/* * Copyright (c) 2017-2021, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include "../amu_private.h" #include #include #include #include #include #include struct amu_ctx { uint64_t group0_cnts[AMU_GROUP0_MAX_COUNTERS]; #if ENABLE_AMU_AUXILIARY_COUNTERS uint64_t group1_cnts[AMU_GROUP1_MAX_COUNTERS]; #endif uint16_t group0_enable; #if ENABLE_AMU_AUXILIARY_COUNTERS uint16_t group1_enable; #endif }; static struct amu_ctx amu_ctxs_[PLATFORM_CORE_COUNT]; CASSERT((sizeof(amu_ctxs_[0].group0_enable) * CHAR_BIT) <= AMU_GROUP0_MAX_COUNTERS, amu_ctx_group0_enable_cannot_represent_all_group0_counters); #if ENABLE_AMU_AUXILIARY_COUNTERS CASSERT((sizeof(amu_ctxs_[0].group1_enable) * CHAR_BIT) <= AMU_GROUP1_MAX_COUNTERS, amu_ctx_group1_enable_cannot_represent_all_group1_counters); #endif static inline __unused uint32_t read_id_pfr0_amu(void) { return (read_id_pfr0() >> ID_PFR0_AMU_SHIFT) & ID_PFR0_AMU_MASK; } static inline __unused void write_hcptr_tam(uint32_t value) { write_hcptr((read_hcptr() & ~TAM_BIT) | ((value << TAM_SHIFT) & TAM_BIT)); } static inline __unused void write_amcr_cg1rz(uint32_t value) { write_amcr((read_amcr() & ~AMCR_CG1RZ_BIT) | ((value << AMCR_CG1RZ_SHIFT) & AMCR_CG1RZ_BIT)); } static inline __unused uint32_t read_amcfgr_ncg(void) { return (read_amcfgr() >> AMCFGR_NCG_SHIFT) & AMCFGR_NCG_MASK; } static inline __unused uint32_t read_amcgcr_cg0nc(void) { return (read_amcgcr() >> AMCGCR_CG0NC_SHIFT) & AMCGCR_CG0NC_MASK; } static inline __unused uint32_t read_amcgcr_cg1nc(void) { return (read_amcgcr() >> AMCGCR_CG1NC_SHIFT) & AMCGCR_CG1NC_MASK; } static inline __unused uint32_t read_amcntenset0_px(void) { return (read_amcntenset0() >> AMCNTENSET0_Pn_SHIFT) & AMCNTENSET0_Pn_MASK; } static inline __unused uint32_t read_amcntenset1_px(void) { return (read_amcntenset1() >> AMCNTENSET1_Pn_SHIFT) & AMCNTENSET1_Pn_MASK; } static inline __unused void write_amcntenset0_px(uint32_t px) { uint32_t value = read_amcntenset0(); value &= ~AMCNTENSET0_Pn_MASK; value |= (px << AMCNTENSET0_Pn_SHIFT) & AMCNTENSET0_Pn_MASK; write_amcntenset0(value); } static inline __unused void write_amcntenset1_px(uint32_t px) { uint32_t value = read_amcntenset1(); value &= ~AMCNTENSET1_Pn_MASK; value |= (px << AMCNTENSET1_Pn_SHIFT) & AMCNTENSET1_Pn_MASK; write_amcntenset1(value); } static inline __unused void write_amcntenclr0_px(uint32_t px) { uint32_t value = read_amcntenclr0(); value &= ~AMCNTENCLR0_Pn_MASK; value |= (px << AMCNTENCLR0_Pn_SHIFT) & AMCNTENCLR0_Pn_MASK; write_amcntenclr0(value); } static inline __unused void write_amcntenclr1_px(uint32_t px) { uint32_t value = read_amcntenclr1(); value &= ~AMCNTENCLR1_Pn_MASK; value |= (px << AMCNTENCLR1_Pn_SHIFT) & AMCNTENCLR1_Pn_MASK; write_amcntenclr1(value); } static __unused bool amu_supported(void) { return read_id_pfr0_amu() >= ID_PFR0_AMU_V1; } #if ENABLE_AMU_AUXILIARY_COUNTERS static __unused bool amu_group1_supported(void) { return read_amcfgr_ncg() > 0U; } #endif /* * Enable counters. This function is meant to be invoked by the context * management library before exiting from EL3. */ void amu_enable(bool el2_unused) { uint32_t id_pfr0_amu; /* AMU version */ uint32_t amcfgr_ncg; /* Number of counter groups */ uint32_t amcgcr_cg0nc; /* Number of group 0 counters */ uint32_t amcntenset0_px = 0x0; /* Group 0 enable mask */ uint32_t amcntenset1_px = 0x0; /* Group 1 enable mask */ id_pfr0_amu = read_id_pfr0_amu(); if (id_pfr0_amu == ID_PFR0_AMU_NOT_SUPPORTED) { /* * If the AMU is unsupported, nothing needs to be done. */ return; } if (el2_unused) { /* * HCPTR.TAM: Set to zero so any accesses to the Activity * Monitor registers do not trap to EL2. */ write_hcptr_tam(0U); } /* * Retrieve the number of architected counters. All of these counters * are enabled by default. */ amcgcr_cg0nc = read_amcgcr_cg0nc(); amcntenset0_px = (UINT32_C(1) << (amcgcr_cg0nc)) - 1U; assert(amcgcr_cg0nc <= AMU_AMCGCR_CG0NC_MAX); /* * The platform may opt to enable specific auxiliary counters. This can * be done via the common FCONF getter, or via the platform-implemented * function. */ #if ENABLE_AMU_AUXILIARY_COUNTERS const struct amu_topology *topology; #if ENABLE_AMU_FCONF topology = FCONF_GET_PROPERTY(amu, config, topology); #else topology = plat_amu_topology(); #endif /* ENABLE_AMU_FCONF */ if (topology != NULL) { unsigned int core_pos = plat_my_core_pos(); amcntenset1_el0_px = topology->cores[core_pos].enable; } else { ERROR("AMU: failed to generate AMU topology\n"); } #endif /* ENABLE_AMU_AUXILIARY_COUNTERS */ /* * Enable the requested counters. */ write_amcntenset0_px(amcntenset0_px); amcfgr_ncg = read_amcfgr_ncg(); if (amcfgr_ncg > 0U) { write_amcntenset1_px(amcntenset1_px); #if !ENABLE_AMU_AUXILIARY_COUNTERS VERBOSE("AMU: auxiliary counters detected but support is disabled\n"); #endif } /* Initialize FEAT_AMUv1p1 features if present. */ if (id_pfr0_amu < ID_PFR0_AMU_V1P1) { return; } #if AMU_RESTRICT_COUNTERS /* * FEAT_AMUv1p1 adds a register field to restrict access to group 1 * counters at all but the highest implemented EL. This is controlled * with the AMU_RESTRICT_COUNTERS compile time flag, when set, system * register reads at lower ELs return zero. Reads from the memory * mapped view are unaffected. */ VERBOSE("AMU group 1 counter access restricted.\n"); write_amcr_cg1rz(1U); #else write_amcr_cg1rz(0U); #endif } /* Read the group 0 counter identified by the given `idx`. */ static uint64_t amu_group0_cnt_read(unsigned int idx) { assert(amu_supported()); assert(idx < read_amcgcr_cg0nc()); return amu_group0_cnt_read_internal(idx); } /* Write the group 0 counter identified by the given `idx` with `val` */ static void amu_group0_cnt_write(unsigned int idx, uint64_t val) { assert(amu_supported()); assert(idx < read_amcgcr_cg0nc()); amu_group0_cnt_write_internal(idx, val); isb(); } #if ENABLE_AMU_AUXILIARY_COUNTERS /* Read the group 1 counter identified by the given `idx` */ static uint64_t amu_group1_cnt_read(unsigned int idx) { assert(amu_supported()); assert(amu_group1_supported()); assert(idx < read_amcgcr_cg1nc()); return amu_group1_cnt_read_internal(idx); } /* Write the group 1 counter identified by the given `idx` with `val` */ static void amu_group1_cnt_write(unsigned int idx, uint64_t val) { assert(amu_supported()); assert(amu_group1_supported()); assert(idx < read_amcgcr_cg1nc()); amu_group1_cnt_write_internal(idx, val); isb(); } #endif static void *amu_context_save(const void *arg) { uint32_t i; unsigned int core_pos; struct amu_ctx *ctx; uint32_t id_pfr0_amu; /* AMU version */ uint32_t amcgcr_cg0nc; /* Number of group 0 counters */ #if ENABLE_AMU_AUXILIARY_COUNTERS uint32_t amcfgr_ncg; /* Number of counter groups */ uint32_t amcgcr_cg1nc; /* Number of group 1 counters */ #endif id_pfr0_amu = read_id_pfr0_amu(); if (id_pfr0_amu == ID_PFR0_AMU_NOT_SUPPORTED) { return (void *)0; } core_pos = plat_my_core_pos(); ctx = &amu_ctxs_[core_pos]; amcgcr_cg0nc = read_amcgcr_cg0nc(); #if ENABLE_AMU_AUXILIARY_COUNTERS amcfgr_ncg = read_amcfgr_ncg(); amcgcr_cg1nc = (amcfgr_ncg > 0U) ? read_amcgcr_cg1nc() : 0U; #endif /* * Disable all AMU counters. */ ctx->group0_enable = read_amcntenset0_px(); write_amcntenclr0_px(ctx->group0_enable); #if ENABLE_AMU_AUXILIARY_COUNTERS if (amcfgr_ncg > 0U) { ctx->group1_enable = read_amcntenset1_px(); write_amcntenclr1_px(ctx->group1_enable); } #endif /* * Save the counters to the local context. */ isb(); /* Ensure counters have been stopped */ for (i = 0U; i < amcgcr_cg0nc; i++) { ctx->group0_cnts[i] = amu_group0_cnt_read(i); } #if ENABLE_AMU_AUXILIARY_COUNTERS for (i = 0U; i < amcgcr_cg1nc; i++) { ctx->group1_cnts[i] = amu_group1_cnt_read(i); } #endif return (void *)0; } static void *amu_context_restore(const void *arg) { uint32_t i; unsigned int core_pos; struct amu_ctx *ctx; uint32_t id_pfr0_amu; /* AMU version */ uint32_t amcfgr_ncg; /* Number of counter groups */ uint32_t amcgcr_cg0nc; /* Number of group 0 counters */ #if ENABLE_AMU_AUXILIARY_COUNTERS uint32_t amcgcr_cg1nc; /* Number of group 1 counters */ #endif id_pfr0_amu = read_id_pfr0_amu(); if (id_pfr0_amu == ID_PFR0_AMU_NOT_SUPPORTED) { return (void *)0; } core_pos = plat_my_core_pos(); ctx = &amu_ctxs_[core_pos]; amcfgr_ncg = read_amcfgr_ncg(); amcgcr_cg0nc = read_amcgcr_cg0nc(); #if ENABLE_AMU_AUXILIARY_COUNTERS amcgcr_cg1nc = (amcfgr_ncg > 0U) ? read_amcgcr_cg1nc() : 0U; #endif /* * Sanity check that all counters were disabled when the context was * previously saved. */ assert(read_amcntenset0_px() == 0U); if (amcfgr_ncg > 0U) { assert(read_amcntenset1_px() == 0U); } /* * Restore the counter values from the local context. */ for (i = 0U; i < amcgcr_cg0nc; i++) { amu_group0_cnt_write(i, ctx->group0_cnts[i]); } #if ENABLE_AMU_AUXILIARY_COUNTERS for (i = 0U; i < amcgcr_cg1nc; i++) { amu_group1_cnt_write(i, ctx->group1_cnts[i]); } #endif /* * Re-enable counters that were disabled during context save. */ write_amcntenset0_px(ctx->group0_enable); #if ENABLE_AMU_AUXILIARY_COUNTERS if (amcfgr_ncg > 0U) { write_amcntenset1_px(ctx->group1_enable); } #endif return (void *)0; } SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_start, amu_context_save); SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_finish, amu_context_restore);