summaryrefslogtreecommitdiff
path: root/linux-arm
diff options
context:
space:
mode:
authorPete Bentley <prb@google.com>2019-09-26 10:51:12 +0100
committerPete Bentley <prb@google.com>2019-09-26 11:10:55 +0100
commitebd3e9669a996a710c4d34152aae874a6499dfcf (patch)
tree48f7bb4e1d7624f9170576e8243c3f936702826a /linux-arm
parent580fcaf18d41bf6c7513e90a2520d0fd8f0c244c (diff)
downloadboringssl-ebd3e9669a996a710c4d34152aae874a6499dfcf.tar.gz
external/boringssl: Sync to 3a3552247ecb0bfb260a36d9da7a3bce7fdc3f8a.
This includes the following changes: https://boringssl.googlesource.com/boringssl/+log/e60b080dda138e1dd02d99fb34641ac22e46c85d..3a3552247ecb0bfb260a36d9da7a3bce7fdc3f8a Also changes Android.bp to compile with execute-only memory again as this should no longer be necessary with the mprotect changes in https://boringssl.googlesource.com/boringssl/+/09a9ec036030ac84896f5143548d05f3951d1817 Bug: 134580074 Test: atest CtsLibcoreTestCases CtsLibcoreOkHttpTestCases Change-Id: I0ec54998afd2e0b40ec930716397e20aa3c21bf2
Diffstat (limited to 'linux-arm')
-rw-r--r--linux-arm/crypto/fipsmodule/vpaes-armv7.S1234
1 files changed, 1234 insertions, 0 deletions
diff --git a/linux-arm/crypto/fipsmodule/vpaes-armv7.S b/linux-arm/crypto/fipsmodule/vpaes-armv7.S
new file mode 100644
index 00000000..a9243665
--- /dev/null
+++ b/linux-arm/crypto/fipsmodule/vpaes-armv7.S
@@ -0,0 +1,1234 @@
+// This file is generated from a similarly-named Perl script in the BoringSSL
+// source tree. Do not edit by hand.
+
+#if !defined(__has_feature)
+#define __has_feature(x) 0
+#endif
+#if __has_feature(memory_sanitizer) && !defined(OPENSSL_NO_ASM)
+#define OPENSSL_NO_ASM
+#endif
+
+#if !defined(OPENSSL_NO_ASM)
+#if defined(__arm__)
+#if defined(BORINGSSL_PREFIX)
+#include <boringssl_prefix_symbols_asm.h>
+#endif
+.syntax unified
+
+.arch armv7-a
+.fpu neon
+
+#if defined(__thumb2__)
+.thumb
+#else
+.code 32
+#endif
+
+.text
+
+.type _vpaes_consts,%object
+.align 7 @ totally strategic alignment
+_vpaes_consts:
+.Lk_mc_forward:@ mc_forward
+.quad 0x0407060500030201, 0x0C0F0E0D080B0A09
+.quad 0x080B0A0904070605, 0x000302010C0F0E0D
+.quad 0x0C0F0E0D080B0A09, 0x0407060500030201
+.quad 0x000302010C0F0E0D, 0x080B0A0904070605
+.Lk_mc_backward:@ mc_backward
+.quad 0x0605040702010003, 0x0E0D0C0F0A09080B
+.quad 0x020100030E0D0C0F, 0x0A09080B06050407
+.quad 0x0E0D0C0F0A09080B, 0x0605040702010003
+.quad 0x0A09080B06050407, 0x020100030E0D0C0F
+.Lk_sr:@ sr
+.quad 0x0706050403020100, 0x0F0E0D0C0B0A0908
+.quad 0x030E09040F0A0500, 0x0B06010C07020D08
+.quad 0x0F060D040B020900, 0x070E050C030A0108
+.quad 0x0B0E0104070A0D00, 0x0306090C0F020508
+
+@
+@ "Hot" constants
+@
+.Lk_inv:@ inv, inva
+.quad 0x0E05060F0D080180, 0x040703090A0B0C02
+.quad 0x01040A060F0B0780, 0x030D0E0C02050809
+.Lk_ipt:@ input transform (lo, hi)
+.quad 0xC2B2E8985A2A7000, 0xCABAE09052227808
+.quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81
+.Lk_sbo:@ sbou, sbot
+.quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878
+.quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA
+.Lk_sb1:@ sb1u, sb1t
+.quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF
+.quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544
+.Lk_sb2:@ sb2u, sb2t
+.quad 0x69EB88400AE12900, 0xC2A163C8AB82234A
+.quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD
+
+.byte 86,101,99,116,111,114,32,80,101,114,109,117,116,97,116,105,111,110,32,65,69,83,32,102,111,114,32,65,82,77,118,55,32,78,69,79,78,44,32,77,105,107,101,32,72,97,109,98,117,114,103,32,40,83,116,97,110,102,111,114,100,32,85,110,105,118,101,114,115,105,116,121,41,0
+.align 2
+.size _vpaes_consts,.-_vpaes_consts
+.align 6
+@@
+@@ _aes_preheat
+@@
+@@ Fills q9-q15 as specified below.
+@@
+.type _vpaes_preheat,%function
+.align 4
+_vpaes_preheat:
+ adr r10, .Lk_inv
+ vmov.i8 q9, #0x0f @ .Lk_s0F
+ vld1.64 {q10,q11}, [r10]! @ .Lk_inv
+ add r10, r10, #64 @ Skip .Lk_ipt, .Lk_sbo
+ vld1.64 {q12,q13}, [r10]! @ .Lk_sb1
+ vld1.64 {q14,q15}, [r10] @ .Lk_sb2
+ bx lr
+
+@@
+@@ _aes_encrypt_core
+@@
+@@ AES-encrypt q0.
+@@
+@@ Inputs:
+@@ q0 = input
+@@ q9-q15 as in _vpaes_preheat
+@@ [r2] = scheduled keys
+@@
+@@ Output in q0
+@@ Clobbers q1-q5, r8-r11
+@@ Preserves q6-q8 so you get some local vectors
+@@
+@@
+.type _vpaes_encrypt_core,%function
+.align 4
+_vpaes_encrypt_core:
+ mov r9, r2
+ ldr r8, [r2,#240] @ pull rounds
+ adr r11, .Lk_ipt
+ @ vmovdqa .Lk_ipt(%rip), %xmm2 # iptlo
+ @ vmovdqa .Lk_ipt+16(%rip), %xmm3 # ipthi
+ vld1.64 {q2, q3}, [r11]
+ adr r11, .Lk_mc_forward+16
+ vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5 # round0 key
+ vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1
+ vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0
+ vtbl.8 d2, {q2}, d2 @ vpshufb %xmm1, %xmm2, %xmm1
+ vtbl.8 d3, {q2}, d3
+ vtbl.8 d4, {q3}, d0 @ vpshufb %xmm0, %xmm3, %xmm2
+ vtbl.8 d5, {q3}, d1
+ veor q0, q1, q5 @ vpxor %xmm5, %xmm1, %xmm0
+ veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0
+
+ @ .Lenc_entry ends with a bnz instruction which is normally paired with
+ @ subs in .Lenc_loop.
+ tst r8, r8
+ b .Lenc_entry
+
+.align 4
+.Lenc_loop:
+ @ middle of middle round
+ add r10, r11, #0x40
+ vtbl.8 d8, {q13}, d4 @ vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u
+ vtbl.8 d9, {q13}, d5
+ vld1.64 {q1}, [r11]! @ vmovdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[]
+ vtbl.8 d0, {q12}, d6 @ vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t
+ vtbl.8 d1, {q12}, d7
+ veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
+ vtbl.8 d10, {q15}, d4 @ vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u
+ vtbl.8 d11, {q15}, d5
+ veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A
+ vtbl.8 d4, {q14}, d6 @ vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t
+ vtbl.8 d5, {q14}, d7
+ vld1.64 {q4}, [r10] @ vmovdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[]
+ vtbl.8 d6, {q0}, d2 @ vpshufb %xmm1, %xmm0, %xmm3 # 0 = B
+ vtbl.8 d7, {q0}, d3
+ veor q2, q2, q5 @ vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A
+ @ Write to q5 instead of q0, so the table and destination registers do
+ @ not overlap.
+ vtbl.8 d10, {q0}, d8 @ vpshufb %xmm4, %xmm0, %xmm0 # 3 = D
+ vtbl.8 d11, {q0}, d9
+ veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B
+ vtbl.8 d8, {q3}, d2 @ vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C
+ vtbl.8 d9, {q3}, d3
+ @ Here we restore the original q0/q5 usage.
+ veor q0, q5, q3 @ vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D
+ and r11, r11, #~(1<<6) @ and $0x30, %r11 # ... mod 4
+ veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D
+ subs r8, r8, #1 @ nr--
+
+.Lenc_entry:
+ @ top of round
+ vand q1, q0, q9 @ vpand %xmm0, %xmm9, %xmm1 # 0 = k
+ vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0 # 1 = i
+ vtbl.8 d10, {q11}, d2 @ vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k
+ vtbl.8 d11, {q11}, d3
+ veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j
+ vtbl.8 d6, {q10}, d0 @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
+ vtbl.8 d7, {q10}, d1
+ vtbl.8 d8, {q10}, d2 @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
+ vtbl.8 d9, {q10}, d3
+ veor q3, q3, q5 @ vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
+ veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
+ vtbl.8 d4, {q10}, d6 @ vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak
+ vtbl.8 d5, {q10}, d7
+ vtbl.8 d6, {q10}, d8 @ vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak
+ vtbl.8 d7, {q10}, d9
+ veor q2, q2, q1 @ vpxor %xmm1, %xmm2, %xmm2 # 2 = io
+ veor q3, q3, q0 @ vpxor %xmm0, %xmm3, %xmm3 # 3 = jo
+ vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5
+ bne .Lenc_loop
+
+ @ middle of last round
+ add r10, r11, #0x80
+
+ adr r11, .Lk_sbo
+ @ Read to q1 instead of q4, so the vtbl.8 instruction below does not
+ @ overlap table and destination registers.
+ vld1.64 {q1}, [r11]! @ vmovdqa -0x60(%r10), %xmm4 # 3 : sbou
+ vld1.64 {q0}, [r11] @ vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16
+ vtbl.8 d8, {q1}, d4 @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou
+ vtbl.8 d9, {q1}, d5
+ vld1.64 {q1}, [r10] @ vmovdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[]
+ @ Write to q2 instead of q0 below, to avoid overlapping table and
+ @ destination registers.
+ vtbl.8 d4, {q0}, d6 @ vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t
+ vtbl.8 d5, {q0}, d7
+ veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
+ veor q2, q2, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A
+ @ Here we restore the original q0/q2 usage.
+ vtbl.8 d0, {q2}, d2 @ vpshufb %xmm1, %xmm0, %xmm0
+ vtbl.8 d1, {q2}, d3
+ bx lr
+.size _vpaes_encrypt_core,.-_vpaes_encrypt_core
+
+.globl vpaes_encrypt
+.hidden vpaes_encrypt
+.type vpaes_encrypt,%function
+.align 4
+vpaes_encrypt:
+ @ _vpaes_encrypt_core uses r8-r11. Round up to r7-r11 to maintain stack
+ @ alignment.
+ stmdb sp!, {r7,r8,r9,r10,r11,lr}
+ @ _vpaes_encrypt_core uses q4-q5 (d8-d11), which are callee-saved.
+ vstmdb sp!, {d8,d9,d10,d11}
+
+ vld1.64 {q0}, [r0]
+ bl _vpaes_preheat
+ bl _vpaes_encrypt_core
+ vst1.64 {q0}, [r1]
+
+ vldmia sp!, {d8,d9,d10,d11}
+ ldmia sp!, {r7,r8,r9,r10,r11, pc} @ return
+.size vpaes_encrypt,.-vpaes_encrypt
+
+@
+@ Decryption stuff
+@
+.type _vpaes_decrypt_consts,%object
+.align 4
+.Lk_dipt:@ decryption input transform
+.quad 0x0F505B040B545F00, 0x154A411E114E451A
+.quad 0x86E383E660056500, 0x12771772F491F194
+.Lk_dsbo:@ decryption sbox final output
+.quad 0x1387EA537EF94000, 0xC7AA6DB9D4943E2D
+.quad 0x12D7560F93441D00, 0xCA4B8159D8C58E9C
+.Lk_dsb9:@ decryption sbox output *9*u, *9*t
+.quad 0x851C03539A86D600, 0xCAD51F504F994CC9
+.quad 0xC03B1789ECD74900, 0x725E2C9EB2FBA565
+.Lk_dsbd:@ decryption sbox output *D*u, *D*t
+.quad 0x7D57CCDFE6B1A200, 0xF56E9B13882A4439
+.quad 0x3CE2FAF724C6CB00, 0x2931180D15DEEFD3
+.Lk_dsbb:@ decryption sbox output *B*u, *B*t
+.quad 0xD022649296B44200, 0x602646F6B0F2D404
+.quad 0xC19498A6CD596700, 0xF3FF0C3E3255AA6B
+.Lk_dsbe:@ decryption sbox output *E*u, *E*t
+.quad 0x46F2929626D4D000, 0x2242600464B4F6B0
+.quad 0x0C55A6CDFFAAC100, 0x9467F36B98593E32
+.size _vpaes_decrypt_consts,.-_vpaes_decrypt_consts
+
+@@
+@@ Decryption core
+@@
+@@ Same API as encryption core, except it clobbers q12-q15 rather than using
+@@ the values from _vpaes_preheat. q9-q11 must still be set from
+@@ _vpaes_preheat.
+@@
+.type _vpaes_decrypt_core,%function
+.align 4
+_vpaes_decrypt_core:
+ mov r9, r2
+ ldr r8, [r2,#240] @ pull rounds
+
+ @ This function performs shuffles with various constants. The x86_64
+ @ version loads them on-demand into %xmm0-%xmm5. This does not work well
+ @ for ARMv7 because those registers are shuffle destinations. The ARMv8
+ @ version preloads those constants into registers, but ARMv7 has half
+ @ the registers to work with. Instead, we load them on-demand into
+ @ q12-q15, registers normally use for preloaded constants. This is fine
+ @ because decryption doesn't use those constants. The values are
+ @ constant, so this does not interfere with potential 2x optimizations.
+ adr r7, .Lk_dipt
+
+ vld1.64 {q12,q13}, [r7] @ vmovdqa .Lk_dipt(%rip), %xmm2 # iptlo
+ lsl r11, r8, #4 @ mov %rax, %r11; shl $4, %r11
+ eor r11, r11, #0x30 @ xor $0x30, %r11
+ adr r10, .Lk_sr
+ and r11, r11, #0x30 @ and $0x30, %r11
+ add r11, r11, r10
+ adr r10, .Lk_mc_forward+48
+
+ vld1.64 {q4}, [r9]! @ vmovdqu (%r9), %xmm4 # round0 key
+ vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1
+ vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0
+ vtbl.8 d4, {q12}, d2 @ vpshufb %xmm1, %xmm2, %xmm2
+ vtbl.8 d5, {q12}, d3
+ vld1.64 {q5}, [r10] @ vmovdqa .Lk_mc_forward+48(%rip), %xmm5
+ @ vmovdqa .Lk_dipt+16(%rip), %xmm1 # ipthi
+ vtbl.8 d0, {q13}, d0 @ vpshufb %xmm0, %xmm1, %xmm0
+ vtbl.8 d1, {q13}, d1
+ veor q2, q2, q4 @ vpxor %xmm4, %xmm2, %xmm2
+ veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0
+
+ @ .Ldec_entry ends with a bnz instruction which is normally paired with
+ @ subs in .Ldec_loop.
+ tst r8, r8
+ b .Ldec_entry
+
+.align 4
+.Ldec_loop:
+@
+@ Inverse mix columns
+@
+
+ @ We load .Lk_dsb* into q12-q15 on-demand. See the comment at the top of
+ @ the function.
+ adr r10, .Lk_dsb9
+ vld1.64 {q12,q13}, [r10]! @ vmovdqa -0x20(%r10),%xmm4 # 4 : sb9u
+ @ vmovdqa -0x10(%r10),%xmm1 # 0 : sb9t
+ @ Load sbd* ahead of time.
+ vld1.64 {q14,q15}, [r10]! @ vmovdqa 0x00(%r10),%xmm4 # 4 : sbdu
+ @ vmovdqa 0x10(%r10),%xmm1 # 0 : sbdt
+ vtbl.8 d8, {q12}, d4 @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sb9u
+ vtbl.8 d9, {q12}, d5
+ vtbl.8 d2, {q13}, d6 @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb9t
+ vtbl.8 d3, {q13}, d7
+ veor q0, q4, q0 @ vpxor %xmm4, %xmm0, %xmm0
+
+ veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
+
+ @ Load sbb* ahead of time.
+ vld1.64 {q12,q13}, [r10]! @ vmovdqa 0x20(%r10),%xmm4 # 4 : sbbu
+ @ vmovdqa 0x30(%r10),%xmm1 # 0 : sbbt
+
+ vtbl.8 d8, {q14}, d4 @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbdu
+ vtbl.8 d9, {q14}, d5
+ @ Write to q1 instead of q0, so the table and destination registers do
+ @ not overlap.
+ vtbl.8 d2, {q0}, d10 @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch
+ vtbl.8 d3, {q0}, d11
+ @ Here we restore the original q0/q1 usage. This instruction is
+ @ reordered from the ARMv8 version so we do not clobber the vtbl.8
+ @ below.
+ veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch
+ vtbl.8 d2, {q15}, d6 @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbdt
+ vtbl.8 d3, {q15}, d7
+ @ vmovdqa 0x20(%r10), %xmm4 # 4 : sbbu
+ veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
+ @ vmovdqa 0x30(%r10), %xmm1 # 0 : sbbt
+
+ @ Load sbd* ahead of time.
+ vld1.64 {q14,q15}, [r10]! @ vmovdqa 0x40(%r10),%xmm4 # 4 : sbeu
+ @ vmovdqa 0x50(%r10),%xmm1 # 0 : sbet
+
+ vtbl.8 d8, {q12}, d4 @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbbu
+ vtbl.8 d9, {q12}, d5
+ @ Write to q1 instead of q0, so the table and destination registers do
+ @ not overlap.
+ vtbl.8 d2, {q0}, d10 @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch
+ vtbl.8 d3, {q0}, d11
+ @ Here we restore the original q0/q1 usage. This instruction is
+ @ reordered from the ARMv8 version so we do not clobber the vtbl.8
+ @ below.
+ veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch
+ vtbl.8 d2, {q13}, d6 @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbbt
+ vtbl.8 d3, {q13}, d7
+ veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
+
+ vtbl.8 d8, {q14}, d4 @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbeu
+ vtbl.8 d9, {q14}, d5
+ @ Write to q1 instead of q0, so the table and destination registers do
+ @ not overlap.
+ vtbl.8 d2, {q0}, d10 @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch
+ vtbl.8 d3, {q0}, d11
+ @ Here we restore the original q0/q1 usage. This instruction is
+ @ reordered from the ARMv8 version so we do not clobber the vtbl.8
+ @ below.
+ veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch
+ vtbl.8 d2, {q15}, d6 @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbet
+ vtbl.8 d3, {q15}, d7
+ vext.8 q5, q5, q5, #12 @ vpalignr $12, %xmm5, %xmm5, %xmm5
+ veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
+ subs r8, r8, #1 @ sub $1,%rax # nr--
+
+.Ldec_entry:
+ @ top of round
+ vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 # 0 = k
+ vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0 # 1 = i
+ vtbl.8 d4, {q11}, d2 @ vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k
+ vtbl.8 d5, {q11}, d3
+ veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j
+ vtbl.8 d6, {q10}, d0 @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
+ vtbl.8 d7, {q10}, d1
+ vtbl.8 d8, {q10}, d2 @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
+ vtbl.8 d9, {q10}, d3
+ veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
+ veor q4, q4, q2 @ vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
+ vtbl.8 d4, {q10}, d6 @ vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak
+ vtbl.8 d5, {q10}, d7
+ vtbl.8 d6, {q10}, d8 @ vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak
+ vtbl.8 d7, {q10}, d9
+ veor q2, q2, q1 @ vpxor %xmm1, %xmm2, %xmm2 # 2 = io
+ veor q3, q3, q0 @ vpxor %xmm0, %xmm3, %xmm3 # 3 = jo
+ vld1.64 {q0}, [r9]! @ vmovdqu (%r9), %xmm0
+ bne .Ldec_loop
+
+ @ middle of last round
+
+ adr r10, .Lk_dsbo
+
+ @ Write to q1 rather than q4 to avoid overlapping table and destination.
+ vld1.64 {q1}, [r10]! @ vmovdqa 0x60(%r10), %xmm4 # 3 : sbou
+ vtbl.8 d8, {q1}, d4 @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou
+ vtbl.8 d9, {q1}, d5
+ @ Write to q2 rather than q1 to avoid overlapping table and destination.
+ vld1.64 {q2}, [r10] @ vmovdqa 0x70(%r10), %xmm1 # 0 : sbot
+ vtbl.8 d2, {q2}, d6 @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb1t
+ vtbl.8 d3, {q2}, d7
+ vld1.64 {q2}, [r11] @ vmovdqa -0x160(%r11), %xmm2 # .Lk_sr-.Lk_dsbd=-0x160
+ veor q4, q4, q0 @ vpxor %xmm0, %xmm4, %xmm4 # 4 = sb1u + k
+ @ Write to q1 rather than q0 so the table and destination registers
+ @ below do not overlap.
+ veor q1, q1, q4 @ vpxor %xmm4, %xmm1, %xmm0 # 0 = A
+ vtbl.8 d0, {q1}, d4 @ vpshufb %xmm2, %xmm0, %xmm0
+ vtbl.8 d1, {q1}, d5
+ bx lr
+.size _vpaes_decrypt_core,.-_vpaes_decrypt_core
+
+.globl vpaes_decrypt
+.hidden vpaes_decrypt
+.type vpaes_decrypt,%function
+.align 4
+vpaes_decrypt:
+ @ _vpaes_decrypt_core uses r7-r11.
+ stmdb sp!, {r7,r8,r9,r10,r11,lr}
+ @ _vpaes_decrypt_core uses q4-q5 (d8-d11), which are callee-saved.
+ vstmdb sp!, {d8,d9,d10,d11}
+
+ vld1.64 {q0}, [r0]
+ bl _vpaes_preheat
+ bl _vpaes_decrypt_core
+ vst1.64 {q0}, [r1]
+
+ vldmia sp!, {d8,d9,d10,d11}
+ ldmia sp!, {r7,r8,r9,r10,r11, pc} @ return
+.size vpaes_decrypt,.-vpaes_decrypt
+@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
+@@ @@
+@@ AES key schedule @@
+@@ @@
+@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
+
+@ This function diverges from both x86_64 and armv7 in which constants are
+@ pinned. x86_64 has a common preheat function for all operations. aarch64
+@ separates them because it has enough registers to pin nearly all constants.
+@ armv7 does not have enough registers, but needing explicit loads and stores
+@ also complicates using x86_64's register allocation directly.
+@
+@ We pin some constants for convenience and leave q14 and q15 free to load
+@ others on demand.
+
+@
+@ Key schedule constants
+@
+.type _vpaes_key_consts,%object
+.align 4
+_vpaes_key_consts:
+.Lk_dksd:@ decryption key schedule: invskew x*D
+.quad 0xFEB91A5DA3E44700, 0x0740E3A45A1DBEF9
+.quad 0x41C277F4B5368300, 0x5FDC69EAAB289D1E
+.Lk_dksb:@ decryption key schedule: invskew x*B
+.quad 0x9A4FCA1F8550D500, 0x03D653861CC94C99
+.quad 0x115BEDA7B6FC4A00, 0xD993256F7E3482C8
+.Lk_dkse:@ decryption key schedule: invskew x*E + 0x63
+.quad 0xD5031CCA1FC9D600, 0x53859A4C994F5086
+.quad 0xA23196054FDC7BE8, 0xCD5EF96A20B31487
+.Lk_dks9:@ decryption key schedule: invskew x*9
+.quad 0xB6116FC87ED9A700, 0x4AED933482255BFC
+.quad 0x4576516227143300, 0x8BB89FACE9DAFDCE
+
+.Lk_rcon:@ rcon
+.quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81
+
+.Lk_opt:@ output transform
+.quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808
+.quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0
+.Lk_deskew:@ deskew tables: inverts the sbox's "skew"
+.quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A
+.quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77
+.size _vpaes_key_consts,.-_vpaes_key_consts
+
+.type _vpaes_key_preheat,%function
+.align 4
+_vpaes_key_preheat:
+ adr r11, .Lk_rcon
+ vmov.i8 q12, #0x5b @ .Lk_s63
+ adr r10, .Lk_inv @ Must be aligned to 8 mod 16.
+ vmov.i8 q9, #0x0f @ .Lk_s0F
+ vld1.64 {q10,q11}, [r10] @ .Lk_inv
+ vld1.64 {q8}, [r11] @ .Lk_rcon
+ bx lr
+.size _vpaes_key_preheat,.-_vpaes_key_preheat
+
+.type _vpaes_schedule_core,%function
+.align 4
+_vpaes_schedule_core:
+ @ We only need to save lr, but ARM requires an 8-byte stack alignment,
+ @ so save an extra register.
+ stmdb sp!, {r3,lr}
+
+ bl _vpaes_key_preheat @ load the tables
+
+ adr r11, .Lk_ipt @ Must be aligned to 8 mod 16.
+ vld1.64 {q0}, [r0]! @ vmovdqu (%rdi), %xmm0 # load key (unaligned)
+
+ @ input transform
+ @ Use q4 here rather than q3 so .Lschedule_am_decrypting does not
+ @ overlap table and destination.
+ vmov q4, q0 @ vmovdqa %xmm0, %xmm3
+ bl _vpaes_schedule_transform
+ adr r10, .Lk_sr @ Must be aligned to 8 mod 16.
+ vmov q7, q0 @ vmovdqa %xmm0, %xmm7
+
+ add r8, r8, r10
+ tst r3, r3
+ bne .Lschedule_am_decrypting
+
+ @ encrypting, output zeroth round key after transform
+ vst1.64 {q0}, [r2] @ vmovdqu %xmm0, (%rdx)
+ b .Lschedule_go
+
+.Lschedule_am_decrypting:
+ @ decrypting, output zeroth round key after shiftrows
+ vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1
+ vtbl.8 d6, {q4}, d2 @ vpshufb %xmm1, %xmm3, %xmm3
+ vtbl.8 d7, {q4}, d3
+ vst1.64 {q3}, [r2] @ vmovdqu %xmm3, (%rdx)
+ eor r8, r8, #0x30 @ xor $0x30, %r8
+
+.Lschedule_go:
+ cmp r1, #192 @ cmp $192, %esi
+ bhi .Lschedule_256
+ beq .Lschedule_192
+ @ 128: fall though
+
+@@
+@@ .schedule_128
+@@
+@@ 128-bit specific part of key schedule.
+@@
+@@ This schedule is really simple, because all its parts
+@@ are accomplished by the subroutines.
+@@
+.Lschedule_128:
+ mov r0, #10 @ mov $10, %esi
+
+.Loop_schedule_128:
+ bl _vpaes_schedule_round
+ subs r0, r0, #1 @ dec %esi
+ beq .Lschedule_mangle_last
+ bl _vpaes_schedule_mangle @ write output
+ b .Loop_schedule_128
+
+@@
+@@ .aes_schedule_192
+@@
+@@ 192-bit specific part of key schedule.
+@@
+@@ The main body of this schedule is the same as the 128-bit
+@@ schedule, but with more smearing. The long, high side is
+@@ stored in q7 as before, and the short, low side is in
+@@ the high bits of q6.
+@@
+@@ This schedule is somewhat nastier, however, because each
+@@ round produces 192 bits of key material, or 1.5 round keys.
+@@ Therefore, on each cycle we do 2 rounds and produce 3 round
+@@ keys.
+@@
+.align 4
+.Lschedule_192:
+ sub r0, r0, #8
+ vld1.64 {q0}, [r0] @ vmovdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned)
+ bl _vpaes_schedule_transform @ input transform
+ vmov q6, q0 @ vmovdqa %xmm0, %xmm6 # save short part
+ vmov.i8 d12, #0 @ vpxor %xmm4, %xmm4, %xmm4 # clear 4
+ @ vmovhlps %xmm4, %xmm6, %xmm6 # clobber low side with zeros
+ mov r0, #4 @ mov $4, %esi
+
+.Loop_schedule_192:
+ bl _vpaes_schedule_round
+ vext.8 q0, q6, q0, #8 @ vpalignr $8,%xmm6,%xmm0,%xmm0
+ bl _vpaes_schedule_mangle @ save key n
+ bl _vpaes_schedule_192_smear
+ bl _vpaes_schedule_mangle @ save key n+1
+ bl _vpaes_schedule_round
+ subs r0, r0, #1 @ dec %esi
+ beq .Lschedule_mangle_last
+ bl _vpaes_schedule_mangle @ save key n+2
+ bl _vpaes_schedule_192_smear
+ b .Loop_schedule_192
+
+@@
+@@ .aes_schedule_256
+@@
+@@ 256-bit specific part of key schedule.
+@@
+@@ The structure here is very similar to the 128-bit
+@@ schedule, but with an additional "low side" in
+@@ q6. The low side's rounds are the same as the
+@@ high side's, except no rcon and no rotation.
+@@
+.align 4
+.Lschedule_256:
+ vld1.64 {q0}, [r0] @ vmovdqu 16(%rdi),%xmm0 # load key part 2 (unaligned)
+ bl _vpaes_schedule_transform @ input transform
+ mov r0, #7 @ mov $7, %esi
+
+.Loop_schedule_256:
+ bl _vpaes_schedule_mangle @ output low result
+ vmov q6, q0 @ vmovdqa %xmm0, %xmm6 # save cur_lo in xmm6
+
+ @ high round
+ bl _vpaes_schedule_round
+ subs r0, r0, #1 @ dec %esi
+ beq .Lschedule_mangle_last
+ bl _vpaes_schedule_mangle
+
+ @ low round. swap xmm7 and xmm6
+ vdup.32 q0, d1[1] @ vpshufd $0xFF, %xmm0, %xmm0
+ vmov.i8 q4, #0
+ vmov q5, q7 @ vmovdqa %xmm7, %xmm5
+ vmov q7, q6 @ vmovdqa %xmm6, %xmm7
+ bl _vpaes_schedule_low_round
+ vmov q7, q5 @ vmovdqa %xmm5, %xmm7
+
+ b .Loop_schedule_256
+
+@@
+@@ .aes_schedule_mangle_last
+@@
+@@ Mangler for last round of key schedule
+@@ Mangles q0
+@@ when encrypting, outputs out(q0) ^ 63
+@@ when decrypting, outputs unskew(q0)
+@@
+@@ Always called right before return... jumps to cleanup and exits
+@@
+.align 4
+.Lschedule_mangle_last:
+ @ schedule last round key from xmm0
+ adr r11, .Lk_deskew @ lea .Lk_deskew(%rip),%r11 # prepare to deskew
+ tst r3, r3
+ bne .Lschedule_mangle_last_dec
+
+ @ encrypting
+ vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10),%xmm1
+ adr r11, .Lk_opt @ lea .Lk_opt(%rip), %r11 # prepare to output transform
+ add r2, r2, #32 @ add $32, %rdx
+ vmov q2, q0
+ vtbl.8 d0, {q2}, d2 @ vpshufb %xmm1, %xmm0, %xmm0 # output permute
+ vtbl.8 d1, {q2}, d3
+
+.Lschedule_mangle_last_dec:
+ sub r2, r2, #16 @ add $-16, %rdx
+ veor q0, q0, q12 @ vpxor .Lk_s63(%rip), %xmm0, %xmm0
+ bl _vpaes_schedule_transform @ output transform
+ vst1.64 {q0}, [r2] @ vmovdqu %xmm0, (%rdx) # save last key
+
+ @ cleanup
+ veor q0, q0, q0 @ vpxor %xmm0, %xmm0, %xmm0
+ veor q1, q1, q1 @ vpxor %xmm1, %xmm1, %xmm1
+ veor q2, q2, q2 @ vpxor %xmm2, %xmm2, %xmm2
+ veor q3, q3, q3 @ vpxor %xmm3, %xmm3, %xmm3
+ veor q4, q4, q4 @ vpxor %xmm4, %xmm4, %xmm4
+ veor q5, q5, q5 @ vpxor %xmm5, %xmm5, %xmm5
+ veor q6, q6, q6 @ vpxor %xmm6, %xmm6, %xmm6
+ veor q7, q7, q7 @ vpxor %xmm7, %xmm7, %xmm7
+ ldmia sp!, {r3,pc} @ return
+.size _vpaes_schedule_core,.-_vpaes_schedule_core
+
+@@
+@@ .aes_schedule_192_smear
+@@
+@@ Smear the short, low side in the 192-bit key schedule.
+@@
+@@ Inputs:
+@@ q7: high side, b a x y
+@@ q6: low side, d c 0 0
+@@
+@@ Outputs:
+@@ q6: b+c+d b+c 0 0
+@@ q0: b+c+d b+c b a
+@@
+.type _vpaes_schedule_192_smear,%function
+.align 4
+_vpaes_schedule_192_smear:
+ vmov.i8 q1, #0
+ vdup.32 q0, d15[1]
+ vshl.i64 q1, q6, #32 @ vpshufd $0x80, %xmm6, %xmm1 # d c 0 0 -> c 0 0 0
+ vmov d0, d15 @ vpshufd $0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a
+ veor q6, q6, q1 @ vpxor %xmm1, %xmm6, %xmm6 # -> c+d c 0 0
+ veor q1, q1, q1 @ vpxor %xmm1, %xmm1, %xmm1
+ veor q6, q6, q0 @ vpxor %xmm0, %xmm6, %xmm6 # -> b+c+d b+c b a
+ vmov q0, q6 @ vmovdqa %xmm6, %xmm0
+ vmov d12, d2 @ vmovhlps %xmm1, %xmm6, %xmm6 # clobber low side with zeros
+ bx lr
+.size _vpaes_schedule_192_smear,.-_vpaes_schedule_192_smear
+
+@@
+@@ .aes_schedule_round
+@@
+@@ Runs one main round of the key schedule on q0, q7
+@@
+@@ Specifically, runs subbytes on the high dword of q0
+@@ then rotates it by one byte and xors into the low dword of
+@@ q7.
+@@
+@@ Adds rcon from low byte of q8, then rotates q8 for
+@@ next rcon.
+@@
+@@ Smears the dwords of q7 by xoring the low into the
+@@ second low, result into third, result into highest.
+@@
+@@ Returns results in q7 = q0.
+@@ Clobbers q1-q4, r11.
+@@
+.type _vpaes_schedule_round,%function
+.align 4
+_vpaes_schedule_round:
+ @ extract rcon from xmm8
+ vmov.i8 q4, #0 @ vpxor %xmm4, %xmm4, %xmm4
+ vext.8 q1, q8, q4, #15 @ vpalignr $15, %xmm8, %xmm4, %xmm1
+ vext.8 q8, q8, q8, #15 @ vpalignr $15, %xmm8, %xmm8, %xmm8
+ veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7
+
+ @ rotate
+ vdup.32 q0, d1[1] @ vpshufd $0xFF, %xmm0, %xmm0
+ vext.8 q0, q0, q0, #1 @ vpalignr $1, %xmm0, %xmm0, %xmm0
+
+ @ fall through...
+
+ @ low round: same as high round, but no rotation and no rcon.
+_vpaes_schedule_low_round:
+ @ The x86_64 version pins .Lk_sb1 in %xmm13 and .Lk_sb1+16 in %xmm12.
+ @ We pin other values in _vpaes_key_preheat, so load them now.
+ adr r11, .Lk_sb1
+ vld1.64 {q14,q15}, [r11]
+
+ @ smear xmm7
+ vext.8 q1, q4, q7, #12 @ vpslldq $4, %xmm7, %xmm1
+ veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7
+ vext.8 q4, q4, q7, #8 @ vpslldq $8, %xmm7, %xmm4
+
+ @ subbytes
+ vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 # 0 = k
+ vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0 # 1 = i
+ veor q7, q7, q4 @ vpxor %xmm4, %xmm7, %xmm7
+ vtbl.8 d4, {q11}, d2 @ vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k
+ vtbl.8 d5, {q11}, d3
+ veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j
+ vtbl.8 d6, {q10}, d0 @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
+ vtbl.8 d7, {q10}, d1
+ veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
+ vtbl.8 d8, {q10}, d2 @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
+ vtbl.8 d9, {q10}, d3
+ veor q7, q7, q12 @ vpxor .Lk_s63(%rip), %xmm7, %xmm7
+ vtbl.8 d6, {q10}, d6 @ vpshufb %xmm3, %xmm10, %xmm3 # 2 = 1/iak
+ vtbl.8 d7, {q10}, d7
+ veor q4, q4, q2 @ vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
+ vtbl.8 d4, {q10}, d8 @ vpshufb %xmm4, %xmm10, %xmm2 # 3 = 1/jak
+ vtbl.8 d5, {q10}, d9
+ veor q3, q3, q1 @ vpxor %xmm1, %xmm3, %xmm3 # 2 = io
+ veor q2, q2, q0 @ vpxor %xmm0, %xmm2, %xmm2 # 3 = jo
+ vtbl.8 d8, {q15}, d6 @ vpshufb %xmm3, %xmm13, %xmm4 # 4 = sbou
+ vtbl.8 d9, {q15}, d7
+ vtbl.8 d2, {q14}, d4 @ vpshufb %xmm2, %xmm12, %xmm1 # 0 = sb1t
+ vtbl.8 d3, {q14}, d5
+ veor q1, q1, q4 @ vpxor %xmm4, %xmm1, %xmm1 # 0 = sbox output
+
+ @ add in smeared stuff
+ veor q0, q1, q7 @ vpxor %xmm7, %xmm1, %xmm0
+ veor q7, q1, q7 @ vmovdqa %xmm0, %xmm7
+ bx lr
+.size _vpaes_schedule_round,.-_vpaes_schedule_round
+
+@@
+@@ .aes_schedule_transform
+@@
+@@ Linear-transform q0 according to tables at [r11]
+@@
+@@ Requires that q9 = 0x0F0F... as in preheat
+@@ Output in q0
+@@ Clobbers q1, q2, q14, q15
+@@
+.type _vpaes_schedule_transform,%function
+.align 4
+_vpaes_schedule_transform:
+ vld1.64 {q14,q15}, [r11] @ vmovdqa (%r11), %xmm2 # lo
+ @ vmovdqa 16(%r11), %xmm1 # hi
+ vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1
+ vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0
+ vtbl.8 d4, {q14}, d2 @ vpshufb %xmm1, %xmm2, %xmm2
+ vtbl.8 d5, {q14}, d3
+ vtbl.8 d0, {q15}, d0 @ vpshufb %xmm0, %xmm1, %xmm0
+ vtbl.8 d1, {q15}, d1
+ veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0
+ bx lr
+.size _vpaes_schedule_transform,.-_vpaes_schedule_transform
+
+@@
+@@ .aes_schedule_mangle
+@@
+@@ Mangles q0 from (basis-transformed) standard version
+@@ to our version.
+@@
+@@ On encrypt,
+@@ xor with 0x63
+@@ multiply by circulant 0,1,1,1
+@@ apply shiftrows transform
+@@
+@@ On decrypt,
+@@ xor with 0x63
+@@ multiply by "inverse mixcolumns" circulant E,B,D,9
+@@ deskew
+@@ apply shiftrows transform
+@@
+@@
+@@ Writes out to [r2], and increments or decrements it
+@@ Keeps track of round number mod 4 in r8
+@@ Preserves q0
+@@ Clobbers q1-q5
+@@
+.type _vpaes_schedule_mangle,%function
+.align 4
+_vpaes_schedule_mangle:
+ tst r3, r3
+ vmov q4, q0 @ vmovdqa %xmm0, %xmm4 # save xmm0 for later
+ adr r11, .Lk_mc_forward @ Must be aligned to 8 mod 16.
+ vld1.64 {q5}, [r11] @ vmovdqa .Lk_mc_forward(%rip),%xmm5
+ bne .Lschedule_mangle_dec
+
+ @ encrypting
+ @ Write to q2 so we do not overlap table and destination below.
+ veor q2, q0, q12 @ vpxor .Lk_s63(%rip), %xmm0, %xmm4
+ add r2, r2, #16 @ add $16, %rdx
+ vtbl.8 d8, {q2}, d10 @ vpshufb %xmm5, %xmm4, %xmm4
+ vtbl.8 d9, {q2}, d11
+ vtbl.8 d2, {q4}, d10 @ vpshufb %xmm5, %xmm4, %xmm1
+ vtbl.8 d3, {q4}, d11
+ vtbl.8 d6, {q1}, d10 @ vpshufb %xmm5, %xmm1, %xmm3
+ vtbl.8 d7, {q1}, d11
+ veor q4, q4, q1 @ vpxor %xmm1, %xmm4, %xmm4
+ vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1
+ veor q3, q3, q4 @ vpxor %xmm4, %xmm3, %xmm3
+
+ b .Lschedule_mangle_both
+.align 4
+.Lschedule_mangle_dec:
+ @ inverse mix columns
+ adr r11, .Lk_dksd @ lea .Lk_dksd(%rip),%r11
+ vshr.u8 q1, q4, #4 @ vpsrlb $4, %xmm4, %xmm1 # 1 = hi
+ vand q4, q4, q9 @ vpand %xmm9, %xmm4, %xmm4 # 4 = lo
+
+ vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x00(%r11), %xmm2
+ @ vmovdqa 0x10(%r11), %xmm3
+ vtbl.8 d4, {q14}, d8 @ vpshufb %xmm4, %xmm2, %xmm2
+ vtbl.8 d5, {q14}, d9
+ vtbl.8 d6, {q15}, d2 @ vpshufb %xmm1, %xmm3, %xmm3
+ vtbl.8 d7, {q15}, d3
+ @ Load .Lk_dksb ahead of time.
+ vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x20(%r11), %xmm2
+ @ vmovdqa 0x30(%r11), %xmm3
+ @ Write to q13 so we do not overlap table and destination.
+ veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3
+ vtbl.8 d6, {q13}, d10 @ vpshufb %xmm5, %xmm3, %xmm3
+ vtbl.8 d7, {q13}, d11
+
+ vtbl.8 d4, {q14}, d8 @ vpshufb %xmm4, %xmm2, %xmm2
+ vtbl.8 d5, {q14}, d9
+ veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2
+ vtbl.8 d6, {q15}, d2 @ vpshufb %xmm1, %xmm3, %xmm3
+ vtbl.8 d7, {q15}, d3
+ @ Load .Lk_dkse ahead of time.
+ vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x40(%r11), %xmm2
+ @ vmovdqa 0x50(%r11), %xmm3
+ @ Write to q13 so we do not overlap table and destination.
+ veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3
+ vtbl.8 d6, {q13}, d10 @ vpshufb %xmm5, %xmm3, %xmm3
+ vtbl.8 d7, {q13}, d11
+
+ vtbl.8 d4, {q14}, d8 @ vpshufb %xmm4, %xmm2, %xmm2
+ vtbl.8 d5, {q14}, d9
+ veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2
+ vtbl.8 d6, {q15}, d2 @ vpshufb %xmm1, %xmm3, %xmm3
+ vtbl.8 d7, {q15}, d3
+ @ Load .Lk_dkse ahead of time.
+ vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x60(%r11), %xmm2
+ @ vmovdqa 0x70(%r11), %xmm4
+ @ Write to q13 so we do not overlap table and destination.
+ veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3
+
+ vtbl.8 d4, {q14}, d8 @ vpshufb %xmm4, %xmm2, %xmm2
+ vtbl.8 d5, {q14}, d9
+ vtbl.8 d6, {q13}, d10 @ vpshufb %xmm5, %xmm3, %xmm3
+ vtbl.8 d7, {q13}, d11
+ vtbl.8 d8, {q15}, d2 @ vpshufb %xmm1, %xmm4, %xmm4
+ vtbl.8 d9, {q15}, d3
+ vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1
+ veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2
+ veor q3, q4, q2 @ vpxor %xmm2, %xmm4, %xmm3
+
+ sub r2, r2, #16 @ add $-16, %rdx
+
+.Lschedule_mangle_both:
+ @ Write to q2 so table and destination do not overlap.
+ vtbl.8 d4, {q3}, d2 @ vpshufb %xmm1, %xmm3, %xmm3
+ vtbl.8 d5, {q3}, d3
+ add r8, r8, #64-16 @ add $-16, %r8
+ and r8, r8, #~(1<<6) @ and $0x30, %r8
+ vst1.64 {q2}, [r2] @ vmovdqu %xmm3, (%rdx)
+ bx lr
+.size _vpaes_schedule_mangle,.-_vpaes_schedule_mangle
+
+.globl vpaes_set_encrypt_key
+.hidden vpaes_set_encrypt_key
+.type vpaes_set_encrypt_key,%function
+.align 4
+vpaes_set_encrypt_key:
+ stmdb sp!, {r7,r8,r9,r10,r11, lr}
+ vstmdb sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
+
+ lsr r9, r1, #5 @ shr $5,%eax
+ add r9, r9, #5 @ $5,%eax
+ str r9, [r2,#240] @ mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;
+
+ mov r3, #0 @ mov $0,%ecx
+ mov r8, #0x30 @ mov $0x30,%r8d
+ bl _vpaes_schedule_core
+ eor r0, r0, r0
+
+ vldmia sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
+ ldmia sp!, {r7,r8,r9,r10,r11, pc} @ return
+.size vpaes_set_encrypt_key,.-vpaes_set_encrypt_key
+
+.globl vpaes_set_decrypt_key
+.hidden vpaes_set_decrypt_key
+.type vpaes_set_decrypt_key,%function
+.align 4
+vpaes_set_decrypt_key:
+ stmdb sp!, {r7,r8,r9,r10,r11, lr}
+ vstmdb sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
+
+ lsr r9, r1, #5 @ shr $5,%eax
+ add r9, r9, #5 @ $5,%eax
+ str r9, [r2,#240] @ mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;
+ lsl r9, r9, #4 @ shl $4,%eax
+ add r2, r2, #16 @ lea 16(%rdx,%rax),%rdx
+ add r2, r2, r9
+
+ mov r3, #1 @ mov $1,%ecx
+ lsr r8, r1, #1 @ shr $1,%r8d
+ and r8, r8, #32 @ and $32,%r8d
+ eor r8, r8, #32 @ xor $32,%r8d # nbits==192?0:32
+ bl _vpaes_schedule_core
+
+ vldmia sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
+ ldmia sp!, {r7,r8,r9,r10,r11, pc} @ return
+.size vpaes_set_decrypt_key,.-vpaes_set_decrypt_key
+
+@ Additional constants for converting to bsaes.
+.type _vpaes_convert_consts,%object
+.align 4
+_vpaes_convert_consts:
+@ .Lk_opt_then_skew applies skew(opt(x)) XOR 0x63, where skew is the linear
+@ transform in the AES S-box. 0x63 is incorporated into the low half of the
+@ table. This was computed with the following script:
+@
+@ def u64s_to_u128(x, y):
+@ return x | (y << 64)
+@ def u128_to_u64s(w):
+@ return w & ((1<<64)-1), w >> 64
+@ def get_byte(w, i):
+@ return (w >> (i*8)) & 0xff
+@ def apply_table(table, b):
+@ lo = b & 0xf
+@ hi = b >> 4
+@ return get_byte(table[0], lo) ^ get_byte(table[1], hi)
+@ def opt(b):
+@ table = [
+@ u64s_to_u128(0xFF9F4929D6B66000, 0xF7974121DEBE6808),
+@ u64s_to_u128(0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0),
+@ ]
+@ return apply_table(table, b)
+@ def rot_byte(b, n):
+@ return 0xff & ((b << n) | (b >> (8-n)))
+@ def skew(x):
+@ return (x ^ rot_byte(x, 1) ^ rot_byte(x, 2) ^ rot_byte(x, 3) ^
+@ rot_byte(x, 4))
+@ table = [0, 0]
+@ for i in range(16):
+@ table[0] |= (skew(opt(i)) ^ 0x63) << (i*8)
+@ table[1] |= skew(opt(i<<4)) << (i*8)
+@ print(" .quad 0x%016x, 0x%016x" % u128_to_u64s(table[0]))
+@ print(" .quad 0x%016x, 0x%016x" % u128_to_u64s(table[1]))
+.Lk_opt_then_skew:
+.quad 0x9cb8436798bc4763, 0x6440bb9f6044bf9b
+.quad 0x1f30062936192f00, 0xb49bad829db284ab
+
+@ .Lk_decrypt_transform is a permutation which performs an 8-bit left-rotation
+@ followed by a byte-swap on each 32-bit word of a vector. E.g., 0x11223344
+@ becomes 0x22334411 and then 0x11443322.
+.Lk_decrypt_transform:
+.quad 0x0704050603000102, 0x0f0c0d0e0b08090a
+.size _vpaes_convert_consts,.-_vpaes_convert_consts
+
+@ void vpaes_encrypt_key_to_bsaes(AES_KEY *bsaes, const AES_KEY *vpaes);
+.globl vpaes_encrypt_key_to_bsaes
+.hidden vpaes_encrypt_key_to_bsaes
+.type vpaes_encrypt_key_to_bsaes,%function
+.align 4
+vpaes_encrypt_key_to_bsaes:
+ stmdb sp!, {r11, lr}
+
+ @ See _vpaes_schedule_core for the key schedule logic. In particular,
+ @ _vpaes_schedule_transform(.Lk_ipt) (section 2.2 of the paper),
+ @ _vpaes_schedule_mangle (section 4.3), and .Lschedule_mangle_last
+ @ contain the transformations not in the bsaes representation. This
+ @ function inverts those transforms.
+ @
+ @ Note also that bsaes-armv7.pl expects aes-armv4.pl's key
+ @ representation, which does not match the other aes_nohw_*
+ @ implementations. The ARM aes_nohw_* stores each 32-bit word
+ @ byteswapped, as a convenience for (unsupported) big-endian ARM, at the
+ @ cost of extra REV and VREV32 operations in little-endian ARM.
+
+ vmov.i8 q9, #0x0f @ Required by _vpaes_schedule_transform
+ adr r2, .Lk_mc_forward @ Must be aligned to 8 mod 16.
+ add r3, r2, 0x90 @ .Lk_sr+0x10-.Lk_mc_forward = 0x90 (Apple's toolchain doesn't support the expression)
+
+ vld1.64 {q12}, [r2]
+ vmov.i8 q10, #0x5b @ .Lk_s63 from vpaes-x86_64
+ adr r11, .Lk_opt @ Must be aligned to 8 mod 16.
+ vmov.i8 q11, #0x63 @ .LK_s63 without .Lk_ipt applied
+
+ @ vpaes stores one fewer round count than bsaes, but the number of keys
+ @ is the same.
+ ldr r2, [r1,#240]
+ add r2, r2, #1
+ str r2, [r0,#240]
+
+ @ The first key is transformed with _vpaes_schedule_transform(.Lk_ipt).
+ @ Invert this with .Lk_opt.
+ vld1.64 {q0}, [r1]!
+ bl _vpaes_schedule_transform
+ vrev32.8 q0, q0
+ vst1.64 {q0}, [r0]!
+
+ @ The middle keys have _vpaes_schedule_transform(.Lk_ipt) applied,
+ @ followed by _vpaes_schedule_mangle. _vpaes_schedule_mangle XORs 0x63,
+ @ multiplies by the circulant 0,1,1,1, then applies ShiftRows.
+.Loop_enc_key_to_bsaes:
+ vld1.64 {q0}, [r1]!
+
+ @ Invert the ShiftRows step (see .Lschedule_mangle_both). Note we cycle
+ @ r3 in the opposite direction and start at .Lk_sr+0x10 instead of 0x30.
+ @ We use r3 rather than r8 to avoid a callee-saved register.
+ vld1.64 {q1}, [r3]
+ vtbl.8 d4, {q0}, d2
+ vtbl.8 d5, {q0}, d3
+ add r3, r3, #16
+ and r3, r3, #~(1<<6)
+ vmov q0, q2
+
+ @ Handle the last key differently.
+ subs r2, r2, #1
+ beq .Loop_enc_key_to_bsaes_last
+
+ @ Multiply by the circulant. This is its own inverse.
+ vtbl.8 d2, {q0}, d24
+ vtbl.8 d3, {q0}, d25
+ vmov q0, q1
+ vtbl.8 d4, {q1}, d24
+ vtbl.8 d5, {q1}, d25
+ veor q0, q0, q2
+ vtbl.8 d2, {q2}, d24
+ vtbl.8 d3, {q2}, d25
+ veor q0, q0, q1
+
+ @ XOR and finish.
+ veor q0, q0, q10
+ bl _vpaes_schedule_transform
+ vrev32.8 q0, q0
+ vst1.64 {q0}, [r0]!
+ b .Loop_enc_key_to_bsaes
+
+.Loop_enc_key_to_bsaes_last:
+ @ The final key does not have a basis transform (note
+ @ .Lschedule_mangle_last inverts the original transform). It only XORs
+ @ 0x63 and applies ShiftRows. The latter was already inverted in the
+ @ loop. Note that, because we act on the original representation, we use
+ @ q11, not q10.
+ veor q0, q0, q11
+ vrev32.8 q0, q0
+ vst1.64 {q0}, [r0]
+
+ @ Wipe registers which contained key material.
+ veor q0, q0, q0
+ veor q1, q1, q1
+ veor q2, q2, q2
+
+ ldmia sp!, {r11, pc} @ return
+.size vpaes_encrypt_key_to_bsaes,.-vpaes_encrypt_key_to_bsaes
+
+@ void vpaes_decrypt_key_to_bsaes(AES_KEY *vpaes, const AES_KEY *bsaes);
+.globl vpaes_decrypt_key_to_bsaes
+.hidden vpaes_decrypt_key_to_bsaes
+.type vpaes_decrypt_key_to_bsaes,%function
+.align 4
+vpaes_decrypt_key_to_bsaes:
+ stmdb sp!, {r11, lr}
+
+ @ See _vpaes_schedule_core for the key schedule logic. Note vpaes
+ @ computes the decryption key schedule in reverse. Additionally,
+ @ aes-x86_64.pl shares some transformations, so we must only partially
+ @ invert vpaes's transformations. In general, vpaes computes in a
+ @ different basis (.Lk_ipt and .Lk_opt) and applies the inverses of
+ @ MixColumns, ShiftRows, and the affine part of the AES S-box (which is
+ @ split into a linear skew and XOR of 0x63). We undo all but MixColumns.
+ @
+ @ Note also that bsaes-armv7.pl expects aes-armv4.pl's key
+ @ representation, which does not match the other aes_nohw_*
+ @ implementations. The ARM aes_nohw_* stores each 32-bit word
+ @ byteswapped, as a convenience for (unsupported) big-endian ARM, at the
+ @ cost of extra REV and VREV32 operations in little-endian ARM.
+
+ adr r2, .Lk_decrypt_transform
+ adr r3, .Lk_sr+0x30
+ adr r11, .Lk_opt_then_skew @ Input to _vpaes_schedule_transform.
+ vld1.64 {q12}, [r2] @ Reuse q12 from encryption.
+ vmov.i8 q9, #0x0f @ Required by _vpaes_schedule_transform
+
+ @ vpaes stores one fewer round count than bsaes, but the number of keys
+ @ is the same.
+ ldr r2, [r1,#240]
+ add r2, r2, #1
+ str r2, [r0,#240]
+
+ @ Undo the basis change and reapply the S-box affine transform. See
+ @ .Lschedule_mangle_last.
+ vld1.64 {q0}, [r1]!
+ bl _vpaes_schedule_transform
+ vrev32.8 q0, q0
+ vst1.64 {q0}, [r0]!
+
+ @ See _vpaes_schedule_mangle for the transform on the middle keys. Note
+ @ it simultaneously inverts MixColumns and the S-box affine transform.
+ @ See .Lk_dksd through .Lk_dks9.
+.Loop_dec_key_to_bsaes:
+ vld1.64 {q0}, [r1]!
+
+ @ Invert the ShiftRows step (see .Lschedule_mangle_both). Note going
+ @ forwards cancels inverting for which direction we cycle r3. We use r3
+ @ rather than r8 to avoid a callee-saved register.
+ vld1.64 {q1}, [r3]
+ vtbl.8 d4, {q0}, d2
+ vtbl.8 d5, {q0}, d3
+ add r3, r3, #64-16
+ and r3, r3, #~(1<<6)
+ vmov q0, q2
+
+ @ Handle the last key differently.
+ subs r2, r2, #1
+ beq .Loop_dec_key_to_bsaes_last
+
+ @ Undo the basis change and reapply the S-box affine transform.
+ bl _vpaes_schedule_transform
+
+ @ Rotate each word by 8 bytes (cycle the rows) and then byte-swap. We
+ @ combine the two operations in .Lk_decrypt_transform.
+ @
+ @ TODO(davidben): Where does the rotation come from?
+ vtbl.8 d2, {q0}, d24
+ vtbl.8 d3, {q0}, d25
+
+ vst1.64 {q1}, [r0]!
+ b .Loop_dec_key_to_bsaes
+
+.Loop_dec_key_to_bsaes_last:
+ @ The final key only inverts ShiftRows (already done in the loop). See
+ @ .Lschedule_am_decrypting. Its basis is not transformed.
+ vrev32.8 q0, q0
+ vst1.64 {q0}, [r0]!
+
+ @ Wipe registers which contained key material.
+ veor q0, q0, q0
+ veor q1, q1, q1
+ veor q2, q2, q2
+
+ ldmia sp!, {r11, pc} @ return
+.size vpaes_decrypt_key_to_bsaes,.-vpaes_decrypt_key_to_bsaes
+.globl vpaes_ctr32_encrypt_blocks
+.hidden vpaes_ctr32_encrypt_blocks
+.type vpaes_ctr32_encrypt_blocks,%function
+.align 4
+vpaes_ctr32_encrypt_blocks:
+ mov ip, sp
+ stmdb sp!, {r7,r8,r9,r10,r11, lr}
+ @ This function uses q4-q7 (d8-d15), which are callee-saved.
+ vstmdb sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
+
+ cmp r2, #0
+ @ r8 is passed on the stack.
+ ldr r8, [ip]
+ beq .Lctr32_done
+
+ @ _vpaes_encrypt_core expects the key in r2, so swap r2 and r3.
+ mov r9, r3
+ mov r3, r2
+ mov r2, r9
+
+ @ Load the IV and counter portion.
+ ldr r7, [r8, #12]
+ vld1.8 {q7}, [r8]
+
+ bl _vpaes_preheat
+ rev r7, r7 @ The counter is big-endian.
+
+.Lctr32_loop:
+ vmov q0, q7
+ vld1.8 {q6}, [r0]! @ .Load input ahead of time
+ bl _vpaes_encrypt_core
+ veor q0, q0, q6 @ XOR input and result
+ vst1.8 {q0}, [r1]!
+ subs r3, r3, #1
+ @ Update the counter.
+ add r7, r7, #1
+ rev r9, r7
+ vmov.32 d15[1], r9
+ bne .Lctr32_loop
+
+.Lctr32_done:
+ vldmia sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
+ ldmia sp!, {r7,r8,r9,r10,r11, pc} @ return
+.size vpaes_ctr32_encrypt_blocks,.-vpaes_ctr32_encrypt_blocks
+#endif
+#endif // !OPENSSL_NO_ASM