/* * Helper for vector double-precision routines which calculate log(1 + x) and do * not need special-case handling * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #ifndef PL_MATH_V_LOG1P_INLINE_H #define PL_MATH_V_LOG1P_INLINE_H #include "v_math.h" #include "pairwise_horner.h" #define Ln2Hi v_f64 (0x1.62e42fefa3800p-1) #define Ln2Lo v_f64 (0x1.ef35793c76730p-45) #define HfRt2Top 0x3fe6a09e00000000 /* top32(asuint64(sqrt(2)/2)) << 32. */ #define OneMHfRt2Top \ 0x00095f6200000000 /* (top32(asuint64(1)) - top32(asuint64(sqrt(2)/2))) \ << 32. */ #define OneTop 0x3ff #define BottomMask 0xffffffff #define BigBoundTop 0x5fe /* top12 (asuint64 (0x1p511)). */ #define C(i) v_f64 (__log1p_data.coeffs[i]) static inline v_f64_t log1p_inline (v_f64_t x) { /* Helper for calculating log(x + 1). Copied from v_log1p_2u5.c, with several modifications: - No special-case handling - this should be dealt with by the caller. - Pairwise Horner polynomial evaluation for improved accuracy. - Optionally simulate the shortcut for k=0, used in the scalar routine, using v_sel, for improved accuracy when the argument to log1p is close to 0. This feature is enabled by defining WANT_V_LOG1P_K0_SHORTCUT as 1 in the source of the caller before including this file. See v_log1pf_2u1.c for details of the algorithm. */ v_f64_t m = x + 1; v_u64_t mi = v_as_u64_f64 (m); v_u64_t u = mi + OneMHfRt2Top; v_s64_t ki = v_as_s64_u64 (u >> 52) - OneTop; v_f64_t k = v_to_f64_s64 (ki); /* Reduce x to f in [sqrt(2)/2, sqrt(2)]. */ v_u64_t utop = (u & 0x000fffff00000000) + HfRt2Top; v_u64_t u_red = utop | (mi & BottomMask); v_f64_t f = v_as_f64_u64 (u_red) - 1; /* Correction term c/m. */ v_f64_t cm = (x - (m - 1)) / m; #ifndef WANT_V_LOG1P_K0_SHORTCUT #error \ "Cannot use v_log1p_inline.h without specifying whether you need the k0 shortcut for greater accuracy close to 0" #elif WANT_V_LOG1P_K0_SHORTCUT /* Shortcut if k is 0 - set correction term to 0 and f to x. The result is that the approximation is solely the polynomial. */ v_u64_t k0 = k == 0; if (unlikely (v_any_u64 (k0))) { cm = v_sel_f64 (k0, v_f64 (0), cm); f = v_sel_f64 (k0, x, f); } #endif /* Approximate log1p(f) on the reduced input using a polynomial. */ v_f64_t f2 = f * f; v_f64_t p = PAIRWISE_HORNER_18 (f, f2, C); /* Assemble log1p(x) = k * log2 + log1p(f) + c/m. */ v_f64_t ylo = v_fma_f64 (k, Ln2Lo, cm); v_f64_t yhi = v_fma_f64 (k, Ln2Hi, f); return v_fma_f64 (f2, p, ylo + yhi); } #endif // PL_MATH_V_LOG1P_INLINE_H