aboutsummaryrefslogtreecommitdiff
path: root/pl/math/log10f.c
blob: 5c80008e4e57bee03569b931349a5d9fe389fcb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/*
 * Single-precision log10 function.
 *
 * Copyright (c) 2022-2023, Arm Limited.
 * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
 */

#include <math.h>
#include <stdint.h>

#include "math_config.h"
#include "pl_sig.h"
#include "pl_test.h"

/* Data associated to logf:

   LOGF_TABLE_BITS = 4
   LOGF_POLY_ORDER = 4

   ULP error: 0.818 (nearest rounding.)
   Relative error: 1.957 * 2^-26 (before rounding.).  */

#define T __logf_data.tab
#define A __logf_data.poly
#define Ln2 __logf_data.ln2
#define InvLn10 __logf_data.invln10
#define N (1 << LOGF_TABLE_BITS)
#define OFF 0x3f330000

/* This naive implementation of log10f mimics that of log
   then simply scales the result by 1/log(10) to switch from base e to
   base 10. Hence, most computations are carried out in double precision.
   Scaling before rounding to single precision is both faster and more accurate.

   ULP error: 0.797 ulp (nearest rounding.).  */
float
log10f (float x)
{
  /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
  double_t z, r, r2, y, y0, invc, logc;
  uint32_t ix, iz, tmp;
  int k, i;

  ix = asuint (x);
#if WANT_ROUNDING
  /* Fix sign of zero with downward rounding when x==1.  */
  if (unlikely (ix == 0x3f800000))
    return 0;
#endif
  if (unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000))
    {
      /* x < 0x1p-126 or inf or nan.  */
      if (ix * 2 == 0)
	return __math_divzerof (1);
      if (ix == 0x7f800000) /* log(inf) == inf.  */
	return x;
      if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
	return __math_invalidf (x);
      /* x is subnormal, normalize it.  */
      ix = asuint (x * 0x1p23f);
      ix -= 23 << 23;
    }

  /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
     The range is split into N subintervals.
     The ith subinterval contains z and c is near its center.  */
  tmp = ix - OFF;
  i = (tmp >> (23 - LOGF_TABLE_BITS)) % N;
  k = (int32_t) tmp >> 23; /* arithmetic shift.  */
  iz = ix - (tmp & 0xff800000);
  invc = T[i].invc;
  logc = T[i].logc;
  z = (double_t) asfloat (iz);

  /* log(x) = log1p(z/c-1) + log(c) + k*Ln2.  */
  r = z * invc - 1;
  y0 = logc + (double_t) k * Ln2;

  /* Pipelined polynomial evaluation to approximate log1p(r).  */
  r2 = r * r;
  y = A[1] * r + A[2];
  y = A[0] * r2 + y;
  y = y * r2 + (y0 + r);

  /* Multiply by 1/log(10).  */
  y = y * InvLn10;

  return eval_as_float (y);
}

PL_SIG (S, F, 1, log10, 0.01, 11.1)
PL_TEST_ULP (log10f, 0.30)
PL_TEST_INTERVAL (log10f, 0, 0xffff0000, 10000)
PL_TEST_INTERVAL (log10f, 0x1p-127, 0x1p-26, 50000)
PL_TEST_INTERVAL (log10f, 0x1p-26, 0x1p3, 50000)
PL_TEST_INTERVAL (log10f, 0x1p-4, 0x1p4, 50000)
PL_TEST_INTERVAL (log10f, 0, inf, 50000)