aboutsummaryrefslogtreecommitdiff
path: root/drivers/st
diff options
context:
space:
mode:
authorYann Gautier <yann.gautier@st.com>2018-07-24 17:13:36 +0200
committerYann Gautier <yann.gautier@st.com>2018-07-24 17:13:36 +0200
commit7839a050909944bd3ee6a70245a2bcc5471b3507 (patch)
treed3932a150de9971f94b6e912425ea8be585aac83 /drivers/st
parent4353bb20cc8937a5d540a06c4a8fe7ee880fc3ca (diff)
downloadarm-trusted-firmware-7839a050909944bd3ee6a70245a2bcc5471b3507.tar.gz
stm32mp1: Add clock and reset support
The clock driver is under dual license, BSD and GPLv2. The clock driver uses device tree, so a minimal support for this is added. The required files for driver and DTS files are in include/dt-bindings/. Signed-off-by: Yann Gautier <yann.gautier@st.com> Signed-off-by: Patrick Delaunay <patrick.delaunay@st.com> Signed-off-by: Nicolas Le Bayon <nicolas.le.bayon@st.com> Signed-off-by: Lionel Debieve <lionel.debieve@st.com>
Diffstat (limited to 'drivers/st')
-rw-r--r--drivers/st/clk/stm32mp1_clk.c1611
-rw-r--r--drivers/st/clk/stm32mp1_clkfunc.c365
-rw-r--r--drivers/st/reset/stm32mp1_reset.c39
3 files changed, 2015 insertions, 0 deletions
diff --git a/drivers/st/clk/stm32mp1_clk.c b/drivers/st/clk/stm32mp1_clk.c
new file mode 100644
index 000000000..7dff98b1b
--- /dev/null
+++ b/drivers/st/clk/stm32mp1_clk.c
@@ -0,0 +1,1611 @@
+/*
+ * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
+ *
+ * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
+ */
+
+#include <arch.h>
+#include <arch_helpers.h>
+#include <assert.h>
+#include <debug.h>
+#include <delay_timer.h>
+#include <dt-bindings/clock/stm32mp1-clks.h>
+#include <dt-bindings/clock/stm32mp1-clksrc.h>
+#include <errno.h>
+#include <generic_delay_timer.h>
+#include <libfdt.h>
+#include <mmio.h>
+#include <platform.h>
+#include <stdint.h>
+#include <stm32mp1_clk.h>
+#include <stm32mp1_clkfunc.h>
+#include <stm32mp1_dt.h>
+#include <stm32mp1_private.h>
+#include <stm32mp1_rcc.h>
+#include <utils_def.h>
+
+#define MAX_HSI_HZ 64000000
+
+#define TIMEOUT_200MS (plat_get_syscnt_freq2() / 5U)
+#define TIMEOUT_1S plat_get_syscnt_freq2()
+
+#define PLLRDY_TIMEOUT TIMEOUT_200MS
+#define CLKSRC_TIMEOUT TIMEOUT_200MS
+#define CLKDIV_TIMEOUT TIMEOUT_200MS
+#define HSIDIV_TIMEOUT TIMEOUT_200MS
+#define OSCRDY_TIMEOUT TIMEOUT_1S
+
+enum stm32mp1_parent_id {
+/* Oscillators are defined in enum stm32mp_osc_id */
+
+/* Other parent source */
+ _HSI_KER = NB_OSC,
+ _HSE_KER,
+ _HSE_KER_DIV2,
+ _CSI_KER,
+ _PLL1_P,
+ _PLL1_Q,
+ _PLL1_R,
+ _PLL2_P,
+ _PLL2_Q,
+ _PLL2_R,
+ _PLL3_P,
+ _PLL3_Q,
+ _PLL3_R,
+ _PLL4_P,
+ _PLL4_Q,
+ _PLL4_R,
+ _ACLK,
+ _PCLK1,
+ _PCLK2,
+ _PCLK3,
+ _PCLK4,
+ _PCLK5,
+ _HCLK6,
+ _HCLK2,
+ _CK_PER,
+ _CK_MPU,
+ _PARENT_NB,
+ _UNKNOWN_ID = 0xff,
+};
+
+enum stm32mp1_parent_sel {
+ _I2C46_SEL,
+ _UART6_SEL,
+ _UART24_SEL,
+ _UART35_SEL,
+ _UART78_SEL,
+ _SDMMC12_SEL,
+ _SDMMC3_SEL,
+ _QSPI_SEL,
+ _FMC_SEL,
+ _USBPHY_SEL,
+ _USBO_SEL,
+ _STGEN_SEL,
+ _PARENT_SEL_NB,
+ _UNKNOWN_SEL = 0xff,
+};
+
+enum stm32mp1_pll_id {
+ _PLL1,
+ _PLL2,
+ _PLL3,
+ _PLL4,
+ _PLL_NB
+};
+
+enum stm32mp1_div_id {
+ _DIV_P,
+ _DIV_Q,
+ _DIV_R,
+ _DIV_NB,
+};
+
+enum stm32mp1_clksrc_id {
+ CLKSRC_MPU,
+ CLKSRC_AXI,
+ CLKSRC_PLL12,
+ CLKSRC_PLL3,
+ CLKSRC_PLL4,
+ CLKSRC_RTC,
+ CLKSRC_MCO1,
+ CLKSRC_MCO2,
+ CLKSRC_NB
+};
+
+enum stm32mp1_clkdiv_id {
+ CLKDIV_MPU,
+ CLKDIV_AXI,
+ CLKDIV_APB1,
+ CLKDIV_APB2,
+ CLKDIV_APB3,
+ CLKDIV_APB4,
+ CLKDIV_APB5,
+ CLKDIV_RTC,
+ CLKDIV_MCO1,
+ CLKDIV_MCO2,
+ CLKDIV_NB
+};
+
+enum stm32mp1_pllcfg {
+ PLLCFG_M,
+ PLLCFG_N,
+ PLLCFG_P,
+ PLLCFG_Q,
+ PLLCFG_R,
+ PLLCFG_O,
+ PLLCFG_NB
+};
+
+enum stm32mp1_pllcsg {
+ PLLCSG_MOD_PER,
+ PLLCSG_INC_STEP,
+ PLLCSG_SSCG_MODE,
+ PLLCSG_NB
+};
+
+enum stm32mp1_plltype {
+ PLL_800,
+ PLL_1600,
+ PLL_TYPE_NB
+};
+
+struct stm32mp1_pll {
+ uint8_t refclk_min;
+ uint8_t refclk_max;
+ uint8_t divn_max;
+};
+
+struct stm32mp1_clk_gate {
+ uint16_t offset;
+ uint8_t bit;
+ uint8_t index;
+ uint8_t set_clr;
+ enum stm32mp1_parent_sel sel;
+ enum stm32mp1_parent_id fixed;
+ bool secure;
+};
+
+struct stm32mp1_clk_sel {
+ uint16_t offset;
+ uint8_t src;
+ uint8_t msk;
+ uint8_t nb_parent;
+ const uint8_t *parent;
+};
+
+#define REFCLK_SIZE 4
+struct stm32mp1_clk_pll {
+ enum stm32mp1_plltype plltype;
+ uint16_t rckxselr;
+ uint16_t pllxcfgr1;
+ uint16_t pllxcfgr2;
+ uint16_t pllxfracr;
+ uint16_t pllxcr;
+ uint16_t pllxcsgr;
+ enum stm32mp_osc_id refclk[REFCLK_SIZE];
+};
+
+struct stm32mp1_clk_data {
+ const struct stm32mp1_clk_gate *gate;
+ const struct stm32mp1_clk_sel *sel;
+ const struct stm32mp1_clk_pll *pll;
+ const int nb_gate;
+};
+
+struct stm32mp1_clk_priv {
+ uint32_t base;
+ const struct stm32mp1_clk_data *data;
+ unsigned long osc[NB_OSC];
+ uint32_t pkcs_usb_value;
+};
+
+#define STM32MP1_CLK(off, b, idx, s) \
+ { \
+ .offset = (off), \
+ .bit = (b), \
+ .index = (idx), \
+ .set_clr = 0, \
+ .sel = (s), \
+ .fixed = _UNKNOWN_ID, \
+ .secure = 0, \
+ }
+
+#define STM32MP1_CLK_F(off, b, idx, f) \
+ { \
+ .offset = (off), \
+ .bit = (b), \
+ .index = (idx), \
+ .set_clr = 0, \
+ .sel = _UNKNOWN_SEL, \
+ .fixed = (f), \
+ .secure = 0, \
+ }
+
+#define STM32MP1_CLK_SET_CLR(off, b, idx, s) \
+ { \
+ .offset = (off), \
+ .bit = (b), \
+ .index = (idx), \
+ .set_clr = 1, \
+ .sel = (s), \
+ .fixed = _UNKNOWN_ID, \
+ .secure = 0, \
+ }
+
+#define STM32MP1_CLK_SET_CLR_F(off, b, idx, f) \
+ { \
+ .offset = (off), \
+ .bit = (b), \
+ .index = (idx), \
+ .set_clr = 1, \
+ .sel = _UNKNOWN_SEL, \
+ .fixed = (f), \
+ .secure = 0, \
+ }
+
+#define STM32MP1_CLK_SEC_SET_CLR(off, b, idx, s) \
+ { \
+ .offset = (off), \
+ .bit = (b), \
+ .index = (idx), \
+ .set_clr = 1, \
+ .sel = (s), \
+ .fixed = _UNKNOWN_ID, \
+ .secure = 1, \
+ }
+
+#define STM32MP1_CLK_PARENT(idx, off, s, m, p) \
+ [(idx)] = { \
+ .offset = (off), \
+ .src = (s), \
+ .msk = (m), \
+ .parent = (p), \
+ .nb_parent = ARRAY_SIZE((p)) \
+ }
+
+#define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, \
+ off4, off5, off6, \
+ p1, p2, p3, p4) \
+ [(idx)] = { \
+ .plltype = (type), \
+ .rckxselr = (off1), \
+ .pllxcfgr1 = (off2), \
+ .pllxcfgr2 = (off3), \
+ .pllxfracr = (off4), \
+ .pllxcr = (off5), \
+ .pllxcsgr = (off6), \
+ .refclk[0] = (p1), \
+ .refclk[1] = (p2), \
+ .refclk[2] = (p3), \
+ .refclk[3] = (p4), \
+ }
+
+static const uint8_t stm32mp1_clks[][2] = {
+ {CK_PER, _CK_PER},
+ {CK_MPU, _CK_MPU},
+ {CK_AXI, _ACLK},
+ {CK_HSE, _HSE},
+ {CK_CSI, _CSI},
+ {CK_LSI, _LSI},
+ {CK_LSE, _LSE},
+ {CK_HSI, _HSI},
+ {CK_HSE_DIV2, _HSE_KER_DIV2},
+};
+
+static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
+ STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
+ STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
+ STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
+ STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
+ STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
+ STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
+ STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
+ STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
+ STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
+ STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
+ STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
+
+ STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
+
+ STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
+
+ STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
+
+ STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
+ STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
+ STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 11, TZC1, _UNKNOWN_SEL),
+ STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 12, TZC2, _UNKNOWN_SEL),
+ STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
+
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
+
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
+
+ STM32MP1_CLK_SEC_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
+ STM32MP1_CLK_SEC_SET_CLR(RCC_MP_AHB5ENSETR, 5, HASH1, _UNKNOWN_SEL),
+ STM32MP1_CLK_SEC_SET_CLR(RCC_MP_AHB5ENSETR, 6, RNG1_K, _CSI_KER),
+ STM32MP1_CLK_SEC_SET_CLR(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _UNKNOWN_SEL),
+
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
+ STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
+
+ STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
+};
+
+static const uint8_t i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
+static const uint8_t uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
+ _HSE_KER};
+static const uint8_t uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
+ _HSE_KER};
+static const uint8_t uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
+ _HSE_KER};
+static const uint8_t uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
+ _HSE_KER};
+static const uint8_t sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
+static const uint8_t sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
+static const uint8_t qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
+static const uint8_t fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
+static const uint8_t usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
+static const uint8_t usbo_parents[] = {_PLL4_R, _USB_PHY_48};
+static const uint8_t stgen_parents[] = {_HSI_KER, _HSE_KER};
+
+static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
+ STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
+ STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
+ STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
+ uart24_parents),
+ STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
+ uart35_parents),
+ STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
+ uart78_parents),
+ STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
+ sdmmc12_parents),
+ STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
+ sdmmc3_parents),
+ STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0xf, qspi_parents),
+ STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0xf, fmc_parents),
+ STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
+ STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
+ STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
+};
+
+/* Define characteristic of PLL according type */
+#define DIVN_MIN 24
+static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
+ [PLL_800] = {
+ .refclk_min = 4,
+ .refclk_max = 16,
+ .divn_max = 99,
+ },
+ [PLL_1600] = {
+ .refclk_min = 8,
+ .refclk_max = 16,
+ .divn_max = 199,
+ },
+};
+
+/* PLLNCFGR2 register divider by output */
+static const uint8_t pllncfgr2[_DIV_NB] = {
+ [_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
+ [_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
+ [_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT
+};
+
+static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
+ STM32MP1_CLK_PLL(_PLL1, PLL_1600,
+ RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
+ RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
+ _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
+ STM32MP1_CLK_PLL(_PLL2, PLL_1600,
+ RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
+ RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
+ _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
+ STM32MP1_CLK_PLL(_PLL3, PLL_800,
+ RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
+ RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
+ _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
+ STM32MP1_CLK_PLL(_PLL4, PLL_800,
+ RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
+ RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
+ _HSI, _HSE, _CSI, _I2S_CKIN),
+};
+
+/* Prescaler table lookups for clock computation */
+
+/* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
+#define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
+#define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
+static const uint8_t stm32mp1_mpu_apbx_div[8] = {
+ 0, 1, 2, 3, 4, 4, 4, 4
+};
+
+/* div = /1 /2 /3 /4 */
+static const uint8_t stm32mp1_axi_div[8] = {
+ 1, 2, 3, 4, 4, 4, 4, 4
+};
+
+static const struct stm32mp1_clk_data stm32mp1_data = {
+ .gate = stm32mp1_clk_gate,
+ .sel = stm32mp1_clk_sel,
+ .pll = stm32mp1_clk_pll,
+ .nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
+};
+
+static struct stm32mp1_clk_priv stm32mp1_clk_priv_data;
+
+static unsigned long stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv,
+ enum stm32mp_osc_id idx)
+{
+ if (idx >= NB_OSC) {
+ return 0;
+ }
+
+ return priv->osc[idx];
+}
+
+static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
+{
+ const struct stm32mp1_clk_gate *gate = priv->data->gate;
+ int i;
+ int nb_clks = priv->data->nb_gate;
+
+ for (i = 0; i < nb_clks; i++) {
+ if (gate[i].index == id) {
+ return i;
+ }
+ }
+
+ ERROR("%s: clk id %d not found\n", __func__, (uint32_t)id);
+
+ return -EINVAL;
+}
+
+static enum stm32mp1_parent_sel
+stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv, int i)
+{
+ const struct stm32mp1_clk_gate *gate = priv->data->gate;
+
+ return gate[i].sel;
+}
+
+static enum stm32mp1_parent_id
+stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv, int i)
+{
+ const struct stm32mp1_clk_gate *gate = priv->data->gate;
+
+ return gate[i].fixed;
+}
+
+static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
+ unsigned long id)
+{
+ const struct stm32mp1_clk_sel *sel = priv->data->sel;
+ uint32_t j, p_sel;
+ int i;
+ enum stm32mp1_parent_id p;
+ enum stm32mp1_parent_sel s;
+
+ for (j = 0; j < ARRAY_SIZE(stm32mp1_clks); j++) {
+ if (stm32mp1_clks[j][0] == id) {
+ return (int)stm32mp1_clks[j][1];
+ }
+ }
+
+ i = stm32mp1_clk_get_id(priv, id);
+ if (i < 0) {
+ return i;
+ }
+
+ p = stm32mp1_clk_get_fixed_parent(priv, i);
+ if (p < _PARENT_NB) {
+ return (int)p;
+ }
+
+ s = stm32mp1_clk_get_sel(priv, i);
+ if (s >= _PARENT_SEL_NB) {
+ return -EINVAL;
+ }
+
+ p_sel = (mmio_read_32(priv->base + sel[s].offset) >> sel[s].src) &
+ sel[s].msk;
+
+ if (p_sel < sel[s].nb_parent) {
+ return (int)sel[s].parent[p_sel];
+ }
+
+ ERROR("%s: no parents defined for clk id %ld\n", __func__, id);
+
+ return -EINVAL;
+}
+
+static unsigned long stm32mp1_pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
+ enum stm32mp1_pll_id pll_id)
+{
+ const struct stm32mp1_clk_pll *pll = priv->data->pll;
+ uint32_t selr, src;
+ unsigned long refclk;
+
+ selr = mmio_read_32(priv->base + pll[pll_id].rckxselr);
+ src = selr & RCC_SELR_REFCLK_SRC_MASK;
+
+ refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
+
+ return refclk;
+}
+
+/*
+ * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
+ * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
+ * - PLL3 & PLL4 => return VCO with Fpll_y_ck = FVCO / (DIVy + 1)
+ * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
+ */
+static unsigned long stm32mp1_pll_get_fvco(struct stm32mp1_clk_priv *priv,
+ enum stm32mp1_pll_id pll_id)
+{
+ const struct stm32mp1_clk_pll *pll = priv->data->pll;
+ unsigned long refclk, fvco;
+ uint32_t cfgr1, fracr, divm, divn;
+
+ cfgr1 = mmio_read_32(priv->base + pll[pll_id].pllxcfgr1);
+ fracr = mmio_read_32(priv->base + pll[pll_id].pllxfracr);
+
+ divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
+ divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
+
+ refclk = stm32mp1_pll_get_fref_ck(priv, pll_id);
+
+ /*
+ * With FRACV :
+ * Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
+ * Without FRACV
+ * Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
+ */
+ if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
+ uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
+ >> RCC_PLLNFRACR_FRACV_SHIFT;
+ unsigned long long numerator, denominator;
+
+ numerator = ((unsigned long long)divn + 1U) << 13;
+ numerator = (refclk * numerator) + fracv;
+ denominator = ((unsigned long long)divm + 1U) << 13;
+ fvco = (unsigned long)(numerator / denominator);
+ } else {
+ fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
+ }
+
+ return fvco;
+}
+
+static unsigned long stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
+ enum stm32mp1_pll_id pll_id,
+ enum stm32mp1_div_id div_id)
+{
+ const struct stm32mp1_clk_pll *pll = priv->data->pll;
+ unsigned long dfout;
+ uint32_t cfgr2, divy;
+
+ if (div_id >= _DIV_NB) {
+ return 0;
+ }
+
+ cfgr2 = mmio_read_32(priv->base + pll[pll_id].pllxcfgr2);
+ divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
+
+ dfout = stm32mp1_pll_get_fvco(priv, pll_id) / (divy + 1U);
+
+ return dfout;
+}
+
+static unsigned long stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
+{
+ uint32_t reg, clkdiv;
+ unsigned long clock = 0;
+
+ switch (p) {
+ case _CK_MPU:
+ /* MPU sub system */
+ reg = mmio_read_32(priv->base + RCC_MPCKSELR);
+ switch (reg & RCC_SELR_SRC_MASK) {
+ case RCC_MPCKSELR_HSI:
+ clock = stm32mp1_clk_get_fixed(priv, _HSI);
+ break;
+ case RCC_MPCKSELR_HSE:
+ clock = stm32mp1_clk_get_fixed(priv, _HSE);
+ break;
+ case RCC_MPCKSELR_PLL:
+ clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
+ break;
+ case RCC_MPCKSELR_PLL_MPUDIV:
+ clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
+
+ reg = mmio_read_32(priv->base + RCC_MPCKDIVR);
+ clkdiv = reg & RCC_MPUDIV_MASK;
+ if (clkdiv != 0U) {
+ clock /= stm32mp1_mpu_div[clkdiv];
+ }
+
+ break;
+ default:
+ break;
+ }
+ break;
+ /* AXI sub system */
+ case _ACLK:
+ case _HCLK2:
+ case _HCLK6:
+ case _PCLK4:
+ case _PCLK5:
+ reg = mmio_read_32(priv->base + RCC_ASSCKSELR);
+ switch (reg & RCC_SELR_SRC_MASK) {
+ case RCC_ASSCKSELR_HSI:
+ clock = stm32mp1_clk_get_fixed(priv, _HSI);
+ break;
+ case RCC_ASSCKSELR_HSE:
+ clock = stm32mp1_clk_get_fixed(priv, _HSE);
+ break;
+ case RCC_ASSCKSELR_PLL:
+ clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
+ break;
+ default:
+ break;
+ }
+
+ /* System clock divider */
+ reg = mmio_read_32(priv->base + RCC_AXIDIVR);
+ clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
+
+ switch (p) {
+ case _PCLK4:
+ reg = mmio_read_32(priv->base + RCC_APB4DIVR);
+ clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
+ break;
+ case _PCLK5:
+ reg = mmio_read_32(priv->base + RCC_APB5DIVR);
+ clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
+ break;
+ default:
+ break;
+ }
+ break;
+ case _CK_PER:
+ reg = mmio_read_32(priv->base + RCC_CPERCKSELR);
+ switch (reg & RCC_SELR_SRC_MASK) {
+ case RCC_CPERCKSELR_HSI:
+ clock = stm32mp1_clk_get_fixed(priv, _HSI);
+ break;
+ case RCC_CPERCKSELR_HSE:
+ clock = stm32mp1_clk_get_fixed(priv, _HSE);
+ break;
+ case RCC_CPERCKSELR_CSI:
+ clock = stm32mp1_clk_get_fixed(priv, _CSI);
+ break;
+ default:
+ break;
+ }
+ break;
+ case _HSI:
+ case _HSI_KER:
+ clock = stm32mp1_clk_get_fixed(priv, _HSI);
+ break;
+ case _CSI:
+ case _CSI_KER:
+ clock = stm32mp1_clk_get_fixed(priv, _CSI);
+ break;
+ case _HSE:
+ case _HSE_KER:
+ clock = stm32mp1_clk_get_fixed(priv, _HSE);
+ break;
+ case _HSE_KER_DIV2:
+ clock = stm32mp1_clk_get_fixed(priv, _HSE) >> 1;
+ break;
+ case _LSI:
+ clock = stm32mp1_clk_get_fixed(priv, _LSI);
+ break;
+ case _LSE:
+ clock = stm32mp1_clk_get_fixed(priv, _LSE);
+ break;
+ /* PLL */
+ case _PLL1_P:
+ clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
+ break;
+ case _PLL1_Q:
+ clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_Q);
+ break;
+ case _PLL1_R:
+ clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_R);
+ break;
+ case _PLL2_P:
+ clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
+ break;
+ case _PLL2_Q:
+ clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_Q);
+ break;
+ case _PLL2_R:
+ clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_R);
+ break;
+ case _PLL3_P:
+ clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
+ break;
+ case _PLL3_Q:
+ clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_Q);
+ break;
+ case _PLL3_R:
+ clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_R);
+ break;
+ case _PLL4_P:
+ clock = stm32mp1_read_pll_freq(priv, _PLL4, _DIV_P);
+ break;
+ case _PLL4_Q:
+ clock = stm32mp1_read_pll_freq(priv, _PLL4, _DIV_Q);
+ break;
+ case _PLL4_R:
+ clock = stm32mp1_read_pll_freq(priv, _PLL4, _DIV_R);
+ break;
+ /* Other */
+ case _USB_PHY_48:
+ clock = stm32mp1_clk_get_fixed(priv, _USB_PHY_48);
+ break;
+ default:
+ break;
+ }
+
+ return clock;
+}
+
+bool stm32mp1_clk_is_enabled(unsigned long id)
+{
+ struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
+ const struct stm32mp1_clk_gate *gate = priv->data->gate;
+ int i = stm32mp1_clk_get_id(priv, id);
+
+ if (i < 0) {
+ return false;
+ }
+
+ return ((mmio_read_32(priv->base + gate[i].offset) &
+ BIT(gate[i].bit)) != 0U);
+}
+
+int stm32mp1_clk_enable(unsigned long id)
+{
+ struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
+ const struct stm32mp1_clk_gate *gate = priv->data->gate;
+ int i = stm32mp1_clk_get_id(priv, id);
+
+ if (i < 0) {
+ return i;
+ }
+
+ if (gate[i].set_clr != 0U) {
+ mmio_write_32(priv->base + gate[i].offset, BIT(gate[i].bit));
+ } else {
+ mmio_setbits_32(priv->base + gate[i].offset, BIT(gate[i].bit));
+ }
+
+ return 0;
+}
+
+int stm32mp1_clk_disable(unsigned long id)
+{
+ struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
+ const struct stm32mp1_clk_gate *gate = priv->data->gate;
+ int i = stm32mp1_clk_get_id(priv, id);
+
+ if (i < 0) {
+ return i;
+ }
+
+ if (gate[i].set_clr != 0U) {
+ mmio_write_32(priv->base + gate[i].offset
+ + RCC_MP_ENCLRR_OFFSET,
+ BIT(gate[i].bit));
+ } else {
+ mmio_clrbits_32(priv->base + gate[i].offset, BIT(gate[i].bit));
+ }
+
+ return 0;
+}
+
+unsigned long stm32mp1_clk_get_rate(unsigned long id)
+{
+ struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
+ int p = stm32mp1_clk_get_parent(priv, id);
+ unsigned long rate;
+
+ if (p < 0) {
+ return 0;
+ }
+
+ rate = stm32mp1_clk_get(priv, p);
+
+ return rate;
+}
+
+static void stm32mp1_ls_osc_set(int enable, uint32_t rcc, uint32_t offset,
+ uint32_t mask_on)
+{
+ uint32_t address = rcc + offset;
+
+ if (enable != 0) {
+ mmio_setbits_32(address, mask_on);
+ } else {
+ mmio_clrbits_32(address, mask_on);
+ }
+}
+
+static void stm32mp1_hs_ocs_set(int enable, uint32_t rcc, uint32_t mask_on)
+{
+ if (enable != 0) {
+ mmio_setbits_32(rcc + RCC_OCENSETR, mask_on);
+ } else {
+ mmio_setbits_32(rcc + RCC_OCENCLRR, mask_on);
+ }
+}
+
+static int stm32mp1_osc_wait(int enable, uint32_t rcc, uint32_t offset,
+ uint32_t mask_rdy)
+{
+ unsigned long start;
+ uint32_t mask_test;
+ uint32_t address = rcc + offset;
+
+ if (enable != 0) {
+ mask_test = mask_rdy;
+ } else {
+ mask_test = 0;
+ }
+
+ start = get_timer(0);
+ while ((mmio_read_32(address) & mask_rdy) != mask_test) {
+ if (get_timer(start) > OSCRDY_TIMEOUT) {
+ ERROR("OSC %x @ %x timeout for enable=%d : 0x%x\n",
+ mask_rdy, address, enable, mmio_read_32(address));
+ return -ETIMEDOUT;
+ }
+ }
+
+ return 0;
+}
+
+static void stm32mp1_lse_enable(uint32_t rcc, bool bypass, uint32_t lsedrv)
+{
+ uint32_t value;
+
+ if (bypass) {
+ mmio_setbits_32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
+ }
+
+ /*
+ * Warning: not recommended to switch directly from "high drive"
+ * to "medium low drive", and vice-versa.
+ */
+ value = (mmio_read_32(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
+ RCC_BDCR_LSEDRV_SHIFT;
+
+ while (value != lsedrv) {
+ if (value > lsedrv) {
+ value--;
+ } else {
+ value++;
+ }
+
+ mmio_clrsetbits_32(rcc + RCC_BDCR,
+ RCC_BDCR_LSEDRV_MASK,
+ value << RCC_BDCR_LSEDRV_SHIFT);
+ }
+
+ stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
+}
+
+static void stm32mp1_lse_wait(uint32_t rcc)
+{
+ if (stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
+ VERBOSE("%s: failed\n", __func__);
+ }
+}
+
+static void stm32mp1_lsi_set(uint32_t rcc, int enable)
+{
+ stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
+ if (stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) !=
+ 0) {
+ VERBOSE("%s: failed\n", __func__);
+ }
+}
+
+static void stm32mp1_hse_enable(uint32_t rcc, bool bypass, bool css)
+{
+ if (bypass) {
+ mmio_setbits_32(rcc + RCC_OCENSETR, RCC_OCENR_HSEBYP);
+ }
+
+ stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
+ if (stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY) !=
+ 0) {
+ VERBOSE("%s: failed\n", __func__);
+ }
+
+ if (css) {
+ mmio_setbits_32(rcc + RCC_OCENSETR, RCC_OCENR_HSECSSON);
+ }
+}
+
+static void stm32mp1_csi_set(uint32_t rcc, int enable)
+{
+ stm32mp1_ls_osc_set(enable, rcc, RCC_OCENSETR, RCC_OCENR_CSION);
+ if (stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) !=
+ 0) {
+ VERBOSE("%s: failed\n", __func__);
+ }
+}
+
+static void stm32mp1_hsi_set(uint32_t rcc, int enable)
+{
+ stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
+ if (stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) !=
+ 0) {
+ VERBOSE("%s: failed\n", __func__);
+ }
+}
+
+static int stm32mp1_set_hsidiv(uint32_t rcc, uint8_t hsidiv)
+{
+ unsigned long start;
+ uint32_t address = rcc + RCC_OCRDYR;
+
+ mmio_clrsetbits_32(rcc + RCC_HSICFGR,
+ RCC_HSICFGR_HSIDIV_MASK,
+ RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
+
+ start = get_timer(0);
+ while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
+ if (get_timer(start) > HSIDIV_TIMEOUT) {
+ ERROR("HSIDIV failed @ 0x%x: 0x%x\n",
+ address, mmio_read_32(address));
+ return -ETIMEDOUT;
+ }
+ }
+
+ return 0;
+}
+
+static int stm32mp1_hsidiv(uint32_t rcc, unsigned long hsifreq)
+{
+ uint8_t hsidiv;
+ uint32_t hsidivfreq = MAX_HSI_HZ;
+
+ for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
+ if (hsidivfreq == hsifreq) {
+ break;
+ }
+
+ hsidivfreq /= 2U;
+ }
+
+ if (hsidiv == 4U) {
+ ERROR("Invalid clk-hsi frequency\n");
+ return -1;
+ }
+
+ if (hsidiv != 0U) {
+ return stm32mp1_set_hsidiv(rcc, hsidiv);
+ }
+
+ return 0;
+}
+
+static void stm32mp1_pll_start(struct stm32mp1_clk_priv *priv,
+ enum stm32mp1_pll_id pll_id)
+{
+ const struct stm32mp1_clk_pll *pll = priv->data->pll;
+
+ mmio_write_32(priv->base + pll[pll_id].pllxcr, RCC_PLLNCR_PLLON);
+}
+
+static int stm32mp1_pll_output(struct stm32mp1_clk_priv *priv,
+ enum stm32mp1_pll_id pll_id, uint32_t output)
+{
+ const struct stm32mp1_clk_pll *pll = priv->data->pll;
+ uint32_t pllxcr = priv->base + pll[pll_id].pllxcr;
+ unsigned long start;
+
+ start = get_timer(0);
+ /* Wait PLL lock */
+ while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
+ if (get_timer(start) > PLLRDY_TIMEOUT) {
+ ERROR("PLL%d start failed @ 0x%x: 0x%x\n",
+ pll_id, pllxcr, mmio_read_32(pllxcr));
+ return -ETIMEDOUT;
+ }
+ }
+
+ /* Start the requested output */
+ mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
+
+ return 0;
+}
+
+static int stm32mp1_pll_stop(struct stm32mp1_clk_priv *priv,
+ enum stm32mp1_pll_id pll_id)
+{
+ const struct stm32mp1_clk_pll *pll = priv->data->pll;
+ uint32_t pllxcr = priv->base + pll[pll_id].pllxcr;
+ unsigned long start;
+
+ /* Stop all output */
+ mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
+ RCC_PLLNCR_DIVREN);
+
+ /* Stop PLL */
+ mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
+
+ start = get_timer(0);
+ /* Wait PLL stopped */
+ while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
+ if (get_timer(start) > PLLRDY_TIMEOUT) {
+ ERROR("PLL%d stop failed @ 0x%x: 0x%x\n",
+ pll_id, pllxcr, mmio_read_32(pllxcr));
+ return -ETIMEDOUT;
+ }
+ }
+
+ return 0;
+}
+
+static void stm32mp1_pll_config_output(struct stm32mp1_clk_priv *priv,
+ enum stm32mp1_pll_id pll_id,
+ uint32_t *pllcfg)
+{
+ const struct stm32mp1_clk_pll *pll = priv->data->pll;
+ uint32_t rcc = priv->base;
+ uint32_t value;
+
+ value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
+ RCC_PLLNCFGR2_DIVP_MASK;
+ value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
+ RCC_PLLNCFGR2_DIVQ_MASK;
+ value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
+ RCC_PLLNCFGR2_DIVR_MASK;
+ mmio_write_32(rcc + pll[pll_id].pllxcfgr2, value);
+}
+
+static int stm32mp1_pll_config(struct stm32mp1_clk_priv *priv,
+ enum stm32mp1_pll_id pll_id,
+ uint32_t *pllcfg, uint32_t fracv)
+{
+ const struct stm32mp1_clk_pll *pll = priv->data->pll;
+ uint32_t rcc = priv->base;
+ enum stm32mp1_plltype type = pll[pll_id].plltype;
+ unsigned long refclk;
+ uint32_t ifrge = 0;
+ uint32_t src, value;
+
+ src = mmio_read_32(priv->base + pll[pll_id].rckxselr) &
+ RCC_SELR_REFCLK_SRC_MASK;
+
+ refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
+ (pllcfg[PLLCFG_M] + 1U);
+
+ if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
+ (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
+ return -EINVAL;
+ }
+
+ if ((type == PLL_800) && (refclk >= 8000000U)) {
+ ifrge = 1U;
+ }
+
+ value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
+ RCC_PLLNCFGR1_DIVN_MASK;
+ value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
+ RCC_PLLNCFGR1_DIVM_MASK;
+ value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
+ RCC_PLLNCFGR1_IFRGE_MASK;
+ mmio_write_32(rcc + pll[pll_id].pllxcfgr1, value);
+
+ /* Fractional configuration */
+ value = 0;
+ mmio_write_32(rcc + pll[pll_id].pllxfracr, value);
+
+ value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
+ mmio_write_32(rcc + pll[pll_id].pllxfracr, value);
+
+ value |= RCC_PLLNFRACR_FRACLE;
+ mmio_write_32(rcc + pll[pll_id].pllxfracr, value);
+
+ stm32mp1_pll_config_output(priv, pll_id, pllcfg);
+
+ return 0;
+}
+
+static void stm32mp1_pll_csg(struct stm32mp1_clk_priv *priv,
+ enum stm32mp1_pll_id pll_id,
+ uint32_t *csg)
+{
+ const struct stm32mp1_clk_pll *pll = priv->data->pll;
+ uint32_t pllxcsg = 0;
+
+ pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
+ RCC_PLLNCSGR_MOD_PER_MASK;
+
+ pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
+ RCC_PLLNCSGR_INC_STEP_MASK;
+
+ pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
+ RCC_PLLNCSGR_SSCG_MODE_MASK;
+
+ mmio_write_32(priv->base + pll[pll_id].pllxcsgr, pllxcsg);
+}
+
+static int stm32mp1_set_clksrc(struct stm32mp1_clk_priv *priv,
+ unsigned int clksrc)
+{
+ uint32_t address = priv->base + (clksrc >> 4);
+ unsigned long start;
+
+ mmio_clrsetbits_32(address, RCC_SELR_SRC_MASK,
+ clksrc & RCC_SELR_SRC_MASK);
+
+ start = get_timer(0);
+ while ((mmio_read_32(address) & RCC_SELR_SRCRDY) == 0U) {
+ if (get_timer(start) > CLKSRC_TIMEOUT) {
+ ERROR("CLKSRC %x start failed @ 0x%x: 0x%x\n",
+ clksrc, address, mmio_read_32(address));
+ return -ETIMEDOUT;
+ }
+ }
+
+ return 0;
+}
+
+static int stm32mp1_set_clkdiv(unsigned int clkdiv, uint32_t address)
+{
+ unsigned long start;
+
+ mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
+ clkdiv & RCC_DIVR_DIV_MASK);
+
+ start = get_timer(0);
+ while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
+ if (get_timer(start) > CLKDIV_TIMEOUT) {
+ ERROR("CLKDIV %x start failed @ 0x%x: 0x%x\n",
+ clkdiv, address, mmio_read_32(address));
+ return -ETIMEDOUT;
+ }
+ }
+
+ return 0;
+}
+
+static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
+ uint32_t clksrc, uint32_t clkdiv)
+{
+ uint32_t address = priv->base + (clksrc >> 4);
+
+ /*
+ * Binding clksrc :
+ * bit15-4 offset
+ * bit3: disable
+ * bit2-0: MCOSEL[2:0]
+ */
+ if ((clksrc & 0x8U) != 0U) {
+ mmio_clrbits_32(address, RCC_MCOCFG_MCOON);
+ } else {
+ mmio_clrsetbits_32(address,
+ RCC_MCOCFG_MCOSRC_MASK,
+ clksrc & RCC_MCOCFG_MCOSRC_MASK);
+ mmio_clrsetbits_32(address,
+ RCC_MCOCFG_MCODIV_MASK,
+ clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
+ mmio_setbits_32(address, RCC_MCOCFG_MCOON);
+ }
+}
+
+static void stm32mp1_set_rtcsrc(struct stm32mp1_clk_priv *priv,
+ unsigned int clksrc, bool lse_css)
+{
+ uint32_t address = priv->base + RCC_BDCR;
+
+ if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
+ (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
+ mmio_clrsetbits_32(address,
+ RCC_BDCR_RTCSRC_MASK,
+ clksrc << RCC_BDCR_RTCSRC_SHIFT);
+
+ mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
+ }
+
+ if (lse_css) {
+ mmio_setbits_32(address, RCC_BDCR_LSECSSON);
+ }
+}
+
+#define CNTCVL_OFF 0x008
+#define CNTCVU_OFF 0x00C
+
+static void stm32mp1_stgen_config(struct stm32mp1_clk_priv *priv)
+{
+ uintptr_t stgen;
+ int p;
+ uint32_t cntfid0;
+ unsigned long rate;
+
+ stgen = fdt_get_stgen_base();
+
+ cntfid0 = mmio_read_32(stgen + CNTFID_OFF);
+ p = stm32mp1_clk_get_parent(priv, STGEN_K);
+ rate = stm32mp1_clk_get(priv, p);
+
+ if (cntfid0 != rate) {
+ unsigned long long counter;
+
+ mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
+ counter = (unsigned long long)
+ mmio_read_32(stgen + CNTCVL_OFF);
+ counter |= ((unsigned long long)
+ (mmio_read_32(stgen + CNTCVU_OFF))) << 32;
+ counter = (counter * rate / cntfid0);
+ mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)counter);
+ mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(counter >> 32));
+ mmio_write_32(stgen + CNTFID_OFF, rate);
+ mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
+
+ write_cntfrq((u_register_t)rate);
+
+ /* Need to update timer with new frequency */
+ generic_delay_timer_init();
+ }
+}
+
+void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
+{
+ uintptr_t stgen;
+ unsigned long long cnt;
+
+ stgen = fdt_get_stgen_base();
+
+ cnt = ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF) << 32) |
+ mmio_read_32(stgen + CNTCVL_OFF);
+
+ cnt += (offset_in_ms * mmio_read_32(stgen + CNTFID_OFF)) / 1000U;
+
+ mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
+ mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)cnt);
+ mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(cnt >> 32));
+ mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
+}
+
+static void stm32mp1_pkcs_config(struct stm32mp1_clk_priv *priv, uint32_t pkcs)
+{
+ uint32_t address = priv->base + ((pkcs >> 4) & 0xFFFU);
+ uint32_t value = pkcs & 0xFU;
+ uint32_t mask = 0xFU;
+
+ if ((pkcs & BIT(31)) != 0U) {
+ mask <<= 4;
+ value <<= 4;
+ }
+
+ mmio_clrsetbits_32(address, mask, value);
+}
+
+int stm32mp1_clk_init(void)
+{
+ struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
+ uint32_t rcc = priv->base;
+ unsigned int clksrc[CLKSRC_NB];
+ unsigned int clkdiv[CLKDIV_NB];
+ unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
+ int plloff[_PLL_NB];
+ int ret, len;
+ enum stm32mp1_pll_id i;
+ bool lse_css = false;
+ const uint32_t *pkcs_cell;
+
+ /* Check status field to disable security */
+ if (!fdt_get_rcc_secure_status()) {
+ mmio_write_32(rcc + RCC_TZCR, 0);
+ }
+
+ ret = fdt_rcc_read_uint32_array("st,clksrc", clksrc,
+ (uint32_t)CLKSRC_NB);
+ if (ret < 0) {
+ return -FDT_ERR_NOTFOUND;
+ }
+
+ ret = fdt_rcc_read_uint32_array("st,clkdiv", clkdiv,
+ (uint32_t)CLKDIV_NB);
+ if (ret < 0) {
+ return -FDT_ERR_NOTFOUND;
+ }
+
+ for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
+ char name[12];
+
+ sprintf(name, "st,pll@%d", i);
+ plloff[i] = fdt_rcc_subnode_offset(name);
+
+ if (!fdt_check_node(plloff[i])) {
+ continue;
+ }
+
+ ret = fdt_read_uint32_array(plloff[i], "cfg",
+ pllcfg[i], (int)PLLCFG_NB);
+ if (ret < 0) {
+ return -FDT_ERR_NOTFOUND;
+ }
+ }
+
+ stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
+ stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
+
+ /*
+ * Switch ON oscillator found in device-tree.
+ * Note: HSI already ON after BootROM stage.
+ */
+ if (priv->osc[_LSI] != 0U) {
+ stm32mp1_lsi_set(rcc, 1);
+ }
+ if (priv->osc[_LSE] != 0U) {
+ bool bypass;
+ uint32_t lsedrv;
+
+ bypass = fdt_osc_read_bool(_LSE, "st,bypass");
+ lse_css = fdt_osc_read_bool(_LSE, "st,css");
+ lsedrv = fdt_osc_read_uint32_default(_LSE, "st,drive",
+ LSEDRV_MEDIUM_HIGH);
+ stm32mp1_lse_enable(rcc, bypass, lsedrv);
+ }
+ if (priv->osc[_HSE] != 0U) {
+ bool bypass, css;
+
+ bypass = fdt_osc_read_bool(_LSE, "st,bypass");
+ css = fdt_osc_read_bool(_LSE, "st,css");
+ stm32mp1_hse_enable(rcc, bypass, css);
+ }
+ /*
+ * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
+ * => switch on CSI even if node is not present in device tree
+ */
+ stm32mp1_csi_set(rcc, 1);
+
+ /* Come back to HSI */
+ ret = stm32mp1_set_clksrc(priv, CLK_MPU_HSI);
+ if (ret != 0) {
+ return ret;
+ }
+ ret = stm32mp1_set_clksrc(priv, CLK_AXI_HSI);
+ if (ret != 0) {
+ return ret;
+ }
+
+ for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
+ if (i == _PLL4)
+ continue;
+ ret = stm32mp1_pll_stop(priv, i);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+
+ /* Configure HSIDIV */
+ if (priv->osc[_HSI] != 0U) {
+ ret = stm32mp1_hsidiv(rcc, priv->osc[_HSI]);
+ if (ret != 0) {
+ return ret;
+ }
+ stm32mp1_stgen_config(priv);
+ }
+
+ /* Select DIV */
+ /* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
+ mmio_write_32(rcc + RCC_MPCKDIVR,
+ clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
+ ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
+ if (ret != 0) {
+ return ret;
+ }
+ ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
+ if (ret != 0) {
+ return ret;
+ }
+ ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
+ if (ret != 0) {
+ return ret;
+ }
+ ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
+ if (ret != 0) {
+ return ret;
+ }
+ ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
+ if (ret != 0) {
+ return ret;
+ }
+ ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
+ if (ret != 0) {
+ return ret;
+ }
+
+ /* No ready bit for RTC */
+ mmio_write_32(rcc + RCC_RTCDIVR,
+ clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
+
+ /* Configure PLLs source */
+ ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_PLL12]);
+ if (ret != 0) {
+ return ret;
+ }
+ ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_PLL3]);
+ if (ret != 0) {
+ return ret;
+ }
+
+ ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_PLL4]);
+ if (ret != 0) {
+ return ret;
+ }
+
+ /* Configure and start PLLs */
+ for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
+ uint32_t fracv;
+ uint32_t csg[PLLCSG_NB];
+
+ if (!fdt_check_node(plloff[i])) {
+ continue;
+ }
+
+ fracv = fdt_read_uint32_default(plloff[i], "frac", 0);
+
+ ret = stm32mp1_pll_config(priv, i, pllcfg[i], fracv);
+ if (ret != 0) {
+ return ret;
+ }
+ ret = fdt_read_uint32_array(plloff[i], "csg", csg,
+ (uint32_t)PLLCSG_NB);
+ if (ret == 0) {
+ stm32mp1_pll_csg(priv, i, csg);
+ } else if (ret != -FDT_ERR_NOTFOUND) {
+ return ret;
+ }
+
+ stm32mp1_pll_start(priv, i);
+ }
+ /* Wait and start PLLs ouptut when ready */
+ for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
+ if (!fdt_check_node(plloff[i])) {
+ continue;
+ }
+
+ ret = stm32mp1_pll_output(priv, i, pllcfg[i][PLLCFG_O]);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+ /* Wait LSE ready before to use it */
+ if (priv->osc[_LSE] != 0U) {
+ stm32mp1_lse_wait(rcc);
+ }
+
+ /* Configure with expected clock source */
+ ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_MPU]);
+ if (ret != 0) {
+ return ret;
+ }
+ ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_AXI]);
+ if (ret != 0) {
+ return ret;
+ }
+ stm32mp1_set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
+
+ /* Configure PKCK */
+ pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
+ if (pkcs_cell != NULL) {
+ bool ckper_disabled = false;
+ uint32_t j;
+
+ priv->pkcs_usb_value = 0;
+
+ for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
+ uint32_t pkcs = (uint32_t)fdt32_to_cpu(pkcs_cell[j]);
+
+ if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
+ ckper_disabled = true;
+ continue;
+ }
+ stm32mp1_pkcs_config(priv, pkcs);
+ }
+
+ /*
+ * CKPER is source for some peripheral clocks
+ * (FMC-NAND / QPSI-NOR) and switching source is allowed
+ * only if previous clock is still ON
+ * => deactivated CKPER only after switching clock
+ */
+ if (ckper_disabled) {
+ stm32mp1_pkcs_config(priv, CLK_CKPER_DISABLED);
+ }
+ }
+
+ /* Switch OFF HSI if not found in device-tree */
+ if (priv->osc[_HSI] == 0U) {
+ stm32mp1_hsi_set(rcc, 0);
+ }
+ stm32mp1_stgen_config(priv);
+
+ /* Software Self-Refresh mode (SSR) during DDR initilialization */
+ mmio_clrsetbits_32(priv->base + RCC_DDRITFCR,
+ RCC_DDRITFCR_DDRCKMOD_MASK,
+ RCC_DDRITFCR_DDRCKMOD_SSR <<
+ RCC_DDRITFCR_DDRCKMOD_SHIFT);
+
+ return 0;
+}
+
+static void stm32mp1_osc_clk_init(const char *name,
+ struct stm32mp1_clk_priv *priv,
+ enum stm32mp_osc_id index)
+{
+ uint32_t frequency;
+
+ priv->osc[index] = 0;
+
+ if (fdt_osc_read_freq(name, &frequency) != 0) {
+ ERROR("%s frequency request failed\n", name);
+ panic();
+ } else {
+ priv->osc[index] = frequency;
+ }
+}
+
+static void stm32mp1_osc_init(void)
+{
+ struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
+ enum stm32mp_osc_id i;
+
+ for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
+ stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], priv, i);
+ }
+}
+
+int stm32mp1_clk_probe(void)
+{
+ struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
+
+ priv->base = fdt_rcc_read_addr();
+ if (priv->base == 0U) {
+ return -EINVAL;
+ }
+
+ priv->data = &stm32mp1_data;
+
+ if ((priv->data->gate == NULL) || (priv->data->sel == NULL) ||
+ (priv->data->pll == NULL)) {
+ return -EINVAL;
+ }
+
+ stm32mp1_osc_init();
+
+ return 0;
+}
diff --git a/drivers/st/clk/stm32mp1_clkfunc.c b/drivers/st/clk/stm32mp1_clkfunc.c
new file mode 100644
index 000000000..d4c69cb4e
--- /dev/null
+++ b/drivers/st/clk/stm32mp1_clkfunc.c
@@ -0,0 +1,365 @@
+/*
+ * Copyright (c) 2017-2018, STMicroelectronics - All Rights Reserved
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <dt-bindings/clock/stm32mp1-clksrc.h>
+#include <errno.h>
+#include <libfdt.h>
+#include <stm32mp1_clk.h>
+#include <stm32mp1_clkfunc.h>
+#include <stm32mp1_dt.h>
+
+#define DT_RCC_NODE_NAME "rcc@50000000"
+#define DT_RCC_CLK_COMPAT "st,stm32mp1-rcc"
+#define DT_RCC_COMPAT "syscon"
+#define DT_STGEN_COMPAT "st,stm32-stgen"
+#define DT_UART_COMPAT "st,stm32h7-uart"
+#define DT_USART_COMPAT "st,stm32h7-usart"
+
+const char *stm32mp_osc_node_label[NB_OSC] = {
+ [_LSI] = "clk-lsi",
+ [_LSE] = "clk-lse",
+ [_HSI] = "clk-hsi",
+ [_HSE] = "clk-hse",
+ [_CSI] = "clk-csi",
+ [_I2S_CKIN] = "i2s_ckin",
+ [_USB_PHY_48] = "ck_usbo_48m"
+};
+
+/*******************************************************************************
+ * This function reads the frequency of an oscillator from its name.
+ * It reads the value indicated inside the device tree.
+ * Returns 0 if success, and a negative value else.
+ * If success, value is stored in the second parameter.
+ ******************************************************************************/
+int fdt_osc_read_freq(const char *name, uint32_t *freq)
+{
+ int node, subnode;
+ void *fdt;
+
+ if (fdt_get_address(&fdt) == 0) {
+ return -ENOENT;
+ }
+
+ node = fdt_path_offset(fdt, "/clocks");
+ if (node < 0) {
+ return -FDT_ERR_NOTFOUND;
+ }
+
+ fdt_for_each_subnode(subnode, fdt, node) {
+ const char *cchar;
+ int ret;
+
+ cchar = fdt_get_name(fdt, subnode, &ret);
+ if (cchar == NULL) {
+ return ret;
+ }
+
+ if (strncmp(cchar, name, (size_t)ret) == 0) {
+ const fdt32_t *cuint;
+
+ cuint = fdt_getprop(fdt, subnode, "clock-frequency",
+ &ret);
+ if (cuint == NULL) {
+ return ret;
+ }
+
+ *freq = fdt32_to_cpu(*cuint);
+
+ return 0;
+ }
+ }
+
+ /* Oscillator not found, freq=0 */
+ *freq = 0;
+ return 0;
+}
+
+/*******************************************************************************
+ * This function checks the presence of an oscillator property from its id.
+ * The search is done inside the device tree.
+ * Returns true/false regarding search result.
+ ******************************************************************************/
+bool fdt_osc_read_bool(enum stm32mp_osc_id osc_id, const char *prop_name)
+{
+ int node, subnode;
+ void *fdt;
+
+ if (fdt_get_address(&fdt) == 0) {
+ return false;
+ }
+
+ if (osc_id >= NB_OSC) {
+ return false;
+ }
+
+ node = fdt_path_offset(fdt, "/clocks");
+ if (node < 0) {
+ return false;
+ }
+
+ fdt_for_each_subnode(subnode, fdt, node) {
+ const char *cchar;
+ int ret;
+
+ cchar = fdt_get_name(fdt, subnode, &ret);
+ if (cchar == NULL) {
+ return false;
+ }
+
+ if (strncmp(cchar, stm32mp_osc_node_label[osc_id],
+ (size_t)ret) != 0) {
+ continue;
+ }
+
+ if (fdt_getprop(fdt, subnode, prop_name, NULL) != NULL) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/*******************************************************************************
+ * This function reads a value of a oscillator property from its id.
+ * Returns value if success, and a default value if property not found.
+ * Default value is passed as parameter.
+ ******************************************************************************/
+uint32_t fdt_osc_read_uint32_default(enum stm32mp_osc_id osc_id,
+ const char *prop_name, uint32_t dflt_value)
+{
+ int node, subnode;
+ void *fdt;
+
+ if (fdt_get_address(&fdt) == 0) {
+ return dflt_value;
+ }
+
+ if (osc_id >= NB_OSC) {
+ return dflt_value;
+ }
+
+ node = fdt_path_offset(fdt, "/clocks");
+ if (node < 0) {
+ return dflt_value;
+ }
+
+ fdt_for_each_subnode(subnode, fdt, node) {
+ const char *cchar;
+ int ret;
+
+ cchar = fdt_get_name(fdt, subnode, &ret);
+ if (cchar == NULL) {
+ return dflt_value;
+ }
+
+ if (strncmp(cchar, stm32mp_osc_node_label[osc_id],
+ (size_t)ret) != 0) {
+ continue;
+ }
+
+ return fdt_read_uint32_default(subnode, prop_name, dflt_value);
+ }
+
+ return dflt_value;
+}
+
+/*******************************************************************************
+ * This function reads the rcc base address.
+ * It reads the value indicated inside the device tree.
+ * Returns address if success, and 0 value else.
+ ******************************************************************************/
+uint32_t fdt_rcc_read_addr(void)
+{
+ int node, subnode;
+ void *fdt;
+
+ if (fdt_get_address(&fdt) == 0) {
+ return 0;
+ }
+
+ node = fdt_path_offset(fdt, "/soc");
+ if (node < 0) {
+ return 0;
+ }
+
+ fdt_for_each_subnode(subnode, fdt, node) {
+ const char *cchar;
+ int ret;
+
+ cchar = fdt_get_name(fdt, subnode, &ret);
+ if (cchar == NULL) {
+ return 0;
+ }
+
+ if (strncmp(cchar, DT_RCC_NODE_NAME, (size_t)ret) == 0) {
+ const fdt32_t *cuint;
+
+ cuint = fdt_getprop(fdt, subnode, "reg", NULL);
+ if (cuint == NULL) {
+ return 0;
+ }
+
+ return fdt32_to_cpu(*cuint);
+ }
+ }
+
+ return 0;
+}
+
+/*******************************************************************************
+ * This function reads a series of parameters in rcc-clk section.
+ * It reads the values indicated inside the device tree, from property name.
+ * The number of parameters is also indicated as entry parameter.
+ * Returns 0 if success, and a negative value else.
+ * If success, values are stored at the second parameter address.
+ ******************************************************************************/
+int fdt_rcc_read_uint32_array(const char *prop_name,
+ uint32_t *array, uint32_t count)
+{
+ int node;
+ void *fdt;
+
+ if (fdt_get_address(&fdt) == 0) {
+ return -ENOENT;
+ }
+
+ node = fdt_node_offset_by_compatible(fdt, -1, DT_RCC_CLK_COMPAT);
+ if (node < 0) {
+ return -FDT_ERR_NOTFOUND;
+ }
+
+ return fdt_read_uint32_array(node, prop_name, array, count);
+}
+
+/*******************************************************************************
+ * This function gets the subnode offset in rcc-clk section from its name.
+ * It reads the values indicated inside the device tree.
+ * Returns offset if success, and a negative value else.
+ ******************************************************************************/
+int fdt_rcc_subnode_offset(const char *name)
+{
+ int node, subnode;
+ void *fdt;
+
+ if (fdt_get_address(&fdt) == 0) {
+ return -ENOENT;
+ }
+
+ node = fdt_node_offset_by_compatible(fdt, -1, DT_RCC_CLK_COMPAT);
+ if (node < 0) {
+ return -FDT_ERR_NOTFOUND;
+ }
+
+ subnode = fdt_subnode_offset(fdt, node, name);
+ if (subnode <= 0) {
+ return -FDT_ERR_NOTFOUND;
+ }
+
+ return subnode;
+}
+
+/*******************************************************************************
+ * This function gets the pointer to a rcc-clk property from its name.
+ * It reads the values indicated inside the device tree.
+ * Length of the property is stored in the second parameter.
+ * Returns pointer if success, and NULL value else.
+ ******************************************************************************/
+const uint32_t *fdt_rcc_read_prop(const char *prop_name, int *lenp)
+{
+ const uint32_t *cuint;
+ int node, len;
+ void *fdt;
+
+ if (fdt_get_address(&fdt) == 0) {
+ return NULL;
+ }
+
+ node = fdt_node_offset_by_compatible(fdt, -1, DT_RCC_CLK_COMPAT);
+ if (node < 0) {
+ return NULL;
+ }
+
+ cuint = fdt_getprop(fdt, node, prop_name, &len);
+ if (cuint == NULL) {
+ return NULL;
+ }
+
+ *lenp = len;
+ return cuint;
+}
+
+/*******************************************************************************
+ * This function gets the secure status for rcc node.
+ * It reads secure-status in device tree.
+ * Returns 1 if rcc is available from secure world, 0 else.
+ ******************************************************************************/
+bool fdt_get_rcc_secure_status(void)
+{
+ int node;
+ void *fdt;
+
+ if (fdt_get_address(&fdt) == 0) {
+ return false;
+ }
+
+ node = fdt_node_offset_by_compatible(fdt, -1, DT_RCC_COMPAT);
+ if (node < 0) {
+ return false;
+ }
+
+ return fdt_check_secure_status(node);
+}
+
+/*******************************************************************************
+ * This function reads the stgen base address.
+ * It reads the value indicated inside the device tree.
+ * Returns address if success, and NULL value else.
+ ******************************************************************************/
+uintptr_t fdt_get_stgen_base(void)
+{
+ int node;
+ const fdt32_t *cuint;
+ void *fdt;
+
+ if (fdt_get_address(&fdt) == 0) {
+ return 0;
+ }
+
+ node = fdt_node_offset_by_compatible(fdt, -1, DT_STGEN_COMPAT);
+ if (node < 0) {
+ return 0;
+ }
+
+ cuint = fdt_getprop(fdt, node, "reg", NULL);
+ if (cuint == NULL) {
+ return 0;
+ }
+
+ return fdt32_to_cpu(*cuint);
+}
+
+/*******************************************************************************
+ * This function gets the clock ID of the given node.
+ * It reads the value indicated inside the device tree.
+ * Returns ID if success, and a negative value else.
+ ******************************************************************************/
+int fdt_get_clock_id(int node)
+{
+ const fdt32_t *cuint;
+ void *fdt;
+
+ if (fdt_get_address(&fdt) == 0) {
+ return -ENOENT;
+ }
+
+ cuint = fdt_getprop(fdt, node, "clocks", NULL);
+ if (cuint == NULL) {
+ return -FDT_ERR_NOTFOUND;
+ }
+
+ cuint++;
+ return (int)fdt32_to_cpu(*cuint);
+}
diff --git a/drivers/st/reset/stm32mp1_reset.c b/drivers/st/reset/stm32mp1_reset.c
new file mode 100644
index 000000000..106bbfe62
--- /dev/null
+++ b/drivers/st/reset/stm32mp1_reset.c
@@ -0,0 +1,39 @@
+/*
+ * Copyright (c) 2018, STMicroelectronics - All Rights Reserved
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <bl_common.h>
+#include <debug.h>
+#include <limits.h>
+#include <mmio.h>
+#include <platform_def.h>
+#include <stm32mp1_rcc.h>
+#include <stm32mp1_reset.h>
+#include <utils_def.h>
+
+#define RST_CLR_OFFSET 4U
+
+void stm32mp1_reset_assert(uint32_t id)
+{
+ uint32_t offset = (id / (uint32_t)__LONG_BIT) * sizeof(uintptr_t);
+ uint32_t bit = id % (uint32_t)__LONG_BIT;
+
+ mmio_write_32(RCC_BASE + offset, BIT(bit));
+ while ((mmio_read_32(RCC_BASE + offset) & BIT(bit)) == 0U) {
+ ;
+ }
+}
+
+void stm32mp1_reset_deassert(uint32_t id)
+{
+ uint32_t offset = ((id / (uint32_t)__LONG_BIT) * sizeof(uintptr_t)) +
+ RST_CLR_OFFSET;
+ uint32_t bit = id % (uint32_t)__LONG_BIT;
+
+ mmio_write_32(RCC_BASE + offset, BIT(bit));
+ while ((mmio_read_32(RCC_BASE + offset) & BIT(bit)) != 0U) {
+ ;
+ }
+}