/* * Double-precision scalar atan2(x) function. * * Copyright (c) 2021-2022, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include #include "atan_common.h" #include "math_config.h" #include "pl_sig.h" #define Pi (0x1.921fb54442d18p+1) #define PiOver2 (0x1.921fb54442d18p+0) #define PiOver4 (0x1.921fb54442d18p-1) #define SignMask (0x8000000000000000) #define ExpMask (0x7ff0000000000000) /* We calculate atan2 by P(n/d), where n and d are similar to the input arguments, and P is a polynomial. Evaluating P(x) requires calculating x^8, which may underflow if n and d have very different magnitude. POW8_EXP_UFLOW_BOUND is the lower bound of the difference in exponents of n and d for which P underflows, and is used to special-case such inputs. */ #define POW8_EXP_UFLOW_BOUND 62 static inline int64_t biased_exponent (double f) { uint64_t fi = asuint64 (f); return (fi & ExpMask) >> 52; } /* Fast implementation of scalar atan2. Largest errors are when y and x are close together. The greatest observed error is 2.28 ULP: atan2(-0x1.5915b1498e82fp+732, 0x1.54d11ef838826p+732) got -0x1.954f42f1fa841p-1 want -0x1.954f42f1fa843p-1. */ double atan2 (double y, double x) { uint64_t ix = asuint64 (x); uint64_t iy = asuint64 (y); uint64_t sign_x = ix & SignMask; uint64_t sign_y = iy & SignMask; uint64_t iax = ix & ~SignMask; uint64_t iay = iy & ~SignMask; bool xisnan = isnan (x); if (unlikely (isnan (y) && !xisnan)) return __math_invalid (y); if (unlikely (xisnan)) return __math_invalid (x); /* m = 2 * sign(x) + sign(y). */ uint32_t m = ((iy >> 63) & 1) | ((ix >> 62) & 2); int64_t exp_diff = biased_exponent (x) - biased_exponent (y); /* y = 0. */ if (iay == 0) { switch (m) { case 0: case 1: return y; /* atan(+-0,+anything)=+-0. */ case 2: return Pi; /* atan(+0,-anything) = pi. */ case 3: return -Pi; /* atan(-0,-anything) =-pi. */ } } /* Special case for (x, y) either on or very close to the y axis. Either x = 0, or y is much larger than x (difference in exponents >= POW8_EXP_UFLOW_BOUND). */ if (unlikely (iax == 0 || exp_diff <= -POW8_EXP_UFLOW_BOUND)) return sign_y ? -PiOver2 : PiOver2; /* Special case for either x is INF or (x, y) is very close to x axis and x is negative. */ if (unlikely (iax == 0x7ff0000000000000 || (exp_diff >= POW8_EXP_UFLOW_BOUND && m >= 2))) { if (iay == 0x7ff0000000000000) { switch (m) { case 0: return PiOver4; /* atan(+INF,+INF). */ case 1: return -PiOver4; /* atan(-INF,+INF). */ case 2: return 3.0 * PiOver4; /* atan(+INF,-INF). */ case 3: return -3.0 * PiOver4; /* atan(-INF,-INF). */ } } else { switch (m) { case 0: return 0.0; /* atan(+...,+INF). */ case 1: return -0.0; /* atan(-...,+INF). */ case 2: return Pi; /* atan(+...,-INF). */ case 3: return -Pi; /* atan(-...,-INF). */ } } } /* y is INF. */ if (iay == 0x7ff0000000000000) return sign_y ? -PiOver2 : PiOver2; uint64_t sign_xy = sign_x ^ sign_y; double ax = asdouble (iax); double ay = asdouble (iay); uint64_t pred_aygtax = (ay > ax); /* Set up z for call to atan. */ double n = pred_aygtax ? -ax : ay; double d = pred_aygtax ? ay : ax; double z = n / d; double ret; if (unlikely (m < 2 && exp_diff >= POW8_EXP_UFLOW_BOUND)) { /* If (x, y) is very close to x axis and x is positive, the polynomial will underflow and evaluate to z. */ ret = z; } else { /* Work out the correct shift. */ double shift = sign_x ? -2.0 : 0.0; shift = pred_aygtax ? shift + 1.0 : shift; shift *= PiOver2; ret = eval_poly (z, z, shift); } /* Account for the sign of x and y. */ return asdouble (asuint64 (ret) ^ sign_xy); } /* Arity of 2 means no mathbench entry emitted. See test/mathbench_funcs.h. */ PL_SIG (S, D, 2, atan2)