aboutsummaryrefslogtreecommitdiff
path: root/include/vector
blob: 1e65d54a186784918b53c13175a263f219b28a30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/* -*- c++ -*- */
/*
 * Copyright (C) 2009 The Android Open Source Project
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#ifndef ANDROID_ASTL_VECTOR__
#define ANDROID_ASTL_VECTOR__

#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <memory>
#include <type_traits.h>

namespace std {

#ifdef _T
#error "_T is a macro."
#endif

// Simple vector implementation. Its purpose is to be able to compile code that
// uses the STL and requires std::vector.
//
// IMPORTANT:
// . This class it is not fully STL compliant. Some constructors/methods maybe
// missing, they will be added on demand.
// . A standard container which offers fixed time access to individual
// elements in any order.
//
// TODO: Use the stack for the default constructor. When the capacity
// grows beyond that move the data to the heap.

template<typename _T>
class vector
{
  public:
    typedef _T         value_type;
    typedef _T*        pointer;
    typedef const _T*  const_pointer;
    typedef _T&        reference;
    typedef const _T&  const_reference;

    typedef pointer iterator;
    typedef const_pointer const_iterator;

    typedef size_t    size_type;
    typedef ptrdiff_t difference_type;

    vector();

    // Create a vector with bitwise copies of an exemplar element.
    // @param num The number of elements to create.
    // @param init_value The element to copy.
    explicit vector(const size_type num, const value_type& init_value = value_type());

    ~vector() { clear(); }

    // @return true if the vector is empty, false otherwise.
    bool empty() const { return mLength == 0; }
    size_type size() const { return mLength; }

    // @return the maximum size for a vector.
    size_type max_size() const { return size_type(-1) / sizeof(value_type); }

    // Change the capacity to new_size. 0 means shrink to fit.
    // @param new_size number of element to be allocated.
    // @return true if successful. The STL version returns nothing.
    bool reserve(size_type new_size = 0);

    // @return The total number of elements that the vector can hold
    // before more memory gets allocated.
    size_type capacity() const { return mCapacity; }

    reference front() { return *mBegin; }
    const_reference front() const { return *mBegin; }

    reference back() { return mLength ? *(mBegin + mLength - 1) : front(); }
    const_reference back() const { return mLength ? *(mBegin + mLength - 1) : front(); }

    // Subscript access to the vector's elements. Don't do boundary
    // check. Use at() for checked access.
    // @param index Of the element (0-based).
    // @return A const reference to the element.
    const_reference operator[](size_type index) const { return *(mBegin + index); }

    // @param index Of the element (0-based).
    // @return A reference to the element.
    reference operator[](size_type index) { return *(mBegin + index); }

    // We don't have iterator, use pointers for now.  begin and end
    // return NULL if the vector has been cleared or not initialized.
    iterator begin() { return mBegin; }
    iterator end() { return mBegin + mLength; }

    const_iterator begin() const { return mBegin; }
    const_iterator end() const { return mBegin + mLength; }

    // Add data at the end of the vector. Constant in time if the
    // memory has been preallocated (e.g using reserve).
    // @param elt To be added.
    void push_back(const value_type& elt);

    // Remove the last element. However, no memory is reclaimed from
    // the internal buffer: you need to call reserve() to recover it.
    void pop_back();

    // Empty the vector on return. Release the internal buffer. Length
    // and capacity are both 0 on return. If you want to keep the
    // internal buffer around for reuse, call 'resize'/'erase' instead.
    void clear();

    void swap(vector& other);
  private:
    // @return New internal buffer size when it is adjusted automatically.
    size_type grow() const;

    // Calls the class' deallocator explicitely on each instance in
    // the vector.
    void deallocate();

    pointer mBegin;
    size_type mCapacity;
    size_type mLength;
    static const size_type kDefaultCapacity = 4;
    static const size_type kExponentialFactor = 2;
    static const size_type kExponentialLimit = 256;
    static const size_type kLinearIncrement = 256;
};


// The implementation uses malloc instead of new because Posix states that:
// The pointer returned if the allocation succeeds shall be suitably
// aligned so that it may be assigned to a pointer to any type of
// object and then used to access such an object in the space
// allocated
// So as long as we malloc() more than 4 bytes, the returned block
// must be able to contain a pointer, and thus will be 32-bit
// aligned. I believe the bionic implementation uses a minimum of 8 or 16.
//
// Invariant: mLength <= mCapacity <= max_size()

template<typename _T>
vector<_T>::vector()
    :mBegin(NULL), mCapacity(0), mLength(0) { }

template<typename _T>
vector<_T>::vector(const size_type num, const value_type& init_value)
{
    if (num < max_size())
    {
        mBegin = static_cast<pointer>(malloc(num * sizeof(value_type)));
        if (mBegin)
        {
            mLength = mCapacity =  num;
            std::uninitialized_fill(mBegin, mBegin + mLength, init_value);
            return;
        }
    }
    mBegin = NULL;
    mLength = mCapacity =  0;
}

template<typename _T>
bool vector<_T>::reserve(size_type new_size)
{
    if (new_size == 0)
    {
        new_size = mLength ? mLength : kDefaultCapacity;
    }
    else if (new_size < mLength || new_size > max_size())
    {
        return false;
    }

    if (is_pod<value_type>::value)
    {
        pointer oldBegin = mBegin;
        mBegin = static_cast<pointer>(realloc(mBegin, new_size * sizeof(value_type)));
        if (!mBegin)
        {
            mBegin = oldBegin;
            return false;
        }
    }
    else
    {
        pointer newBegin =  static_cast<pointer>(malloc(new_size * sizeof(value_type)));
        if (!newBegin) return false;

        std::uninitialized_copy(mBegin, mBegin + mLength, newBegin);
        if (mBegin) deallocate();
        mBegin = newBegin;
    }
    mCapacity = new_size;
    return true;
}

template<typename _T>
void vector<_T>::push_back(const value_type& elt)
{
    if (max_size() == mLength) return;
    if (mCapacity == mLength)
    {
        const size_type new_capacity = grow();
        if (0 == new_capacity || !reserve(new_capacity)) return;
    }
    // mLength < mCapacity
    *(mBegin + mLength) = elt;
    ++mLength;
}

template<typename _T>
void vector<_T>::pop_back()
{
    if (mLength > 0)
    {
        --mLength;
    }
}

template<typename _T>
void vector<_T>::clear()
{
    if(mBegin)
    {
        if (is_pod<value_type>::value)
        {
            free(mBegin);
        }
        else
        {
            deallocate();
        }
    }
    mBegin = NULL;
    mCapacity = 0;
    mLength = 0;
}

template<typename _T>
void vector<_T>::swap(vector& other)
{
    std::swap(mBegin, other.mBegin);
    std::swap(mCapacity, other.mCapacity);
    std::swap(mLength, other.mLength);
}

// Grow the capacity. Use exponential until kExponentialLimit then
// linear until it reaches max_size().
template<typename _T>
typename vector<_T>::size_type vector<_T>::grow() const
{
    if (mCapacity < kDefaultCapacity)
    {
        return kDefaultCapacity;
    }

    size_type new_capacity;
    if (mCapacity > kExponentialLimit)
    {
        new_capacity = mCapacity + kLinearIncrement;
    }
    else
    {
        new_capacity = mCapacity * kExponentialFactor;
    }
    if (mCapacity > new_capacity)
    {  // overflow
        return 0;  // overflow
    }
    else if (new_capacity > max_size())
    { // cap at max_size() if not there already.
        new_capacity = mCapacity == max_size() ? 0 : max_size();
    }
    return  new_capacity;
}


// mBegin should not be NULL.
template<typename _T>
void vector<_T>::deallocate()
{
    pointer begin = mBegin;
    pointer end = mBegin + mLength;

    for (; begin != end; ++begin)
    {
        begin->~_T();
    }
    free(mBegin);
}

}  // namespace std

#endif  // ANDROID_ASTL_VECTOR__