aboutsummaryrefslogtreecommitdiff
path: root/drivers/allwinner/axp/common.c
blob: 143fb0f2d2515c357d2a8e4b362351afad5baa28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/*
 * Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <errno.h>

#include <libfdt.h>

#include <common/debug.h>
#include <drivers/allwinner/axp.h>

int axp_check_id(void)
{
	int ret;

	ret = axp_read(0x03);
	if (ret < 0)
		return ret;

	ret &= 0xcf;
	if (ret != axp_chip_id) {
		ERROR("PMIC: Found unknown PMIC %02x\n", ret);
		return ret;
	}

	return 0;
}

int axp_clrsetbits(uint8_t reg, uint8_t clr_mask, uint8_t set_mask)
{
	uint8_t val;
	int ret;

	ret = axp_read(reg);
	if (ret < 0)
		return ret;

	val = (ret & ~clr_mask) | set_mask;

	return axp_write(reg, val);
}

void axp_power_off(void)
{
	/* Set "power disable control" bit */
	axp_setbits(0x32, BIT(7));
}

/*
 * Retrieve the voltage from a given regulator DTB node.
 * Both the regulator-{min,max}-microvolt properties must be present and
 * have the same value. Return that value in millivolts.
 */
static int fdt_get_regulator_millivolt(const void *fdt, int node)
{
	const fdt32_t *prop;
	uint32_t min_volt;

	prop = fdt_getprop(fdt, node, "regulator-min-microvolt", NULL);
	if (prop == NULL)
		return -EINVAL;
	min_volt = fdt32_to_cpu(*prop);

	prop = fdt_getprop(fdt, node, "regulator-max-microvolt", NULL);
	if (prop == NULL)
		return -EINVAL;

	if (fdt32_to_cpu(*prop) != min_volt)
		return -EINVAL;

	return min_volt / 1000;
}

static int setup_regulator(const void *fdt, int node,
			   const struct axp_regulator *reg)
{
	uint8_t val;
	int mvolt;

	mvolt = fdt_get_regulator_millivolt(fdt, node);
	if (mvolt < reg->min_volt || mvolt > reg->max_volt)
		return -EINVAL;

	val = (mvolt / reg->step) - (reg->min_volt / reg->step);
	if (val > reg->split)
		val = ((val - reg->split) / 2) + reg->split;

	axp_write(reg->volt_reg, val);
	axp_setbits(reg->switch_reg, BIT(reg->switch_bit));

	INFO("PMIC: %s voltage: %d.%03dV\n", reg->dt_name,
	     mvolt / 1000, mvolt % 1000);

	return 0;
}

static bool is_node_disabled(const void *fdt, int node)
{
	const char *cell;
	cell = fdt_getprop(fdt, node, "status", NULL);
	if (cell == NULL) {
		return false;
	}
	return strcmp(cell, "okay") != 0;
}

static bool should_enable_regulator(const void *fdt, int node)
{
	if (is_node_disabled(fdt, node)) {
		return false;
	}
	if (fdt_getprop(fdt, node, "phandle", NULL) != NULL) {
		return true;
	}
	if (fdt_getprop(fdt, node, "regulator-always-on", NULL) != NULL) {
		return true;
	}
	return false;
}

static bool board_uses_usb0_host_mode(const void *fdt)
{
	int node, length;
	const char *prop;

	node = fdt_node_offset_by_compatible(fdt, -1,
					     "allwinner,sun8i-a33-musb");
	if (node < 0) {
		return false;
	}

	prop = fdt_getprop(fdt, node, "dr_mode", &length);
	if (!prop) {
		return false;
	}

	return !strncmp(prop, "host", length);
}

void axp_setup_regulators(const void *fdt)
{
	int node;
	bool sw = false;

	if (fdt == NULL)
		return;

	/* locate the PMIC DT node, bail out if not found */
	node = fdt_node_offset_by_compatible(fdt, -1, axp_compatible);
	if (node < 0) {
		WARN("PMIC: No PMIC DT node, skipping setup\n");
		return;
	}

	/* This applies to AXP803 only. */
	if (fdt_getprop(fdt, node, "x-powers,drive-vbus-en", NULL) &&
	    board_uses_usb0_host_mode(fdt)) {
		axp_clrbits(0x8f, BIT(4));
		axp_setbits(0x30, BIT(2));
		INFO("PMIC: Enabling DRIVEVBUS\n");
	}

	/* descend into the "regulators" subnode */
	node = fdt_subnode_offset(fdt, node, "regulators");
	if (node < 0) {
		WARN("PMIC: No regulators DT node, skipping setup\n");
		return;
	}

	/* iterate over all regulators to find used ones */
	fdt_for_each_subnode(node, fdt, node) {
		const struct axp_regulator *reg;
		const char *name;
		int length;

		/* We only care if it's always on or referenced. */
		if (!should_enable_regulator(fdt, node))
			continue;

		name = fdt_get_name(fdt, node, &length);

		/* Enable the switch last to avoid overheating. */
		if (!strncmp(name, "dc1sw", length) ||
		    !strncmp(name, "sw", length)) {
			sw = true;
			continue;
		}

		for (reg = axp_regulators; reg->dt_name; reg++) {
			if (!strncmp(name, reg->dt_name, length)) {
				setup_regulator(fdt, node, reg);
				break;
			}
		}
	}

	/*
	 * On the AXP803, if DLDO2 is enabled after DC1SW, the PMIC overheats
	 * and shuts down. So always enable DC1SW as the very last regulator.
	 */
	if (sw) {
		INFO("PMIC: Enabling DC SW\n");
		if (axp_chip_id == AXP803_CHIP_ID)
			axp_setbits(0x12, BIT(7));
		if (axp_chip_id == AXP805_CHIP_ID)
			axp_setbits(0x11, BIT(7));
	}
}