aboutsummaryrefslogtreecommitdiff
path: root/pl/math/log1pf_2u1.c
diff options
context:
space:
mode:
Diffstat (limited to 'pl/math/log1pf_2u1.c')
-rw-r--r--pl/math/log1pf_2u1.c165
1 files changed, 165 insertions, 0 deletions
diff --git a/pl/math/log1pf_2u1.c b/pl/math/log1pf_2u1.c
new file mode 100644
index 0000000..fcfd05a
--- /dev/null
+++ b/pl/math/log1pf_2u1.c
@@ -0,0 +1,165 @@
+/*
+ * Single-precision log(1+x) function.
+ *
+ * Copyright (c) 2022-2023, Arm Limited.
+ * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
+ */
+
+#include "hornerf.h"
+#include "math_config.h"
+#include "pl_sig.h"
+#include "pl_test.h"
+
+#define Ln2 (0x1.62e43p-1f)
+#define SignMask (0x80000000)
+
+/* Biased exponent of the largest float m for which m^8 underflows. */
+#define M8UFLOW_BOUND_BEXP 112
+/* Biased exponent of the largest float for which we just return x. */
+#define TINY_BOUND_BEXP 103
+
+#define C(i) __log1pf_data.coeffs[i]
+
+static inline float
+eval_poly (float m, uint32_t e)
+{
+#ifdef LOG1PF_2U5
+
+ /* 2.5 ulp variant. Approximate log(1+m) on [-0.25, 0.5] using
+ slightly modified Estrin scheme (no x^0 term, and x term is just x). */
+ float p_12 = fmaf (m, C (1), C (0));
+ float p_34 = fmaf (m, C (3), C (2));
+ float p_56 = fmaf (m, C (5), C (4));
+ float p_78 = fmaf (m, C (7), C (6));
+
+ float m2 = m * m;
+ float p_02 = fmaf (m2, p_12, m);
+ float p_36 = fmaf (m2, p_56, p_34);
+ float p_79 = fmaf (m2, C (8), p_78);
+
+ float m4 = m2 * m2;
+ float p_06 = fmaf (m4, p_36, p_02);
+
+ if (unlikely (e < M8UFLOW_BOUND_BEXP))
+ return p_06;
+
+ float m8 = m4 * m4;
+ return fmaf (m8, p_79, p_06);
+
+#elif defined(LOG1PF_1U3)
+
+ /* 1.3 ulp variant. Approximate log(1+m) on [-0.25, 0.5] using Horner
+ scheme. Our polynomial approximation for log1p has the form
+ x + C1 * x^2 + C2 * x^3 + C3 * x^4 + ...
+ Hence approximation has the form m + m^2 * P(m)
+ where P(x) = C1 + C2 * x + C3 * x^2 + ... . */
+ return fmaf (m, m * HORNER_8 (m, C), m);
+
+#else
+#error No log1pf approximation exists with the requested precision. Options are 13 or 25.
+#endif
+}
+
+static inline uint32_t
+biased_exponent (uint32_t ix)
+{
+ return (ix & 0x7f800000) >> 23;
+}
+
+/* log1pf approximation using polynomial on reduced interval. Worst-case error
+ when using Estrin is roughly 2.02 ULP:
+ log1pf(0x1.21e13ap-2) got 0x1.fe8028p-3 want 0x1.fe802cp-3. */
+float
+log1pf (float x)
+{
+ uint32_t ix = asuint (x);
+ uint32_t ia = ix & ~SignMask;
+ uint32_t ia12 = ia >> 20;
+ uint32_t e = biased_exponent (ix);
+
+ /* Handle special cases first. */
+ if (unlikely (ia12 >= 0x7f8 || ix >= 0xbf800000 || ix == 0x80000000
+ || e <= TINY_BOUND_BEXP))
+ {
+ if (ix == 0xff800000)
+ {
+ /* x == -Inf => log1pf(x) = NaN. */
+ return NAN;
+ }
+ if ((ix == 0x7f800000 || e <= TINY_BOUND_BEXP) && ia12 <= 0x7f8)
+ {
+ /* |x| < TinyBound => log1p(x) = x.
+ x == Inf => log1pf(x) = Inf. */
+ return x;
+ }
+ if (ix == 0xbf800000)
+ {
+ /* x == -1.0 => log1pf(x) = -Inf. */
+ return __math_divzerof (-1);
+ }
+ if (ia12 >= 0x7f8)
+ {
+ /* x == +/-NaN => log1pf(x) = NaN. */
+ return __math_invalidf (asfloat (ia));
+ }
+ /* x < -1.0 => log1pf(x) = NaN. */
+ return __math_invalidf (x);
+ }
+
+ /* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m
+ is in [-0.25, 0.5]):
+ log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2).
+
+ We approximate log1p(m) with a polynomial, then scale by
+ k*log(2). Instead of doing this directly, we use an intermediate
+ scale factor s = 4*k*log(2) to ensure the scale is representable
+ as a normalised fp32 number. */
+
+ if (ix <= 0x3f000000 || ia <= 0x3e800000)
+ {
+ /* If x is in [-0.25, 0.5] then we can shortcut all the logic
+ below, as k = 0 and m = x. All we need is to return the
+ polynomial. */
+ return eval_poly (x, e);
+ }
+
+ float m = x + 1.0f;
+
+ /* k is used scale the input. 0x3f400000 is chosen as we are trying to
+ reduce x to the range [-0.25, 0.5]. Inside this range, k is 0.
+ Outside this range, if k is reinterpreted as (NOT CONVERTED TO) float:
+ let k = sign * 2^p where sign = -1 if x < 0
+ 1 otherwise
+ and p is a negative integer whose magnitude increases with the
+ magnitude of x. */
+ int k = (asuint (m) - 0x3f400000) & 0xff800000;
+
+ /* By using integer arithmetic, we obtain the necessary scaling by
+ subtracting the unbiased exponent of k from the exponent of x. */
+ float m_scale = asfloat (asuint (x) - k);
+
+ /* Scale up to ensure that the scale factor is representable as normalised
+ fp32 number (s in [2**-126,2**26]), and scale m down accordingly. */
+ float s = asfloat (asuint (4.0f) - k);
+ m_scale = m_scale + fmaf (0.25f, s, -1.0f);
+
+ float p = eval_poly (m_scale, biased_exponent (asuint (m_scale)));
+
+ /* The scale factor to be applied back at the end - by multiplying float(k)
+ by 2^-23 we get the unbiased exponent of k. */
+ float scale_back = (float) k * 0x1.0p-23f;
+
+ /* Apply the scaling back. */
+ return fmaf (scale_back, Ln2, p);
+}
+
+PL_SIG (S, F, 1, log1p, -0.9, 10.0)
+PL_TEST_ULP (log1pf, 1.52)
+PL_TEST_INTERVAL (log1pf, -10.0, 10.0, 10000)
+PL_TEST_INTERVAL (log1pf, 0.0, 0x1p-23, 50000)
+PL_TEST_INTERVAL (log1pf, 0x1p-23, 0.001, 50000)
+PL_TEST_INTERVAL (log1pf, 0.001, 1.0, 50000)
+PL_TEST_INTERVAL (log1pf, 0.0, -0x1p-23, 50000)
+PL_TEST_INTERVAL (log1pf, -0x1p-23, -0.001, 50000)
+PL_TEST_INTERVAL (log1pf, -0.001, -1.0, 50000)
+PL_TEST_INTERVAL (log1pf, -1.0, inf, 5000)