/* * Copyright (c) 2017-2021, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include static struct amu_ctx amu_ctxs[PLATFORM_CORE_COUNT]; static inline __unused uint64_t read_id_aa64pfr0_el1_amu(void) { return (read_id_aa64pfr0_el1() >> ID_AA64PFR0_AMU_SHIFT) & ID_AA64PFR0_AMU_MASK; } static inline __unused uint64_t read_hcr_el2_amvoffen(void) { return (read_hcr_el2() & HCR_AMVOFFEN_BIT) >> HCR_AMVOFFEN_SHIFT; } static inline __unused void write_cptr_el2_tam(uint64_t value) { write_cptr_el2((read_cptr_el2() & ~CPTR_EL2_TAM_BIT) | ((value << CPTR_EL2_TAM_SHIFT) & CPTR_EL2_TAM_BIT)); } static inline __unused void write_cptr_el3_tam(cpu_context_t *ctx, uint64_t tam) { uint64_t value = read_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3); value &= ~TAM_BIT; value |= (tam << TAM_SHIFT) & TAM_BIT; write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, value); } static inline __unused void write_hcr_el2_amvoffen(uint64_t value) { write_hcr_el2((read_hcr_el2() & ~HCR_AMVOFFEN_BIT) | ((value << HCR_AMVOFFEN_SHIFT) & HCR_AMVOFFEN_BIT)); } static inline __unused void write_amcr_el0_cg1rz(uint64_t value) { write_amcr_el0((read_amcr_el0() & ~AMCR_CG1RZ_BIT) | ((value << AMCR_CG1RZ_SHIFT) & AMCR_CG1RZ_BIT)); } static inline __unused uint64_t read_amcfgr_el0_ncg(void) { return (read_amcfgr_el0() >> AMCFGR_EL0_NCG_SHIFT) & AMCFGR_EL0_NCG_MASK; } static inline uint64_t read_amcgcr_el0_cg0nc(void) { return (read_amcgcr_el0() >> AMCGCR_EL0_CG0NC_SHIFT) & AMCGCR_EL0_CG0NC_MASK; } static inline __unused uint64_t read_amcg1idr_el0_voff(void) { return (read_amcg1idr_el0() >> AMCG1IDR_VOFF_SHIFT) & AMCG1IDR_VOFF_MASK; } static inline __unused uint64_t read_amcgcr_el0_cg1nc(void) { return (read_amcgcr_el0() >> AMCGCR_EL0_CG1NC_SHIFT) & AMCGCR_EL0_CG1NC_MASK; } static inline __unused uint64_t read_amcntenset0_el0_px(void) { return (read_amcntenset0_el0() >> AMCNTENSET0_EL0_Pn_SHIFT) & AMCNTENSET0_EL0_Pn_MASK; } static inline __unused uint64_t read_amcntenset1_el0_px(void) { return (read_amcntenset1_el0() >> AMCNTENSET1_EL0_Pn_SHIFT) & AMCNTENSET1_EL0_Pn_MASK; } static inline __unused void write_amcntenset0_el0_px(uint64_t px) { uint64_t value = read_amcntenset0_el0(); value &= ~AMCNTENSET0_EL0_Pn_MASK; value |= (px << AMCNTENSET0_EL0_Pn_SHIFT) & AMCNTENSET0_EL0_Pn_MASK; write_amcntenset0_el0(value); } static inline __unused void write_amcntenset1_el0_px(uint64_t px) { uint64_t value = read_amcntenset1_el0(); value &= ~AMCNTENSET1_EL0_Pn_MASK; value |= (px << AMCNTENSET1_EL0_Pn_SHIFT) & AMCNTENSET1_EL0_Pn_MASK; write_amcntenset1_el0(value); } static inline __unused void write_amcntenclr0_el0_px(uint64_t px) { uint64_t value = read_amcntenclr0_el0(); value &= ~AMCNTENCLR0_EL0_Pn_MASK; value |= (px << AMCNTENCLR0_EL0_Pn_SHIFT) & AMCNTENCLR0_EL0_Pn_MASK; write_amcntenclr0_el0(value); } static inline __unused void write_amcntenclr1_el0_px(uint64_t px) { uint64_t value = read_amcntenclr1_el0(); value &= ~AMCNTENCLR1_EL0_Pn_MASK; value |= (px << AMCNTENCLR1_EL0_Pn_SHIFT) & AMCNTENCLR1_EL0_Pn_MASK; write_amcntenclr1_el0(value); } static bool amu_supported(void) { return read_id_aa64pfr0_el1_amu() >= ID_AA64PFR0_AMU_V1; } static bool amu_v1p1_supported(void) { return read_id_aa64pfr0_el1_amu() >= ID_AA64PFR0_AMU_V1P1; } #if ENABLE_AMU_AUXILIARY_COUNTERS static bool amu_group1_supported(void) { return read_amcfgr_el0_ncg() > 0U; } #endif /* * Enable counters. This function is meant to be invoked * by the context management library before exiting from EL3. */ void amu_enable(bool el2_unused, cpu_context_t *ctx) { if (!amu_supported()) { return; } if (el2_unused) { /* * CPTR_EL2.TAM: Set to zero so any accesses to * the Activity Monitor registers do not trap to EL2. */ write_cptr_el2_tam(0U); } /* * Retrieve and update the CPTR_EL3 value from the context mentioned * in 'ctx'. Set CPTR_EL3.TAM to zero so that any accesses to * the Activity Monitor registers do not trap to EL3. */ write_cptr_el3_tam(ctx, 0U); /* Enable group 0 counters */ write_amcntenset0_el0_px((UINT64_C(1) << read_amcgcr_el0_cg0nc()) - 1U); #if ENABLE_AMU_AUXILIARY_COUNTERS if (amu_group1_supported()) { /* Enable group 1 counters */ write_amcntenset1_el0_px(AMU_GROUP1_COUNTERS_MASK); } #endif /* Initialize FEAT_AMUv1p1 features if present. */ if (!amu_v1p1_supported()) { return; } if (el2_unused) { /* Make sure virtual offsets are disabled if EL2 not used. */ write_hcr_el2_amvoffen(0U); } #if AMU_RESTRICT_COUNTERS /* * FEAT_AMUv1p1 adds a register field to restrict access to group 1 * counters at all but the highest implemented EL. This is controlled * with the AMU_RESTRICT_COUNTERS compile time flag, when set, system * register reads at lower ELs return zero. Reads from the memory * mapped view are unaffected. */ VERBOSE("AMU group 1 counter access restricted.\n"); write_amcr_el0_cg1rz(1U); #else write_amcr_el0_cg1rz(0U); #endif } /* Read the group 0 counter identified by the given `idx`. */ static uint64_t amu_group0_cnt_read(unsigned int idx) { assert(amu_supported()); assert(idx < read_amcgcr_el0_cg0nc()); return amu_group0_cnt_read_internal(idx); } /* Write the group 0 counter identified by the given `idx` with `val` */ static void amu_group0_cnt_write(unsigned int idx, uint64_t val) { assert(amu_supported()); assert(idx < read_amcgcr_el0_cg0nc()); amu_group0_cnt_write_internal(idx, val); isb(); } /* * Read the group 0 offset register for a given index. Index must be 0, 2, * or 3, the register for 1 does not exist. * * Using this function requires FEAT_AMUv1p1 support. */ static uint64_t amu_group0_voffset_read(unsigned int idx) { assert(amu_v1p1_supported()); assert(idx < read_amcgcr_el0_cg0nc()); assert(idx != 1U); return amu_group0_voffset_read_internal(idx); } /* * Write the group 0 offset register for a given index. Index must be 0, 2, or * 3, the register for 1 does not exist. * * Using this function requires FEAT_AMUv1p1 support. */ static void amu_group0_voffset_write(unsigned int idx, uint64_t val) { assert(amu_v1p1_supported()); assert(idx < read_amcgcr_el0_cg0nc()); assert(idx != 1U); amu_group0_voffset_write_internal(idx, val); isb(); } #if ENABLE_AMU_AUXILIARY_COUNTERS /* Read the group 1 counter identified by the given `idx` */ static uint64_t amu_group1_cnt_read(unsigned int idx) { assert(amu_supported()); assert(amu_group1_supported()); assert(idx < read_amcgcr_el0_cg1nc()); return amu_group1_cnt_read_internal(idx); } /* Write the group 1 counter identified by the given `idx` with `val` */ static void amu_group1_cnt_write(unsigned int idx, uint64_t val) { assert(amu_supported()); assert(amu_group1_supported()); assert(idx < read_amcgcr_el0_cg1nc()); amu_group1_cnt_write_internal(idx, val); isb(); } /* * Read the group 1 offset register for a given index. * * Using this function requires FEAT_AMUv1p1 support. */ static uint64_t amu_group1_voffset_read(unsigned int idx) { assert(amu_v1p1_supported()); assert(amu_group1_supported()); assert(idx < read_amcgcr_el0_cg1nc()); assert((read_amcg1idr_el0_voff() & (UINT64_C(1) << idx)) != 0U); return amu_group1_voffset_read_internal(idx); } /* * Write the group 1 offset register for a given index. * * Using this function requires FEAT_AMUv1p1 support. */ static void amu_group1_voffset_write(unsigned int idx, uint64_t val) { assert(amu_v1p1_supported()); assert(amu_group1_supported()); assert(idx < read_amcgcr_el0_cg1nc()); assert((read_amcg1idr_el0_voff() & (UINT64_C(1) << idx)) != 0U); amu_group1_voffset_write_internal(idx, val); isb(); } #endif static void *amu_context_save(const void *arg) { struct amu_ctx *ctx = &amu_ctxs[plat_my_core_pos()]; unsigned int i; if (!amu_supported()) { return (void *)-1; } /* Assert that group 0/1 counter configuration is what we expect */ assert(read_amcntenset0_el0_px() == ((UINT64_C(1) << read_amcgcr_el0_cg0nc()) - 1U)); #if ENABLE_AMU_AUXILIARY_COUNTERS if (amu_group1_supported()) { assert(read_amcntenset1_el0_px() == AMU_GROUP1_COUNTERS_MASK); } #endif /* * Disable group 0/1 counters to avoid other observers like SCP sampling * counter values from the future via the memory mapped view. */ write_amcntenclr0_el0_px((UINT64_C(1) << read_amcgcr_el0_cg0nc()) - 1U); #if ENABLE_AMU_AUXILIARY_COUNTERS if (amu_group1_supported()) { write_amcntenclr1_el0_px(AMU_GROUP1_COUNTERS_MASK); } #endif isb(); /* Save all group 0 counters */ for (i = 0U; i < read_amcgcr_el0_cg0nc(); i++) { ctx->group0_cnts[i] = amu_group0_cnt_read(i); } /* Save group 0 virtual offsets if supported and enabled. */ if (amu_v1p1_supported() && (read_hcr_el2_amvoffen() != 0U)) { /* Not using a loop because count is fixed and index 1 DNE. */ ctx->group0_voffsets[0U] = amu_group0_voffset_read(0U); ctx->group0_voffsets[1U] = amu_group0_voffset_read(2U); ctx->group0_voffsets[2U] = amu_group0_voffset_read(3U); } #if ENABLE_AMU_AUXILIARY_COUNTERS if (amu_group1_supported()) { /* Save group 1 counters */ for (i = 0U; i < read_amcgcr_el0_cg1nc(); i++) { if ((AMU_GROUP1_COUNTERS_MASK & (1UL << i)) != 0U) { ctx->group1_cnts[i] = amu_group1_cnt_read(i); } } /* Save group 1 virtual offsets if supported and enabled. */ if (amu_v1p1_supported() && (read_hcr_el2_amvoffen() != 0U)) { uint64_t amcg1idr = read_amcg1idr_el0_voff() & AMU_GROUP1_COUNTERS_MASK; for (i = 0U; i < read_amcgcr_el0_cg1nc(); i++) { if (((amcg1idr >> i) & 1ULL) != 0ULL) { ctx->group1_voffsets[i] = amu_group1_voffset_read(i); } } } } #endif return (void *)0; } static void *amu_context_restore(const void *arg) { struct amu_ctx *ctx = &amu_ctxs[plat_my_core_pos()]; unsigned int i; if (!amu_supported()) { return (void *)-1; } /* Counters were disabled in `amu_context_save()` */ assert(read_amcntenset0_el0_px() == 0U); #if ENABLE_AMU_AUXILIARY_COUNTERS if (amu_group1_supported()) { assert(read_amcntenset1_el0_px() == 0U); } #endif /* Restore all group 0 counters */ for (i = 0U; i < read_amcgcr_el0_cg0nc(); i++) { amu_group0_cnt_write(i, ctx->group0_cnts[i]); } /* Restore group 0 virtual offsets if supported and enabled. */ if (amu_v1p1_supported() && (read_hcr_el2_amvoffen() != 0U)) { /* Not using a loop because count is fixed and index 1 DNE. */ amu_group0_voffset_write(0U, ctx->group0_voffsets[0U]); amu_group0_voffset_write(2U, ctx->group0_voffsets[1U]); amu_group0_voffset_write(3U, ctx->group0_voffsets[2U]); } /* Restore group 0 counter configuration */ write_amcntenset0_el0_px((UINT64_C(1) << read_amcgcr_el0_cg0nc()) - 1U); #if ENABLE_AMU_AUXILIARY_COUNTERS if (amu_group1_supported()) { /* Restore group 1 counters */ for (i = 0U; i < read_amcgcr_el0_cg1nc(); i++) { if ((AMU_GROUP1_COUNTERS_MASK & (1UL << i)) != 0U) { amu_group1_cnt_write(i, ctx->group1_cnts[i]); } } /* Restore group 1 virtual offsets if supported and enabled. */ if (amu_v1p1_supported() && (read_hcr_el2_amvoffen() != 0U)) { uint64_t amcg1idr = read_amcg1idr_el0_voff() & AMU_GROUP1_COUNTERS_MASK; for (i = 0U; i < read_amcgcr_el0_cg1nc(); i++) { if (((amcg1idr >> i) & 1ULL) != 0ULL) { amu_group1_voffset_write(i, ctx->group1_voffsets[i]); } } } /* Restore group 1 counter configuration */ write_amcntenset1_el0_px(AMU_GROUP1_COUNTERS_MASK); } #endif return (void *)0; } SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_start, amu_context_save); SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_finish, amu_context_restore);