viewing the elements
     * of the argument array as incidence counts; <br/>
     * {@code k} is a matrix with rows {@code [observed1, observed2]}; <br/>
     * {@code rowSums, colSums} are the row/col sums of {@code k}; <br>
     * and {@code totalSum} is the overall sum of all entries in {@code k}.</p>
     *
     * <p>This statistic can be used to perform a G test evaluating the null
     * hypothesis that both observed counts are independent </p>
     *
     * <p> <strong>Preconditions</strong>: <ul>
     * <li>Observed counts must be non-negative. </li>
     * <li>Observed counts for a specific bin must not both be zero. </li>
     * <li>Observed counts for a specific sample must not all be  0. </li>
     * <li>The arrays {@code observed1} and {@code observed2} must have
     * the same length and their common length must be at least 2. </li></ul></p>
     *
     * <p>If any of the preconditions are not met, a
     * {@code MathIllegalArgumentException} is thrown.</p>
     *
     * @param observed1 array of observed frequency counts of the first data set
     * @param observed2 array of observed frequency counts of the second data
     * set
     * @return G-Test statistic
     * @throws DimensionMismatchException the the lengths of the arrays do not
     * match or their common length is less than 2
     * @throws NotPositiveException if any entry in {@code observed1} or
     * {@code observed2} is negative
     * @throws ZeroException if either all counts of
     * {@code observed1} or {@code observed2} are zero, or if the count
     * at the same index is zero for both arrays.
     */
    public double gDataSetsComparison(final long[] observed1, final long[] observed2)
            throws DimensionMismatchException, NotPositiveException, ZeroException {

        // Make sure lengths are same
        if (observed1.length < 2) {
            throw new DimensionMismatchException(observed1.length, 2);
        }
        if (observed1.length != observed2.length) {
            throw new DimensionMismatchException(observed1.length, observed2.length);
        }

        // Ensure non-negative counts
        MathArrays.checkNonNegative(observed1);
        MathArrays.checkNonNegative(observed2);

        // Compute and compare count sums
        long countSum1 = 0;
        long countSum2 = 0;

        // Compute and compare count sums
        final long[] collSums = new long[observed1.length];
        final long[][] k = new long[2][observed1.length];

        for (int i = 0; i < observed1.length; i++) {
            if (observed1[i] == 0 && observed2[i] == 0) {
                throw new ZeroException(LocalizedFormats.OBSERVED_COUNTS_BOTTH_ZERO_FOR_ENTRY, i);
            } else {
                countSum1 += observed1[i];
                countSum2 += observed2[i];
                collSums[i] = observed1[i] + observed2[i];
                k[0][i] = observed1[i];
                k[1][i] = observed2[i];
            }
        }
        // Ensure neither sample is uniformly 0
        if (countSum1 == 0 || countSum2 == 0) {
            throw new ZeroException();
        }
        final long[] rowSums = {countSum1, countSum2};
        final double sum = (double) countSum1 + (double) countSum2;
        return 2 * sum * (entropy(rowSums) + entropy(collSums) - entropy(k));
    }

    /**
     * Calculates the root log-likelihood ratio for 2 state Datasets. See
     * {@link #gDataSetsComparison(long[], long[] )}.
     *
     * <p>Given two events A and B, let k11 be the number of times both events
     * occur, k12 the incidence of B without A, k21 the count of A without B,
     * and k22 the number of times neither A nor B occurs.  What is returned
     * by this method is </p>
     *
     * <p>{@code (sgn) sqrt(gValueDataSetsComparison({k11, k12}, {k21, k22})}</p>
     *
     * <p>where {@code sgn} is -1 if {@code k11 / (k11 + k12) < k21 / (k21 + k22))};<br/>
     * 1 otherwise.</p>
     *
     * <p>Signed root LLR has two advantages over the basic LLR: a) it is positive
     * where k11 is bigger than expected, negative where it is lower b) if there is
     * no difference it is asymptotically normally distributed. This allows one
     * to talk about "number of standard deviations" which is a more common frame
     * of reference than the chi^2 distribution.</p>
     *
     * @param k11 number of times the two events occurred together (AB)
     * @param k12 number of times the second event occurred WITHOUT the
     * first event (notA,B)
     * @param k21 number of times the first event occurred WITHOUT the
     * second event (A, notB)
     * @param k22 number of times something else occurred (i.e. was neither
     * of these events (notA, notB)
     * @return root log-likelihood ratio
     *
     */
    public double rootLogLikelihoodRatio(final long k11, long k12,
            final long k21, final long k22) {
        final double llr = gDataSetsComparison(
                new long[]{k11, k12}, new long[]{k21, k22});
        double sqrt = FastMath.sqrt(llr);
        if ((double) k11 / (k11 + k12) < (double) k21 / (k21 + k22)) {
            sqrt = -sqrt;
        }
        return sqrt;
    }

    /**
     * <p>Returns the <i>observed significance level</i>, or <a href=
     * "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
     * p-value</a>, associated with a G-Value (Log-Likelihood Ratio) for two
     * sample test comparing bin frequency counts in {@code observed1} and
     * {@code observed2}.</p>
     *
     * <p>The number returned is the smallest significance level at which one
     * can reject the null hypothesis that the observed counts conform to the
     * same distribution. </p>
     *
     * <p>See {@link #gTest(double[], long[])} for details
     * on how the p-value is computed.  The degrees of of freedom used to
     * perform the test is one less than the common length of the input observed
     * count arrays.</p>
     *
     * <p><strong>Preconditions</strong>:
     * <ul> <li>Observed counts must be non-negative. </li>
     * <li>Observed counts for a specific bin must not both be zero. </li>
     * <li>Observed counts for a specific sample must not all be 0. </li>
     * <li>The arrays {@code observed1} and {@code observed2} must
     * have the same length and their common length must be at least 2. </li>
     * </ul><p>
     * <p> If any of the preconditions are not met, a
     * {@code MathIllegalArgumentException} is thrown.</p>
     *
     * @param observed1 array of observed frequency counts of the first data set
     * @param observed2 array of observed frequency counts of the second data
     * set
     * @return p-value
     * @throws DimensionMismatchException the the length of the arrays does not
     * match or their common length is less than 2
     * @throws NotPositiveException if any of the entries in {@code observed1} or
     * {@code observed2} are negative
     * @throws ZeroException if either all counts of {@code observed1} or
     * {@code observed2} are zero, or if the count at some index is
     * zero for both arrays
     * @throws MaxCountExceededException if an error occurs computing the
     * p-value.
     */
    public double gTestDataSetsComparison(final long[] observed1,
            final long[] observed2)
            throws DimensionMismatchException, NotPositiveException, ZeroException,
            MaxCountExceededException {

        // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
        final ChiSquaredDistribution distribution =
                new ChiSquaredDistribution(null, (double) observed1.length - 1);
        return 1 - distribution.cumulativeProbability(
                gDataSetsComparison(observed1, observed2));
    }

    /**
     * <p>Performs a G-Test (Log-Likelihood Ratio Test) comparing two binned
     * data sets. The test evaluates the null hypothesis that the two lists
     * of observed counts conform to the same frequency distribution, with
     * significance level {@code alpha}. Returns true iff the null
     * hypothesis can be rejected  with 100 * (1 - alpha) percent confidence.
     * </p>
     * <p>See {@link #gDataSetsComparison(long[], long[])} for details
     * on the formula used to compute the G (LLR) statistic used in the test and
     * {@link #gTest(double[], long[])} for information on how
     * the observed significance level is computed. The degrees of of freedom used
     * to perform the test is one less than the common length of the input observed
     * count arrays. </p>
     *
     * <strong>Preconditions</strong>: <ul>
     * <li>Observed counts must be non-negative. </li>
     * <li>Observed counts for a specific bin must not both be zero. </li>
     * <li>Observed counts for a specific sample must not all be 0. </li>
     * <li>The arrays {@code observed1} and {@code observed2} must
     * have the same length and their common length must be at least 2. </li>
     * <li>{@code 0 < alpha < 0.5} </li></ul></p>
     *
     * <p>If any of the preconditions are not met, a
     * {@code MathIllegalArgumentException} is thrown.</p>
     *
     * @param observed1 array of observed frequency counts of the first data set
     * @param observed2 array of observed frequency counts of the second data
     * set
     * @param alpha significance level of the test
     * @return true iff null hypothesis can be rejected with confidence 1 -
     * alpha
     * @throws DimensionMismatchException the the length of the arrays does not
     * match
     * @throws NotPositiveException if any of the entries in {@code observed1} or
     * {@code observed2} are negative
     * @throws ZeroException if either all counts of {@code observed1} or
     * {@code observed2} are zero, or if the count at some index is
     * zero for both arrays
     * @throws OutOfRangeException if {@code alpha} is not in the range
     * (0, 0.5]
     * @throws MaxCountExceededException if an error occurs performing the test
     */
    public boolean gTestDataSetsComparison(
            final long[] observed1,
            final long[] observed2,
            final double alpha)
            throws DimensionMismatchException, NotPositiveException,
            ZeroException, OutOfRangeException, MaxCountExceededException {

        if (alpha <= 0 || alpha > 0.5) {
            throw new OutOfRangeException(
                    LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL, alpha, 0, 0.5);
        }
        return gTestDataSetsComparison(observed1, observed2) < alpha;
    }
}