aboutsummaryrefslogtreecommitdiff
path: root/pl/math/v_log1p_2u5.c
blob: e48291081ab346e0c534c4bc42c21af6ed907024 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/*
 * Double-precision vector log(1+x) function.
 *
 * Copyright (c) 2022-2023, Arm Limited.
 * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
 */

#include "v_math.h"
#include "estrin.h"
#include "pl_sig.h"
#include "pl_test.h"

#if V_SUPPORTED

#define Ln2Hi v_f64 (0x1.62e42fefa3800p-1)
#define Ln2Lo v_f64 (0x1.ef35793c76730p-45)
#define HfRt2Top 0x3fe6a09e00000000 /* top32(asuint64(sqrt(2)/2)) << 32.  */
#define OneMHfRt2Top                                                           \
  0x00095f6200000000 /* (top32(asuint64(1)) - top32(asuint64(sqrt(2)/2)))      \
			<< 32.  */
#define OneTop12 0x3ff
#define BottomMask 0xffffffff
#define AbsMask 0x7fffffffffffffff
#define C(i) v_f64 (__log1p_data.coeffs[i])

static inline v_f64_t
eval_poly (v_f64_t f)
{
  v_f64_t f2 = f * f;
  v_f64_t f4 = f2 * f2;
  v_f64_t f8 = f4 * f4;
  return ESTRIN_18 (f, f2, f4, f8, f8 * f8, C);
}

VPCS_ATTR
NOINLINE static v_f64_t
specialcase (v_f64_t x, v_f64_t y, v_u64_t special)
{
  return v_call_f64 (log1p, x, y, special);
}

/* Vector log1p approximation using polynomial on reduced interval. Routine is a
   modification of the algorithm used in scalar log1p, with no shortcut for k=0
   and no narrowing for f and k. Maximum observed error is 2.46 ULP:
    __v_log1p(0x1.654a1307242a4p+11) got 0x1.fd5565fb590f4p+2
				    want 0x1.fd5565fb590f6p+2 .  */
VPCS_ATTR v_f64_t V_NAME (log1p) (v_f64_t x)
{
  v_u64_t ix = v_as_u64_f64 (x);
  v_u64_t ia = ix & AbsMask;
  v_u64_t special
    = v_cond_u64 ((ia >= v_u64 (0x7ff0000000000000))
		  | (ix >= 0xbff0000000000000) | (ix == 0x8000000000000000));

#if WANT_SIMD_EXCEPT
  if (unlikely (v_any_u64 (special)))
    x = v_sel_f64 (special, v_f64 (0), x);
#endif

  /* With x + 1 = t * 2^k (where t = f + 1 and k is chosen such that f
			   is in [sqrt(2)/2, sqrt(2)]):
     log1p(x) = k*log(2) + log1p(f).

     f may not be representable exactly, so we need a correction term:
     let m = round(1 + x), c = (1 + x) - m.
     c << m: at very small x, log1p(x) ~ x, hence:
     log(1+x) - log(m) ~ c/m.

     We therefore calculate log1p(x) by k*log2 + log1p(f) + c/m.  */

  /* Obtain correctly scaled k by manipulation in the exponent.
     The scalar algorithm casts down to 32-bit at this point to calculate k and
     u_red. We stay in double-width to obtain f and k, using the same constants
     as the scalar algorithm but shifted left by 32.  */
  v_f64_t m = x + 1;
  v_u64_t mi = v_as_u64_f64 (m);
  v_u64_t u = mi + OneMHfRt2Top;

  v_s64_t ki = v_as_s64_u64 (u >> 52) - OneTop12;
  v_f64_t k = v_to_f64_s64 (ki);

  /* Reduce x to f in [sqrt(2)/2, sqrt(2)].  */
  v_u64_t utop = (u & 0x000fffff00000000) + HfRt2Top;
  v_u64_t u_red = utop | (mi & BottomMask);
  v_f64_t f = v_as_f64_u64 (u_red) - 1;

  /* Correction term c/m.  */
  v_f64_t cm = (x - (m - 1)) / m;

  /* Approximate log1p(x) on the reduced input using a polynomial. Because
   log1p(0)=0 we choose an approximation of the form:
      x + C0*x^2 + C1*x^3 + C2x^4 + ...
   Hence approximation has the form f + f^2 * P(f)
      where P(x) = C0 + C1*x + C2x^2 + ...
   Assembling this all correctly is dealt with at the final step.  */
  v_f64_t p = eval_poly (f);

  v_f64_t ylo = v_fma_f64 (k, Ln2Lo, cm);
  v_f64_t yhi = v_fma_f64 (k, Ln2Hi, f);
  v_f64_t y = v_fma_f64 (f * f, p, ylo + yhi);

  if (unlikely (v_any_u64 (special)))
    return specialcase (v_as_f64_u64 (ix), y, special);

  return y;
}
VPCS_ALIAS

PL_SIG (V, D, 1, log1p, -0.9, 10.0)
PL_TEST_ULP (V_NAME (log1p), 1.97)
PL_TEST_EXPECT_FENV (V_NAME (log1p), WANT_SIMD_EXCEPT)
PL_TEST_INTERVAL (V_NAME (log1p), -10.0, 10.0, 10000)
PL_TEST_INTERVAL (V_NAME (log1p), 0.0, 0x1p-23, 50000)
PL_TEST_INTERVAL (V_NAME (log1p), 0x1p-23, 0.001, 50000)
PL_TEST_INTERVAL (V_NAME (log1p), 0.001, 1.0, 50000)
PL_TEST_INTERVAL (V_NAME (log1p), 0.0, -0x1p-23, 50000)
PL_TEST_INTERVAL (V_NAME (log1p), -0x1p-23, -0.001, 50000)
PL_TEST_INTERVAL (V_NAME (log1p), -0.001, -1.0, 50000)
PL_TEST_INTERVAL (V_NAME (log1p), -1.0, inf, 5000)
#endif