aboutsummaryrefslogtreecommitdiff
path: root/math/single/e_expf.c
diff options
context:
space:
mode:
Diffstat (limited to 'math/single/e_expf.c')
-rw-r--r--math/single/e_expf.c117
1 files changed, 0 insertions, 117 deletions
diff --git a/math/single/e_expf.c b/math/single/e_expf.c
deleted file mode 100644
index 739fe1d..0000000
--- a/math/single/e_expf.c
+++ /dev/null
@@ -1,117 +0,0 @@
-/*
- * e_expf.c - single-precision exp function
- *
- * Copyright (c) 2009-2018, Arm Limited.
- * SPDX-License-Identifier: MIT
- */
-
-/*
- * Algorithm was once taken from Cody & Waite, but has been munged
- * out of all recognition by SGT.
- */
-
-#include <math.h>
-#include <errno.h>
-#include "math_private.h"
-
-float
-expf(float X)
-{
- int N; float XN, g, Rg, Result;
- unsigned ix = fai(X), edgecaseflag = 0;
-
- /*
- * Handle infinities, NaNs and big numbers.
- */
- if (__builtin_expect((ix << 1) - 0x67000000 > 0x85500000 - 0x67000000, 0)) {
- if (!(0x7f800000 & ~ix)) {
- if (ix == 0xff800000)
- return 0.0f;
- else
- return FLOAT_INFNAN(X);/* do the right thing with both kinds of NaN and with +inf */
- } else if ((ix << 1) < 0x67000000) {
- return 1.0f; /* magnitude so small the answer can't be distinguished from 1 */
- } else if ((ix << 1) > 0x85a00000) {
- __set_errno(ERANGE);
- if (ix & 0x80000000) {
- return FLOAT_UNDERFLOW;
- } else {
- return FLOAT_OVERFLOW;
- }
- } else {
- edgecaseflag = 1;
- }
- }
-
- /*
- * Split the input into an integer multiple of log(2)/4, and a
- * fractional part.
- */
- XN = X * (4.0f*1.4426950408889634074f);
-#ifdef __TARGET_FPU_SOFTVFP
- XN = _frnd(XN);
- N = (int)XN;
-#else
- N = (int)(XN + (ix & 0x80000000 ? -0.5f : 0.5f));
- XN = N;
-#endif
- g = (X - XN * 0x1.62ep-3F) - XN * 0x1.0bfbe8p-17F; /* prec-and-a-half representation of log(2)/4 */
-
- /*
- * Now we compute exp(X) in, conceptually, three parts:
- * - a pure power of two which we get from N>>2
- * - exp(g) for g in [-log(2)/8,+log(2)/8], which we compute
- * using a Remez-generated polynomial approximation
- * - exp(k*log(2)/4) (aka 2^(k/4)) for k in [0..3], which we
- * get from a lookup table in precision-and-a-half and
- * multiply by g.
- *
- * We gain a bit of extra precision by the fact that actually
- * our polynomial approximation gives us exp(g)-1, and we add
- * the 1 back on by tweaking the prec-and-a-half multiplication
- * step.
- *
- * Coefficients generated by the command
-
-./auxiliary/remez.jl --variable=g --suffix=f -- '-log(BigFloat(2))/8' '+log(BigFloat(2))/8' 3 0 '(expm1(x))/x'
-
- */
- Rg = g * (
- 9.999999412829185331953781321128516523408059996430919985217971370689774264850229e-01f+g*(4.999999608551332693833317084753864837160947932961832943901913087652889900683833e-01f+g*(1.667292360203016574303631953046104769969440903672618034272397630620346717392378e-01f+g*(4.168230895653321517750133783431970715648192153539929404872173693978116154823859e-02f)))
- );
-
- /*
- * Do the table lookup and combine it with Rg, to get our final
- * answer apart from the exponent.
- */
- {
- static const float twotokover4top[4] = { 0x1p+0F, 0x1.306p+0F, 0x1.6ap+0F, 0x1.ae8p+0F };
- static const float twotokover4bot[4] = { 0x0p+0F, 0x1.fc1464p-13F, 0x1.3cccfep-13F, 0x1.3f32b6p-13F };
- static const float twotokover4all[4] = { 0x1p+0F, 0x1.306fep+0F, 0x1.6a09e6p+0F, 0x1.ae89fap+0F };
- int index = (N & 3);
- Rg = twotokover4top[index] + (twotokover4bot[index] + twotokover4all[index]*Rg);
- N >>= 2;
- }
-
- /*
- * Combine the output exponent and mantissa, and return.
- */
- if (__builtin_expect(edgecaseflag, 0)) {
- Result = fhex(((N/2) << 23) + 0x3f800000);
- Result *= Rg;
- Result *= fhex(((N-N/2) << 23) + 0x3f800000);
- /*
- * Step not mentioned in C&W: set errno reliably.
- */
- if (fai(Result) == 0)
- return MATHERR_EXPF_UFL(Result);
- if (fai(Result) == 0x7f800000)
- return MATHERR_EXPF_OFL(Result);
- return FLOAT_CHECKDENORM(Result);
- } else {
- Result = fhex(N * 8388608.0f + (float)0x3f800000);
- Result *= Rg;
- }
-
- return Result;
-}