summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorRobert Sloan <varomodt@google.com>2017-12-18 11:26:17 -0800
committerRobert Sloan <varomodt@google.com>2017-12-18 11:26:23 -0800
commit558181089d69085101510906bd46e51ade9e20e9 (patch)
treee57121bbdd758b4b17aba72bf5d90559acfd0e4d /src
parentcd79cdebdcdadadb156e037973c927abf3dac79d (diff)
downloadboringssl-558181089d69085101510906bd46e51ade9e20e9.tar.gz
external/boringssl: Sync to ea52ec98a56a40879b37493f3d1da1a1679e1fba.
This includes the following changes: https://boringssl.googlesource.com/boringssl/+log/21baf6421a7e1e03f85cf2243c3c2404f5765072..ea52ec98a56a40879b37493f3d1da1a1679e1fba Test: BoringSSL CTS Presubmits. Change-Id: I6ebeb5f2aa7daa462c9d8933d9d5388011054fac
Diffstat (limited to 'src')
-rw-r--r--src/BUILDING.md25
-rw-r--r--src/CMakeLists.txt8
-rwxr-xr-xsrc/crypto/chacha/asm/chacha-armv4.pl4
-rw-r--r--src/crypto/err/ssl.errordata2
-rw-r--r--src/crypto/evp/evp_tests.txt22
-rw-r--r--src/crypto/fipsmodule/aes/asm/aes-armv4.pl5
-rw-r--r--src/crypto/fipsmodule/aes/asm/aesv8-armx.pl6
-rw-r--r--src/crypto/fipsmodule/bcm.c4
-rw-r--r--src/crypto/fipsmodule/bn/asm/armv4-mont.pl4
-rw-r--r--src/crypto/fipsmodule/bn/asm/x86_64-gcc.c7
-rw-r--r--src/crypto/fipsmodule/bn/div.c34
-rw-r--r--src/crypto/fipsmodule/bn/generic.c3
-rw-r--r--src/crypto/fipsmodule/bn/internal.h6
-rw-r--r--src/crypto/fipsmodule/ec/ec.c31
-rw-r--r--src/crypto/fipsmodule/ec/ec_montgomery.c1
-rw-r--r--src/crypto/fipsmodule/ec/internal.h13
-rw-r--r--src/crypto/fipsmodule/ec/p224-64.c8
-rw-r--r--src/crypto/fipsmodule/ec/p256-64.c1674
-rw-r--r--src/crypto/fipsmodule/ec/p256-x86_64.c1
-rw-r--r--src/crypto/fipsmodule/ec/util.c (renamed from src/crypto/fipsmodule/ec/util-64.c)5
-rw-r--r--src/crypto/fipsmodule/ecdsa/ecdsa.c2
-rw-r--r--src/crypto/fipsmodule/modes/asm/ghash-armv4.pl5
-rw-r--r--src/crypto/fipsmodule/modes/asm/ghashv8-armx.pl6
-rw-r--r--src/crypto/fipsmodule/rsa/rsa_impl.c54
-rw-r--r--src/crypto/fipsmodule/sha/asm/sha256-armv4.pl5
-rw-r--r--src/crypto/fipsmodule/sha/asm/sha512-armv4.pl4
-rw-r--r--src/crypto/internal.h9
-rw-r--r--src/include/openssl/err.h2
-rw-r--r--src/include/openssl/ssl.h9
-rw-r--r--src/ssl/handshake_client.cc2
-rw-r--r--src/ssl/internal.h13
-rw-r--r--src/ssl/ssl_versions.cc6
-rw-r--r--src/ssl/t1_enc.cc43
-rw-r--r--src/ssl/test/bssl_shim.cc16
-rw-r--r--src/ssl/test/runner/common.go15
-rw-r--r--src/ssl/test/runner/conn.go42
-rw-r--r--src/ssl/test/runner/fuzzer_mode.json1
-rw-r--r--src/ssl/test/runner/handshake_client.go15
-rw-r--r--src/ssl/test/runner/handshake_server.go26
-rw-r--r--src/ssl/test/runner/prf.go2
-rw-r--r--src/ssl/test/runner/runner.go269
-rw-r--r--src/ssl/test/test_config.cc2
-rw-r--r--src/ssl/test/test_config.h1
-rw-r--r--src/ssl/tls13_enc.cc115
-rw-r--r--src/third_party/fiat/p256.c1725
-rw-r--r--src/util/bot/UPDATING8
-rw-r--r--src/util/bot/cmake-linux64.tar.gz.sha12
-rw-r--r--src/util/bot/cmake-mac.tar.gz.sha12
-rw-r--r--src/util/generate_build_files.py6
49 files changed, 2416 insertions, 1854 deletions
diff --git a/src/BUILDING.md b/src/BUILDING.md
index eab61e2e..46f27e3f 100644
--- a/src/BUILDING.md
+++ b/src/BUILDING.md
@@ -79,14 +79,15 @@ for other variables which may be used to configure the build.
### Building for Android
-It's possible to build BoringSSL with the Android NDK using CMake. This has
-been tested with version 10d of the NDK.
+It's possible to build BoringSSL with the Android NDK using CMake. Recent
+versions of the NDK include a CMake toolchain file which works with CMake 3.6.0
+or later. This has been tested with version r16b of the NDK.
Unpack the Android NDK somewhere and export `ANDROID_NDK` to point to the
directory. Then make a build directory as above and run CMake like this:
cmake -DANDROID_ABI=armeabi-v7a \
- -DCMAKE_TOOLCHAIN_FILE=../third_party/android-cmake/android.toolchain.cmake \
+ -DCMAKE_TOOLCHAIN_FILE=${ANDROID_NDK}/build/cmake/android.toolchain.cmake \
-DANDROID_NATIVE_API_LEVEL=16 \
-GNinja ..
@@ -94,7 +95,11 @@ Once you've run that, Ninja should produce Android-compatible binaries. You
can replace `armeabi-v7a` in the above with `arm64-v8a` and use API level 21 or
higher to build aarch64 binaries.
-For other options, see [android-cmake's documentation](./third_party/android-cmake/README.md).
+For older NDK versions, BoringSSL ships a third-party CMake toolchain file. Use
+`../third_party/android-cmake/android.toolchain.cmake` for
+`CMAKE_TOOLCHAIN_FILE` instead.
+
+For other options, see the documentation in the toolchain file.
### Building for iOS
@@ -145,18 +150,6 @@ corresponding ARM feature.
Note that if a feature is enabled in this way, but not actually supported at
run-time, BoringSSL will likely crash.
-## Assembling ARMv8 with Clang
-
-In order to support the ARMv8 crypto instructions, Clang requires that the
-architecture be `armv8-a+crypto`. However, setting that as a general build flag
-would allow the compiler to assume that crypto instructions are *always*
-supported, even without testing for them.
-
-It's possible to set the architecture in an assembly file using the `.arch`
-directive, but only very recent versions of Clang support this. If
-`BORINGSSL_CLANG_SUPPORTS_DOT_ARCH` is defined then `.arch` directives will be
-used with Clang, otherwise you may need to craft acceptable assembler flags.
-
# Running tests
There are two sets of tests: the C/C++ tests and the blackbox tests. For former
diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt
index 6674a419..95e2590f 100644
--- a/src/CMakeLists.txt
+++ b/src/CMakeLists.txt
@@ -339,11 +339,11 @@ else()
message(FATAL_ERROR "Unknown processor:" ${CMAKE_SYSTEM_PROCESSOR})
endif()
-if (ANDROID AND ${ARCH} STREQUAL "arm")
- # The Android-NDK CMake files somehow fail to set the -march flag for
- # assembly files. Without this flag, the compiler believes that it's
+if (ANDROID AND NOT ANDROID_NDK_REVISION AND ${ARCH} STREQUAL "arm")
+ # The third-party Android-NDK CMake files somehow fail to set the -march flag
+ # for assembly files. Without this flag, the compiler believes that it's
# building for ARMv5.
- set(CMAKE_ASM_FLAGS "${CMAKE_ASM_FLAGS} -march=${CMAKE_SYSTEM_PROCESSOR}")
+ set(CMAKE_ASM_FLAGS "-march=${CMAKE_SYSTEM_PROCESSOR} ${CMAKE_ASM_FLAGS}")
endif()
if (${ARCH} STREQUAL "x86" AND APPLE AND ${CMAKE_VERSION} VERSION_LESS "3.0")
diff --git a/src/crypto/chacha/asm/chacha-armv4.pl b/src/crypto/chacha/asm/chacha-armv4.pl
index a173939f..2a9a7d7b 100755
--- a/src/crypto/chacha/asm/chacha-armv4.pl
+++ b/src/crypto/chacha/asm/chacha-armv4.pl
@@ -171,6 +171,10 @@ my @ret;
$code.=<<___;
#include <openssl/arm_arch.h>
+@ Silence ARMv8 deprecated IT instruction warnings. This file is used by both
+@ ARMv7 and ARMv8 processors and does not use ARMv8 instructions.
+.arch armv7-a
+
.text
#if defined(__thumb2__) || defined(__clang__)
.syntax unified
diff --git a/src/crypto/err/ssl.errordata b/src/crypto/err/ssl.errordata
index dec7347f..58c91154 100644
--- a/src/crypto/err/ssl.errordata
+++ b/src/crypto/err/ssl.errordata
@@ -52,6 +52,7 @@ SSL,254,DOWNGRADE_DETECTED
SSL,143,DTLS_MESSAGE_TOO_BIG
SSL,257,DUPLICATE_EXTENSION
SSL,264,DUPLICATE_KEY_SHARE
+SSL,283,EARLY_DATA_NOT_IN_USE
SSL,144,ECC_CERT_NOT_FOR_SIGNING
SSL,282,EMPTY_HELLO_RETRY_REQUEST
SSL,145,EMS_STATE_INCONSISTENT
@@ -64,6 +65,7 @@ SSL,151,EXTRA_DATA_IN_MESSAGE
SSL,152,FRAGMENT_MISMATCH
SSL,153,GOT_NEXT_PROTO_WITHOUT_EXTENSION
SSL,154,HANDSHAKE_FAILURE_ON_CLIENT_HELLO
+SSL,284,HANDSHAKE_NOT_COMPLETE
SSL,155,HTTPS_PROXY_REQUEST
SSL,156,HTTP_REQUEST
SSL,157,INAPPROPRIATE_FALLBACK
diff --git a/src/crypto/evp/evp_tests.txt b/src/crypto/evp/evp_tests.txt
index 26244739..b0f527c4 100644
--- a/src/crypto/evp/evp_tests.txt
+++ b/src/crypto/evp/evp_tests.txt
@@ -545,6 +545,28 @@ OAEPLabel = 00112233445566778899aabbccddeeff
Input = "Hello World"
CheckDecrypt
+# Though we will never generate such a key, test that RSA keys where p < q work
+# properly.
+PrivateKey = RSA-Swapped
+Type = RSA
+Input = 30820275020100300d06092a864886f70d01010105000482025f3082025b02010002818100ab28f98747934779011417d5bbb4095eae6f48ed09e13081616cf390aac75b10a206a98953d402647dfef7fa363be2765a303b05ec388bd9a1d75123a1205b4ecb43c33f2e37d3e30842181d694a3acfc39afc52554946e699d97d97066596a46725ce6dea322623afcafecbd2884d9a0c5eae9c4d7da8874c29c19edb762e1902030100010281800d637ea568e169f15ab6be288f6ec55edd29425c9c6dbb941b5160fa1b89cda34ef15378b5107c016d63b0f52721e71497f876dd7f3d6b1f228c4bc20c3c12384644200e91130c9195660d1e706f55b2accf00c5e2174a1d9ee289f0e763ee58860485ec97d19d7fa2df38af5b5910b1fa52087768d288e6ec4c8d5eca23c8d3024100be757a24dc2c923692d964693b2d71ca33ccb2f946f9e5232d2090b715a97dca554068fab8876105bc9ed6dccfd0917c5e0b80339306535c3eeb787e89397bc7024100e60f5c9e52434da079b8c641791a81a96daa4d9921a07e5b48292a9fce230df7c9fc2b97b5e38834ed5caaa387a0bca35c474e989a68dd65b79a6f691a74471f0240438ccf017bc5a3260ff76291a01782204136fcd344c524ebd0f997da17a8c1a09d93f6a7d602cdfa86e79f3539cfb389f4a1079b432e1f2abc762f8a51893dc9024046604ca4e1e554c9d27283b363a888219c3a8ca25b770d303f52d8872a37eefdedfc0619d2ba57e058fc0ff71676453e73ec1c4ef26d41ccebed824754a05d6102404445374d8450e753e0a42085b56b0d6d500b3e3518536dc8f12ec8fd77aa75491835327ac0e12d73b5c3f1b09d03f6a24fe63b9c551dee6559b625435ec92429
+
+Sign = RSA-Swapped
+Digest = SHA256
+Input = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
+Output = 07fa4e3de9c002c41c952dc292ef5a814c4c17dc1a6cf958c4c971e8089676d6661b442270ef9295c41e5385c9628aa1bdee2cc2558b8473ba212f2ba04b9ff2264c19187b9506b1d0a1cc2751844cc8dedf555d62ce81bc0e70bfe83d0184ee964593af91b9b327c0fb272c799148cd8737d412cbf36c2ad25fd66977bf805f
+
+# Though we will never generate such a key, test that RSA keys where p and q are
+# different sizes work properly.
+PrivateKey = RSA-PrimeMismatch
+Type = RSA
+Input = 30820295020100300d06092a864886f70d01010105000482027f3082027b02010002818100c766f4fef89f5e9a8e13ed500fb38523ea94d7f8be066900eee58c913b4c6fdcb13d63d39b9108feabcefd1ffd04776403dc58f968ae817977d0809e567d8af512d604a0e9cb448fa5e402204ee519712a5ebbfd002faf8169495a782f54366b4665aac0d968bfec63c5446b6f9b13061c7f3d1f3f1b6bede8fff881b410a66f0203010001028180528c062f49485c771a0b18ca747d8a47f8941ea63c305626cb3f1f067e6861c4441c432687dbd08d484aac3b01f3ffdc3b762c719167f7cb22e565aa6acd597306ef6f7828b9720e9d440816186d940c4c5a9720dddf71fe0b59483f02a751515c8c27e43c575d6725d55f5bb77e0f977773b00afc058cfab6617ec90d0b62a9026100cb8f97c37b4fbc298b645bc3dc0526f8a4274e9a193b33c3acb76499b5b96330e4b586cbaa56368ffc12644952322253bc669496d572c0980f125fd7273739cf790d24401052b13732114d397c8c16a44716dc62d2320fb1ced99290dfd53e07022100fac51ac653609cdaba53280c6b6f209052e270be0c3c68fe8b37d6bf05fbba59026038dff2f04c58d7e2e7ae6fb1469d2de954bc22cb0d77ac1be4fb0ca1a1d39d7240c4b357de4cde4bd68b30f8077e38771af1b25c7e60e48cd7d1337402e1fc460ab57046720918b8aa4589452196669119c7ba65e602d4bdc264a9fdce7c5f2b0220773af0180bdc8bb7938fa6230191bcb1e236b7d4248d347e9242e25fc0c0874102605c4894cde334889f5b52ed8f86a2ee9c1fbe4166287e24ce44f3093bff383962f08043842f6ff3e6002104b0e29442c4a4483c5d06e2254fbe5e3930de3d0e28af10e96c6e341a4b8859382dbba24536a38ae71118e3e22413a93f298a7f744c
+
+Sign = RSA-PrimeMismatch
+Digest = SHA256
+Input = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
+Output = 6192b1ce630c87d02e8245fd74d4f6ecac37eef979d188c8fa48c4d355fbe814e7dd3152f42bb020d769b540d11867af5b947387b8c99158d56901ff3708e423931178213916ae1002f162c9d497aacacdcb20e6ffe7ed40138a253fc943ddf3587433df5831a3ce46aeefce358a009bf6bad12d82d77424c2755d984d7da196
+
# EC tests
diff --git a/src/crypto/fipsmodule/aes/asm/aes-armv4.pl b/src/crypto/fipsmodule/aes/asm/aes-armv4.pl
index c34d3dce..466a4ba0 100644
--- a/src/crypto/fipsmodule/aes/asm/aes-armv4.pl
+++ b/src/crypto/fipsmodule/aes/asm/aes-armv4.pl
@@ -76,6 +76,11 @@ $code=<<___;
# define __ARM_ARCH__ __LINUX_ARM_ARCH__
#endif
+@ Silence ARMv8 deprecated IT instruction warnings. This file is used by both
+@ ARMv7 and ARMv8 processors and does not use ARMv8 instructions. (ARMv8 AES
+@ instructions are in aesv8-armx.pl.)
+.arch armv7-a
+
.text
#if defined(__thumb2__) && !defined(__APPLE__)
.syntax unified
diff --git a/src/crypto/fipsmodule/aes/asm/aesv8-armx.pl b/src/crypto/fipsmodule/aes/asm/aesv8-armx.pl
index ee07a3a7..662814a9 100644
--- a/src/crypto/fipsmodule/aes/asm/aesv8-armx.pl
+++ b/src/crypto/fipsmodule/aes/asm/aesv8-armx.pl
@@ -58,11 +58,7 @@ $code=<<___;
#if __ARM_MAX_ARCH__>=7
.text
___
-$code.=<<___ if ($flavour =~ /64/);
-#if !defined(__clang__) || defined(BORINGSSL_CLANG_SUPPORTS_DOT_ARCH)
-.arch armv8-a+crypto
-#endif
-___
+$code.=".arch armv8-a+crypto\n" if ($flavour =~ /64/);
$code.=<<___ if ($flavour !~ /64/);
.arch armv7-a // don't confuse not-so-latest binutils with argv8 :-)
.fpu neon
diff --git a/src/crypto/fipsmodule/bcm.c b/src/crypto/fipsmodule/bcm.c
index b506b43e..fb16215f 100644
--- a/src/crypto/fipsmodule/bcm.c
+++ b/src/crypto/fipsmodule/bcm.c
@@ -67,10 +67,10 @@
#include "ec/ec_montgomery.c"
#include "ec/oct.c"
#include "ec/p224-64.c"
-#include "ec/p256-64.c"
+#include "../../third_party/fiat/p256.c"
#include "ec/p256-x86_64.c"
#include "ec/simple.c"
-#include "ec/util-64.c"
+#include "ec/util.c"
#include "ec/wnaf.c"
#include "hmac/hmac.c"
#include "md4/md4.c"
diff --git a/src/crypto/fipsmodule/bn/asm/armv4-mont.pl b/src/crypto/fipsmodule/bn/asm/armv4-mont.pl
index c2020cca..094e3b65 100644
--- a/src/crypto/fipsmodule/bn/asm/armv4-mont.pl
+++ b/src/crypto/fipsmodule/bn/asm/armv4-mont.pl
@@ -97,6 +97,10 @@ $_num="$num,#15*4"; $_bpend=$_num;
$code=<<___;
#include <openssl/arm_arch.h>
+@ Silence ARMv8 deprecated IT instruction warnings. This file is used by both
+@ ARMv7 and ARMv8 processors and does not use ARMv8 instructions.
+.arch armv7-a
+
.text
#if defined(__thumb2__)
.syntax unified
diff --git a/src/crypto/fipsmodule/bn/asm/x86_64-gcc.c b/src/crypto/fipsmodule/bn/asm/x86_64-gcc.c
index 49351c1a..30fff217 100644
--- a/src/crypto/fipsmodule/bn/asm/x86_64-gcc.c
+++ b/src/crypto/fipsmodule/bn/asm/x86_64-gcc.c
@@ -52,8 +52,9 @@
#include <openssl/bn.h>
-// TODO(davidben): Get this file working on Windows x64.
-#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && defined(__GNUC__)
+// TODO(davidben): Get this file working on MSVC x64.
+#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
+ (defined(__GNUC__) || defined(__clang__))
#include "../internal.h"
@@ -537,4 +538,4 @@ void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]) {
#undef mul_add_c2
#undef sqr_add_c2
-#endif // !NO_ASM && X86_64 && __GNUC__
+#endif // !NO_ASM && X86_64 && (__GNUC__ || __clang__)
diff --git a/src/crypto/fipsmodule/bn/div.c b/src/crypto/fipsmodule/bn/div.c
index c92eab36..7f261f1c 100644
--- a/src/crypto/fipsmodule/bn/div.c
+++ b/src/crypto/fipsmodule/bn/div.c
@@ -155,18 +155,18 @@ static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out,
//
// These issues aren't specific to x86 and x86_64, so it might be worthwhile
// to add more assembly language implementations.
-#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86) && defined(__GNUC__)
- __asm__ volatile (
- "divl %4"
- : "=a"(*quotient_out), "=d"(*rem_out)
- : "a"(n1), "d"(n0), "rm"(d0)
- : "cc" );
-#elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && defined(__GNUC__)
- __asm__ volatile (
- "divq %4"
- : "=a"(*quotient_out), "=d"(*rem_out)
- : "a"(n1), "d"(n0), "rm"(d0)
- : "cc" );
+#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86) && \
+ (defined(__GNUC__) || defined(__clang__))
+ __asm__ volatile("divl %4"
+ : "=a"(*quotient_out), "=d"(*rem_out)
+ : "a"(n1), "d"(n0), "rm"(d0)
+ : "cc");
+#elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
+ (defined(__GNUC__) || defined(__clang__))
+ __asm__ volatile("divq %4"
+ : "=a"(*quotient_out), "=d"(*rem_out)
+ : "a"(n1), "d"(n0), "rm"(d0)
+ : "cc");
#else
#if defined(BN_ULLONG)
BN_ULLONG n = (((BN_ULLONG)n0) << BN_BITS2) | n1;
@@ -617,7 +617,7 @@ BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
}
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
-#ifndef BN_ULLONG
+#ifndef BN_CAN_DIVIDE_ULLONG
BN_ULONG ret = 0;
#else
BN_ULLONG ret = 0;
@@ -628,9 +628,9 @@ BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
return (BN_ULONG) -1;
}
-#ifndef BN_ULLONG
- // If |w| is too long and we don't have |BN_ULLONG| then we need to fall back
- // to using |BN_div_word|.
+#ifndef BN_CAN_DIVIDE_ULLONG
+ // If |w| is too long and we don't have |BN_ULLONG| division then we need to
+ // fall back to using |BN_div_word|.
if (w > ((BN_ULONG)1 << BN_BITS4)) {
BIGNUM *tmp = BN_dup(a);
if (tmp == NULL) {
@@ -643,7 +643,7 @@ BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
#endif
for (i = a->top - 1; i >= 0; i--) {
-#ifndef BN_ULLONG
+#ifndef BN_CAN_DIVIDE_ULLONG
ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
#else
diff --git a/src/crypto/fipsmodule/bn/generic.c b/src/crypto/fipsmodule/bn/generic.c
index a39a033c..ee80a3ce 100644
--- a/src/crypto/fipsmodule/bn/generic.c
+++ b/src/crypto/fipsmodule/bn/generic.c
@@ -64,7 +64,8 @@
// This file has two other implementations: x86 assembly language in
// asm/bn-586.pl and x86_64 inline assembly in asm/x86_64-gcc.c.
#if defined(OPENSSL_NO_ASM) || \
- !(defined(OPENSSL_X86) || (defined(OPENSSL_X86_64) && defined(__GNUC__)))
+ !(defined(OPENSSL_X86) || \
+ (defined(OPENSSL_X86_64) && (defined(__GNUC__) || defined(__clang__))))
#ifdef BN_ULLONG
#define mul_add(r, a, w, c) \
diff --git a/src/crypto/fipsmodule/bn/internal.h b/src/crypto/fipsmodule/bn/internal.h
index 75efbfab..706e544d 100644
--- a/src/crypto/fipsmodule/bn/internal.h
+++ b/src/crypto/fipsmodule/bn/internal.h
@@ -140,9 +140,12 @@ extern "C" {
#if defined(OPENSSL_64_BIT)
-#if !defined(_MSC_VER)
+#if defined(BORINGSSL_HAS_UINT128)
// MSVC doesn't support two-word integers on 64-bit.
#define BN_ULLONG uint128_t
+#if defined(BORINGSSL_CAN_DIVIDE_UINT128)
+#define BN_CAN_DIVIDE_ULLONG
+#endif
#endif
#define BN_BITS2 64
@@ -160,6 +163,7 @@ extern "C" {
#elif defined(OPENSSL_32_BIT)
#define BN_ULLONG uint64_t
+#define BN_CAN_DIVIDE_ULLONG
#define BN_BITS2 32
#define BN_BYTES 4
#define BN_BITS4 16
diff --git a/src/crypto/fipsmodule/ec/ec.c b/src/crypto/fipsmodule/ec/ec.c
index 41c2540b..47a90ce4 100644
--- a/src/crypto/fipsmodule/ec/ec.c
+++ b/src/crypto/fipsmodule/ec/ec.c
@@ -215,13 +215,6 @@ static const uint8_t kP521Params[6 * 66] = {
0xB7, 0x1E, 0x91, 0x38, 0x64, 0x09,
};
-// MSan appears to have a bug that causes code to be miscompiled in opt mode.
-// While that is being looked at, don't run the uint128_t code under MSan.
-#if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS) && \
- !defined(MEMORY_SANITIZER)
-#define BORINGSSL_USE_INT128_CODE
-#endif
-
DEFINE_METHOD_FUNCTION(struct built_in_curves, OPENSSL_built_in_curves) {
// 1.3.132.0.35
static const uint8_t kOIDP521[] = {0x2b, 0x81, 0x04, 0x00, 0x23};
@@ -253,16 +246,12 @@ DEFINE_METHOD_FUNCTION(struct built_in_curves, OPENSSL_built_in_curves) {
out->curves[2].param_len = 32;
out->curves[2].params = kP256Params;
out->curves[2].method =
-#if defined(BORINGSSL_USE_INT128_CODE)
#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
!defined(OPENSSL_SMALL)
EC_GFp_nistz256_method();
#else
EC_GFp_nistp256_method();
#endif
-#else
- EC_GFp_mont_method();
-#endif
// 1.3.132.0.33
static const uint8_t kOIDP224[] = {0x2b, 0x81, 0x04, 0x00, 0x21};
@@ -273,7 +262,7 @@ DEFINE_METHOD_FUNCTION(struct built_in_curves, OPENSSL_built_in_curves) {
out->curves[3].param_len = 28;
out->curves[3].params = kP224Params;
out->curves[3].method =
-#if defined(BORINGSSL_USE_INT128_CODE) && !defined(OPENSSL_SMALL)
+#if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
EC_GFp_nistp224_method();
#else
EC_GFp_mont_method();
@@ -883,6 +872,24 @@ err:
return ret;
}
+int ec_point_mul_scalar_public(const EC_GROUP *group, EC_POINT *r,
+ const EC_SCALAR *g_scalar, const EC_POINT *p,
+ const EC_SCALAR *p_scalar, BN_CTX *ctx) {
+ if ((g_scalar == NULL && p_scalar == NULL) ||
+ (p == NULL) != (p_scalar == NULL)) {
+ OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
+ return 0;
+ }
+
+ if (EC_GROUP_cmp(group, r->group, NULL) != 0 ||
+ (p != NULL && EC_GROUP_cmp(group, p->group, NULL) != 0)) {
+ OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
+ return 0;
+ }
+
+ return group->meth->mul_public(group, r, g_scalar, p, p_scalar, ctx);
+}
+
int ec_point_mul_scalar(const EC_GROUP *group, EC_POINT *r,
const EC_SCALAR *g_scalar, const EC_POINT *p,
const EC_SCALAR *p_scalar, BN_CTX *ctx) {
diff --git a/src/crypto/fipsmodule/ec/ec_montgomery.c b/src/crypto/fipsmodule/ec/ec_montgomery.c
index 6670b84e..898cf07a 100644
--- a/src/crypto/fipsmodule/ec/ec_montgomery.c
+++ b/src/crypto/fipsmodule/ec/ec_montgomery.c
@@ -270,6 +270,7 @@ DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) {
out->group_set_curve = ec_GFp_mont_group_set_curve;
out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates;
out->mul = ec_wNAF_mul /* XXX: Not constant time. */;
+ out->mul_public = ec_wNAF_mul;
out->field_mul = ec_GFp_mont_field_mul;
out->field_sqr = ec_GFp_mont_field_sqr;
out->field_encode = ec_GFp_mont_field_encode;
diff --git a/src/crypto/fipsmodule/ec/internal.h b/src/crypto/fipsmodule/ec/internal.h
index 1b860c6b..145c5c40 100644
--- a/src/crypto/fipsmodule/ec/internal.h
+++ b/src/crypto/fipsmodule/ec/internal.h
@@ -115,6 +115,12 @@ struct ec_method_st {
// non-null.
int (*mul)(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar,
const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx);
+ // mul_public performs the same computation as mul. It further assumes that
+ // the inputs are public so there is no concern about leaking their values
+ // through timing.
+ int (*mul_public)(const EC_GROUP *group, EC_POINT *r,
+ const EC_SCALAR *g_scalar, const EC_POINT *p,
+ const EC_SCALAR *p_scalar, BN_CTX *ctx);
// 'field_mul' and 'field_sqr' can be used by 'add' and 'dbl' so that the
// same implementations of point operations can be used with different
@@ -195,6 +201,13 @@ int ec_point_mul_scalar(const EC_GROUP *group, EC_POINT *r,
const EC_SCALAR *g_scalar, const EC_POINT *p,
const EC_SCALAR *p_scalar, BN_CTX *ctx);
+// ec_point_mul_scalar_public performs the same computation as
+// ec_point_mul_scalar. It further assumes that the inputs are public so
+// there is no concern about leaking their values through timing.
+int ec_point_mul_scalar_public(const EC_GROUP *group, EC_POINT *r,
+ const EC_SCALAR *g_scalar, const EC_POINT *p,
+ const EC_SCALAR *p_scalar, BN_CTX *ctx);
+
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar,
const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx);
diff --git a/src/crypto/fipsmodule/ec/p224-64.c b/src/crypto/fipsmodule/ec/p224-64.c
index ba25d22a..00972097 100644
--- a/src/crypto/fipsmodule/ec/p224-64.c
+++ b/src/crypto/fipsmodule/ec/p224-64.c
@@ -19,9 +19,6 @@
#include <openssl/base.h>
-#if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS) && \
- !defined(OPENSSL_SMALL)
-
#include <openssl/bn.h>
#include <openssl/ec.h>
#include <openssl/err.h>
@@ -34,6 +31,8 @@
#include "../../internal.h"
+#if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
+
// Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
// using 64-bit coefficients called 'limbs', and sometimes (for multiplication
// results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
@@ -1122,10 +1121,11 @@ DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp224_method) {
out->point_get_affine_coordinates =
ec_GFp_nistp224_point_get_affine_coordinates;
out->mul = ec_GFp_nistp224_points_mul;
+ out->mul_public = ec_GFp_nistp224_points_mul;
out->field_mul = ec_GFp_simple_field_mul;
out->field_sqr = ec_GFp_simple_field_sqr;
out->field_encode = NULL;
out->field_decode = NULL;
};
-#endif // 64_BIT && !WINDOWS && !SMALL
+#endif // BORINGSSL_HAS_UINT128 && !SMALL
diff --git a/src/crypto/fipsmodule/ec/p256-64.c b/src/crypto/fipsmodule/ec/p256-64.c
deleted file mode 100644
index d4a8ff68..00000000
--- a/src/crypto/fipsmodule/ec/p256-64.c
+++ /dev/null
@@ -1,1674 +0,0 @@
-/* Copyright (c) 2015, Google Inc.
- *
- * Permission to use, copy, modify, and/or distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
- * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
- * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
- * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
-
-// A 64-bit implementation of the NIST P-256 elliptic curve point
-// multiplication
-//
-// OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
-// Otherwise based on Emilia's P224 work, which was inspired by my curve25519
-// work which got its smarts from Daniel J. Bernstein's work on the same.
-
-#include <openssl/base.h>
-
-#if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS)
-
-#include <openssl/bn.h>
-#include <openssl/ec.h>
-#include <openssl/err.h>
-#include <openssl/mem.h>
-
-#include <string.h>
-
-#include "../delocate.h"
-#include "../../internal.h"
-#include "internal.h"
-
-
-// The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
-// can serialise an element of this field into 32 bytes. We call this an
-// felem_bytearray.
-typedef uint8_t felem_bytearray[32];
-
-// The representation of field elements.
-// ------------------------------------
-//
-// We represent field elements with either four 128-bit values, eight 128-bit
-// values, or four 64-bit values. The field element represented is:
-// v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p)
-// or:
-// v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p)
-//
-// 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
-// apart, but are 128-bits wide, the most significant bits of each limb overlap
-// with the least significant bits of the next.
-//
-// A field element with four limbs is an 'felem'. One with eight limbs is a
-// 'longfelem'
-//
-// A field element with four, 64-bit values is called a 'smallfelem'. Small
-// values are used as intermediate values before multiplication.
-
-#define NLIMBS 4
-
-typedef uint128_t limb;
-typedef limb felem[NLIMBS];
-typedef limb longfelem[NLIMBS * 2];
-typedef uint64_t smallfelem[NLIMBS];
-
-// This is the value of the prime as four 64-bit words, little-endian.
-static const uint64_t kPrime[4] = {0xfffffffffffffffful, 0xffffffff, 0,
- 0xffffffff00000001ul};
-static const uint64_t bottom63bits = 0x7ffffffffffffffful;
-
-static uint64_t load_u64(const uint8_t in[8]) {
- uint64_t ret;
- OPENSSL_memcpy(&ret, in, sizeof(ret));
- return ret;
-}
-
-static void store_u64(uint8_t out[8], uint64_t in) {
- OPENSSL_memcpy(out, &in, sizeof(in));
-}
-
-// bin32_to_felem takes a little-endian byte array and converts it into felem
-// form. This assumes that the CPU is little-endian.
-static void bin32_to_felem(felem out, const uint8_t in[32]) {
- out[0] = load_u64(&in[0]);
- out[1] = load_u64(&in[8]);
- out[2] = load_u64(&in[16]);
- out[3] = load_u64(&in[24]);
-}
-
-// smallfelem_to_bin32 takes a smallfelem and serialises into a little endian,
-// 32 byte array. This assumes that the CPU is little-endian.
-static void smallfelem_to_bin32(uint8_t out[32], const smallfelem in) {
- store_u64(&out[0], in[0]);
- store_u64(&out[8], in[1]);
- store_u64(&out[16], in[2]);
- store_u64(&out[24], in[3]);
-}
-
-// To preserve endianness when using BN_bn2bin and BN_bin2bn.
-static void flip_endian(uint8_t *out, const uint8_t *in, size_t len) {
- for (size_t i = 0; i < len; ++i) {
- out[i] = in[len - 1 - i];
- }
-}
-
-// BN_to_felem converts an OpenSSL BIGNUM into an felem.
-static int BN_to_felem(felem out, const BIGNUM *bn) {
- if (BN_is_negative(bn)) {
- OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
- return 0;
- }
-
- felem_bytearray b_out;
- // BN_bn2bin eats leading zeroes
- OPENSSL_memset(b_out, 0, sizeof(b_out));
- size_t num_bytes = BN_num_bytes(bn);
- if (num_bytes > sizeof(b_out)) {
- OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
- return 0;
- }
-
- felem_bytearray b_in;
- num_bytes = BN_bn2bin(bn, b_in);
- flip_endian(b_out, b_in, num_bytes);
- bin32_to_felem(out, b_out);
- return 1;
-}
-
-// felem_to_BN converts an felem into an OpenSSL BIGNUM.
-static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in) {
- felem_bytearray b_in, b_out;
- smallfelem_to_bin32(b_in, in);
- flip_endian(b_out, b_in, sizeof(b_out));
- return BN_bin2bn(b_out, sizeof(b_out), out);
-}
-
-// Field operations.
-
-static void felem_assign(felem out, const felem in) {
- out[0] = in[0];
- out[1] = in[1];
- out[2] = in[2];
- out[3] = in[3];
-}
-
-// felem_sum sets out = out + in.
-static void felem_sum(felem out, const felem in) {
- out[0] += in[0];
- out[1] += in[1];
- out[2] += in[2];
- out[3] += in[3];
-}
-
-// felem_small_sum sets out = out + in.
-static void felem_small_sum(felem out, const smallfelem in) {
- out[0] += in[0];
- out[1] += in[1];
- out[2] += in[2];
- out[3] += in[3];
-}
-
-// felem_scalar sets out = out * scalar
-static void felem_scalar(felem out, const uint64_t scalar) {
- out[0] *= scalar;
- out[1] *= scalar;
- out[2] *= scalar;
- out[3] *= scalar;
-}
-
-// longfelem_scalar sets out = out * scalar
-static void longfelem_scalar(longfelem out, const uint64_t scalar) {
- out[0] *= scalar;
- out[1] *= scalar;
- out[2] *= scalar;
- out[3] *= scalar;
- out[4] *= scalar;
- out[5] *= scalar;
- out[6] *= scalar;
- out[7] *= scalar;
-}
-
-#define two105m41m9 ((((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9))
-#define two105 (((limb)1) << 105)
-#define two105m41p9 ((((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9))
-
-// zero105 is 0 mod p
-static const felem zero105 = {two105m41m9, two105, two105m41p9, two105m41p9};
-
-// smallfelem_neg sets |out| to |-small|
-// On exit:
-// out[i] < out[i] + 2^105
-static void smallfelem_neg(felem out, const smallfelem small) {
- // In order to prevent underflow, we subtract from 0 mod p.
- out[0] = zero105[0] - small[0];
- out[1] = zero105[1] - small[1];
- out[2] = zero105[2] - small[2];
- out[3] = zero105[3] - small[3];
-}
-
-// felem_diff subtracts |in| from |out|
-// On entry:
-// in[i] < 2^104
-// On exit:
-// out[i] < out[i] + 2^105.
-static void felem_diff(felem out, const felem in) {
- // In order to prevent underflow, we add 0 mod p before subtracting.
- out[0] += zero105[0];
- out[1] += zero105[1];
- out[2] += zero105[2];
- out[3] += zero105[3];
-
- out[0] -= in[0];
- out[1] -= in[1];
- out[2] -= in[2];
- out[3] -= in[3];
-}
-
-#define two107m43m11 \
- ((((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11))
-#define two107 (((limb)1) << 107)
-#define two107m43p11 \
- ((((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11))
-
-// zero107 is 0 mod p
-static const felem zero107 = {two107m43m11, two107, two107m43p11, two107m43p11};
-
-// An alternative felem_diff for larger inputs |in|
-// felem_diff_zero107 subtracts |in| from |out|
-// On entry:
-// in[i] < 2^106
-// On exit:
-// out[i] < out[i] + 2^107.
-static void felem_diff_zero107(felem out, const felem in) {
- // In order to prevent underflow, we add 0 mod p before subtracting.
- out[0] += zero107[0];
- out[1] += zero107[1];
- out[2] += zero107[2];
- out[3] += zero107[3];
-
- out[0] -= in[0];
- out[1] -= in[1];
- out[2] -= in[2];
- out[3] -= in[3];
-}
-
-// longfelem_diff subtracts |in| from |out|
-// On entry:
-// in[i] < 7*2^67
-// On exit:
-// out[i] < out[i] + 2^70 + 2^40.
-static void longfelem_diff(longfelem out, const longfelem in) {
- static const limb two70m8p6 =
- (((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6);
- static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40);
- static const limb two70 = (((limb)1) << 70);
- static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) -
- (((limb)1) << 38) + (((limb)1) << 6);
- static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6);
-
- // add 0 mod p to avoid underflow
- out[0] += two70m8p6;
- out[1] += two70p40;
- out[2] += two70;
- out[3] += two70m40m38p6;
- out[4] += two70m6;
- out[5] += two70m6;
- out[6] += two70m6;
- out[7] += two70m6;
-
- // in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6
- out[0] -= in[0];
- out[1] -= in[1];
- out[2] -= in[2];
- out[3] -= in[3];
- out[4] -= in[4];
- out[5] -= in[5];
- out[6] -= in[6];
- out[7] -= in[7];
-}
-
-#define two64m0 ((((limb)1) << 64) - 1)
-#define two110p32m0 ((((limb)1) << 110) + (((limb)1) << 32) - 1)
-#define two64m46 ((((limb)1) << 64) - (((limb)1) << 46))
-#define two64m32 ((((limb)1) << 64) - (((limb)1) << 32))
-
-// zero110 is 0 mod p.
-static const felem zero110 = {two64m0, two110p32m0, two64m46, two64m32};
-
-// felem_shrink converts an felem into a smallfelem. The result isn't quite
-// minimal as the value may be greater than p.
-//
-// On entry:
-// in[i] < 2^109
-// On exit:
-// out[i] < 2^64.
-static void felem_shrink(smallfelem out, const felem in) {
- felem tmp;
- uint64_t a, b, mask;
- int64_t high, low;
- static const uint64_t kPrime3Test =
- 0x7fffffff00000001ul; // 2^63 - 2^32 + 1
-
- // Carry 2->3
- tmp[3] = zero110[3] + in[3] + ((uint64_t)(in[2] >> 64));
- // tmp[3] < 2^110
-
- tmp[2] = zero110[2] + (uint64_t)in[2];
- tmp[0] = zero110[0] + in[0];
- tmp[1] = zero110[1] + in[1];
- // tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65
-
- // We perform two partial reductions where we eliminate the high-word of
- // tmp[3]. We don't update the other words till the end.
- a = tmp[3] >> 64; // a < 2^46
- tmp[3] = (uint64_t)tmp[3];
- tmp[3] -= a;
- tmp[3] += ((limb)a) << 32;
- // tmp[3] < 2^79
-
- b = a;
- a = tmp[3] >> 64; // a < 2^15
- b += a; // b < 2^46 + 2^15 < 2^47
- tmp[3] = (uint64_t)tmp[3];
- tmp[3] -= a;
- tmp[3] += ((limb)a) << 32;
- // tmp[3] < 2^64 + 2^47
-
- // This adjusts the other two words to complete the two partial
- // reductions.
- tmp[0] += b;
- tmp[1] -= (((limb)b) << 32);
-
- // In order to make space in tmp[3] for the carry from 2 -> 3, we
- // conditionally subtract kPrime if tmp[3] is large enough.
- high = tmp[3] >> 64;
- // As tmp[3] < 2^65, high is either 1 or 0
- high = ~(high - 1);
- // high is:
- // all ones if the high word of tmp[3] is 1
- // all zeros if the high word of tmp[3] if 0
- low = tmp[3];
- mask = low >> 63;
- // mask is:
- // all ones if the MSB of low is 1
- // all zeros if the MSB of low if 0
- low &= bottom63bits;
- low -= kPrime3Test;
- // if low was greater than kPrime3Test then the MSB is zero
- low = ~low;
- low >>= 63;
- // low is:
- // all ones if low was > kPrime3Test
- // all zeros if low was <= kPrime3Test
- mask = (mask & low) | high;
- tmp[0] -= mask & kPrime[0];
- tmp[1] -= mask & kPrime[1];
- // kPrime[2] is zero, so omitted
- tmp[3] -= mask & kPrime[3];
- // tmp[3] < 2**64 - 2**32 + 1
-
- tmp[1] += ((uint64_t)(tmp[0] >> 64));
- tmp[0] = (uint64_t)tmp[0];
- tmp[2] += ((uint64_t)(tmp[1] >> 64));
- tmp[1] = (uint64_t)tmp[1];
- tmp[3] += ((uint64_t)(tmp[2] >> 64));
- tmp[2] = (uint64_t)tmp[2];
- // tmp[i] < 2^64
-
- out[0] = tmp[0];
- out[1] = tmp[1];
- out[2] = tmp[2];
- out[3] = tmp[3];
-}
-
-// smallfelem_expand converts a smallfelem to an felem
-static void smallfelem_expand(felem out, const smallfelem in) {
- out[0] = in[0];
- out[1] = in[1];
- out[2] = in[2];
- out[3] = in[3];
-}
-
-// smallfelem_square sets |out| = |small|^2
-// On entry:
-// small[i] < 2^64
-// On exit:
-// out[i] < 7 * 2^64 < 2^67
-static void smallfelem_square(longfelem out, const smallfelem small) {
- limb a;
- uint64_t high, low;
-
- a = ((uint128_t)small[0]) * small[0];
- low = a;
- high = a >> 64;
- out[0] = low;
- out[1] = high;
-
- a = ((uint128_t)small[0]) * small[1];
- low = a;
- high = a >> 64;
- out[1] += low;
- out[1] += low;
- out[2] = high;
-
- a = ((uint128_t)small[0]) * small[2];
- low = a;
- high = a >> 64;
- out[2] += low;
- out[2] *= 2;
- out[3] = high;
-
- a = ((uint128_t)small[0]) * small[3];
- low = a;
- high = a >> 64;
- out[3] += low;
- out[4] = high;
-
- a = ((uint128_t)small[1]) * small[2];
- low = a;
- high = a >> 64;
- out[3] += low;
- out[3] *= 2;
- out[4] += high;
-
- a = ((uint128_t)small[1]) * small[1];
- low = a;
- high = a >> 64;
- out[2] += low;
- out[3] += high;
-
- a = ((uint128_t)small[1]) * small[3];
- low = a;
- high = a >> 64;
- out[4] += low;
- out[4] *= 2;
- out[5] = high;
-
- a = ((uint128_t)small[2]) * small[3];
- low = a;
- high = a >> 64;
- out[5] += low;
- out[5] *= 2;
- out[6] = high;
- out[6] += high;
-
- a = ((uint128_t)small[2]) * small[2];
- low = a;
- high = a >> 64;
- out[4] += low;
- out[5] += high;
-
- a = ((uint128_t)small[3]) * small[3];
- low = a;
- high = a >> 64;
- out[6] += low;
- out[7] = high;
-}
-
-//felem_square sets |out| = |in|^2
-// On entry:
-// in[i] < 2^109
-// On exit:
-// out[i] < 7 * 2^64 < 2^67.
-static void felem_square(longfelem out, const felem in) {
- uint64_t small[4];
- felem_shrink(small, in);
- smallfelem_square(out, small);
-}
-
-// smallfelem_mul sets |out| = |small1| * |small2|
-// On entry:
-// small1[i] < 2^64
-// small2[i] < 2^64
-// On exit:
-// out[i] < 7 * 2^64 < 2^67.
-static void smallfelem_mul(longfelem out, const smallfelem small1,
- const smallfelem small2) {
- limb a;
- uint64_t high, low;
-
- a = ((uint128_t)small1[0]) * small2[0];
- low = a;
- high = a >> 64;
- out[0] = low;
- out[1] = high;
-
- a = ((uint128_t)small1[0]) * small2[1];
- low = a;
- high = a >> 64;
- out[1] += low;
- out[2] = high;
-
- a = ((uint128_t)small1[1]) * small2[0];
- low = a;
- high = a >> 64;
- out[1] += low;
- out[2] += high;
-
- a = ((uint128_t)small1[0]) * small2[2];
- low = a;
- high = a >> 64;
- out[2] += low;
- out[3] = high;
-
- a = ((uint128_t)small1[1]) * small2[1];
- low = a;
- high = a >> 64;
- out[2] += low;
- out[3] += high;
-
- a = ((uint128_t)small1[2]) * small2[0];
- low = a;
- high = a >> 64;
- out[2] += low;
- out[3] += high;
-
- a = ((uint128_t)small1[0]) * small2[3];
- low = a;
- high = a >> 64;
- out[3] += low;
- out[4] = high;
-
- a = ((uint128_t)small1[1]) * small2[2];
- low = a;
- high = a >> 64;
- out[3] += low;
- out[4] += high;
-
- a = ((uint128_t)small1[2]) * small2[1];
- low = a;
- high = a >> 64;
- out[3] += low;
- out[4] += high;
-
- a = ((uint128_t)small1[3]) * small2[0];
- low = a;
- high = a >> 64;
- out[3] += low;
- out[4] += high;
-
- a = ((uint128_t)small1[1]) * small2[3];
- low = a;
- high = a >> 64;
- out[4] += low;
- out[5] = high;
-
- a = ((uint128_t)small1[2]) * small2[2];
- low = a;
- high = a >> 64;
- out[4] += low;
- out[5] += high;
-
- a = ((uint128_t)small1[3]) * small2[1];
- low = a;
- high = a >> 64;
- out[4] += low;
- out[5] += high;
-
- a = ((uint128_t)small1[2]) * small2[3];
- low = a;
- high = a >> 64;
- out[5] += low;
- out[6] = high;
-
- a = ((uint128_t)small1[3]) * small2[2];
- low = a;
- high = a >> 64;
- out[5] += low;
- out[6] += high;
-
- a = ((uint128_t)small1[3]) * small2[3];
- low = a;
- high = a >> 64;
- out[6] += low;
- out[7] = high;
-}
-
-// felem_mul sets |out| = |in1| * |in2|
-// On entry:
-// in1[i] < 2^109
-// in2[i] < 2^109
-// On exit:
-// out[i] < 7 * 2^64 < 2^67
-static void felem_mul(longfelem out, const felem in1, const felem in2) {
- smallfelem small1, small2;
- felem_shrink(small1, in1);
- felem_shrink(small2, in2);
- smallfelem_mul(out, small1, small2);
-}
-
-// felem_small_mul sets |out| = |small1| * |in2|
-// On entry:
-// small1[i] < 2^64
-// in2[i] < 2^109
-// On exit:
-// out[i] < 7 * 2^64 < 2^67
-static void felem_small_mul(longfelem out, const smallfelem small1,
- const felem in2) {
- smallfelem small2;
- felem_shrink(small2, in2);
- smallfelem_mul(out, small1, small2);
-}
-
-#define two100m36m4 ((((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4))
-#define two100 (((limb)1) << 100)
-#define two100m36p4 ((((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4))
-
-// zero100 is 0 mod p
-static const felem zero100 = {two100m36m4, two100, two100m36p4, two100m36p4};
-
-// Internal function for the different flavours of felem_reduce.
-// felem_reduce_ reduces the higher coefficients in[4]-in[7].
-// On entry:
-// out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
-// out[1] >= in[7] + 2^32*in[4]
-// out[2] >= in[5] + 2^32*in[5]
-// out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
-// On exit:
-// out[0] <= out[0] + in[4] + 2^32*in[5]
-// out[1] <= out[1] + in[5] + 2^33*in[6]
-// out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
-// out[3] <= out[3] + 2^32*in[4] + 3*in[7]
-static void felem_reduce_(felem out, const longfelem in) {
- int128_t c;
- // combine common terms from below
- c = in[4] + (in[5] << 32);
- out[0] += c;
- out[3] -= c;
-
- c = in[5] - in[7];
- out[1] += c;
- out[2] -= c;
-
- // the remaining terms
- // 256: [(0,1),(96,-1),(192,-1),(224,1)]
- out[1] -= (in[4] << 32);
- out[3] += (in[4] << 32);
-
- // 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)]
- out[2] -= (in[5] << 32);
-
- // 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)]
- out[0] -= in[6];
- out[0] -= (in[6] << 32);
- out[1] += (in[6] << 33);
- out[2] += (in[6] * 2);
- out[3] -= (in[6] << 32);
-
- // 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)]
- out[0] -= in[7];
- out[0] -= (in[7] << 32);
- out[2] += (in[7] << 33);
- out[3] += (in[7] * 3);
-}
-
-// felem_reduce converts a longfelem into an felem.
-// To be called directly after felem_square or felem_mul.
-// On entry:
-// in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
-// in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
-// On exit:
-// out[i] < 2^101
-static void felem_reduce(felem out, const longfelem in) {
- out[0] = zero100[0] + in[0];
- out[1] = zero100[1] + in[1];
- out[2] = zero100[2] + in[2];
- out[3] = zero100[3] + in[3];
-
- felem_reduce_(out, in);
-
- // out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
- // out[1] > 2^100 - 2^64 - 7*2^96 > 0
- // out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
- // out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
- //
- // out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
- // out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
- // out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
- // out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
-}
-
-// felem_reduce_zero105 converts a larger longfelem into an felem.
-// On entry:
-// in[0] < 2^71
-// On exit:
-// out[i] < 2^106
-static void felem_reduce_zero105(felem out, const longfelem in) {
- out[0] = zero105[0] + in[0];
- out[1] = zero105[1] + in[1];
- out[2] = zero105[2] + in[2];
- out[3] = zero105[3] + in[3];
-
- felem_reduce_(out, in);
-
- // out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
- // out[1] > 2^105 - 2^71 - 2^103 > 0
- // out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
- // out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
- //
- // out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
- // out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
- // out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
- // out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
-}
-
-// subtract_u64 sets *result = *result - v and *carry to one if the
-// subtraction underflowed.
-static void subtract_u64(uint64_t *result, uint64_t *carry, uint64_t v) {
- uint128_t r = *result;
- r -= v;
- *carry = (r >> 64) & 1;
- *result = (uint64_t)r;
-}
-
-// felem_contract converts |in| to its unique, minimal representation. On
-// entry: in[i] < 2^109.
-static void felem_contract(smallfelem out, const felem in) {
- uint64_t all_equal_so_far = 0, result = 0;
-
- felem_shrink(out, in);
- // small is minimal except that the value might be > p
-
- all_equal_so_far--;
- // We are doing a constant time test if out >= kPrime. We need to compare
- // each uint64_t, from most-significant to least significant. For each one, if
- // all words so far have been equal (m is all ones) then a non-equal
- // result is the answer. Otherwise we continue.
- for (size_t i = 3; i < 4; i--) {
- uint64_t equal;
- uint128_t a = ((uint128_t)kPrime[i]) - out[i];
- // if out[i] > kPrime[i] then a will underflow and the high 64-bits
- // will all be set.
- result |= all_equal_so_far & ((uint64_t)(a >> 64));
-
- // if kPrime[i] == out[i] then |equal| will be all zeros and the
- // decrement will make it all ones.
- equal = kPrime[i] ^ out[i];
- equal--;
- equal &= equal << 32;
- equal &= equal << 16;
- equal &= equal << 8;
- equal &= equal << 4;
- equal &= equal << 2;
- equal &= equal << 1;
- equal = ((int64_t)equal) >> 63;
-
- all_equal_so_far &= equal;
- }
-
- // if all_equal_so_far is still all ones then the two values are equal
- // and so out >= kPrime is true.
- result |= all_equal_so_far;
-
- // if out >= kPrime then we subtract kPrime.
- uint64_t carry;
- subtract_u64(&out[0], &carry, result & kPrime[0]);
- subtract_u64(&out[1], &carry, carry);
- subtract_u64(&out[2], &carry, carry);
- subtract_u64(&out[3], &carry, carry);
-
- subtract_u64(&out[1], &carry, result & kPrime[1]);
- subtract_u64(&out[2], &carry, carry);
- subtract_u64(&out[3], &carry, carry);
-
- subtract_u64(&out[2], &carry, result & kPrime[2]);
- subtract_u64(&out[3], &carry, carry);
-
- subtract_u64(&out[3], &carry, result & kPrime[3]);
-}
-
-// felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
-// otherwise.
-// On entry:
-// small[i] < 2^64
-static limb smallfelem_is_zero(const smallfelem small) {
- limb result;
- uint64_t is_p;
-
- uint64_t is_zero = small[0] | small[1] | small[2] | small[3];
- is_zero--;
- is_zero &= is_zero << 32;
- is_zero &= is_zero << 16;
- is_zero &= is_zero << 8;
- is_zero &= is_zero << 4;
- is_zero &= is_zero << 2;
- is_zero &= is_zero << 1;
- is_zero = ((int64_t)is_zero) >> 63;
-
- is_p = (small[0] ^ kPrime[0]) | (small[1] ^ kPrime[1]) |
- (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
- is_p--;
- is_p &= is_p << 32;
- is_p &= is_p << 16;
- is_p &= is_p << 8;
- is_p &= is_p << 4;
- is_p &= is_p << 2;
- is_p &= is_p << 1;
- is_p = ((int64_t)is_p) >> 63;
-
- is_zero |= is_p;
-
- result = is_zero;
- result |= ((limb)is_zero) << 64;
- return result;
-}
-
-// felem_inv calculates |out| = |in|^{-1}
-//
-// Based on Fermat's Little Theorem:
-// a^p = a (mod p)
-// a^{p-1} = 1 (mod p)
-// a^{p-2} = a^{-1} (mod p)
-static void felem_inv(felem out, const felem in) {
- felem ftmp, ftmp2;
- // each e_I will hold |in|^{2^I - 1}
- felem e2, e4, e8, e16, e32, e64;
- longfelem tmp;
-
- felem_square(tmp, in);
- felem_reduce(ftmp, tmp); // 2^1
- felem_mul(tmp, in, ftmp);
- felem_reduce(ftmp, tmp); // 2^2 - 2^0
- felem_assign(e2, ftmp);
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); // 2^3 - 2^1
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); // 2^4 - 2^2
- felem_mul(tmp, ftmp, e2);
- felem_reduce(ftmp, tmp); // 2^4 - 2^0
- felem_assign(e4, ftmp);
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); // 2^5 - 2^1
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); // 2^6 - 2^2
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); // 2^7 - 2^3
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp); // 2^8 - 2^4
- felem_mul(tmp, ftmp, e4);
- felem_reduce(ftmp, tmp); // 2^8 - 2^0
- felem_assign(e8, ftmp);
- for (size_t i = 0; i < 8; i++) {
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp);
- } // 2^16 - 2^8
- felem_mul(tmp, ftmp, e8);
- felem_reduce(ftmp, tmp); // 2^16 - 2^0
- felem_assign(e16, ftmp);
- for (size_t i = 0; i < 16; i++) {
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp);
- } // 2^32 - 2^16
- felem_mul(tmp, ftmp, e16);
- felem_reduce(ftmp, tmp); // 2^32 - 2^0
- felem_assign(e32, ftmp);
- for (size_t i = 0; i < 32; i++) {
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp);
- } // 2^64 - 2^32
- felem_assign(e64, ftmp);
- felem_mul(tmp, ftmp, in);
- felem_reduce(ftmp, tmp); // 2^64 - 2^32 + 2^0
- for (size_t i = 0; i < 192; i++) {
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp);
- } // 2^256 - 2^224 + 2^192
-
- felem_mul(tmp, e64, e32);
- felem_reduce(ftmp2, tmp); // 2^64 - 2^0
- for (size_t i = 0; i < 16; i++) {
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp);
- } // 2^80 - 2^16
- felem_mul(tmp, ftmp2, e16);
- felem_reduce(ftmp2, tmp); // 2^80 - 2^0
- for (size_t i = 0; i < 8; i++) {
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp);
- } // 2^88 - 2^8
- felem_mul(tmp, ftmp2, e8);
- felem_reduce(ftmp2, tmp); // 2^88 - 2^0
- for (size_t i = 0; i < 4; i++) {
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp);
- } // 2^92 - 2^4
- felem_mul(tmp, ftmp2, e4);
- felem_reduce(ftmp2, tmp); // 2^92 - 2^0
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp); // 2^93 - 2^1
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp); // 2^94 - 2^2
- felem_mul(tmp, ftmp2, e2);
- felem_reduce(ftmp2, tmp); // 2^94 - 2^0
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp); // 2^95 - 2^1
- felem_square(tmp, ftmp2);
- felem_reduce(ftmp2, tmp); // 2^96 - 2^2
- felem_mul(tmp, ftmp2, in);
- felem_reduce(ftmp2, tmp); // 2^96 - 3
-
- felem_mul(tmp, ftmp2, ftmp);
- felem_reduce(out, tmp); // 2^256 - 2^224 + 2^192 + 2^96 - 3
-}
-
-// Group operations
-// ----------------
-//
-// Building on top of the field operations we have the operations on the
-// elliptic curve group itself. Points on the curve are represented in Jacobian
-// coordinates.
-
-// point_double calculates 2*(x_in, y_in, z_in)
-//
-// The method is taken from:
-// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
-//
-// Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
-// while x_out == y_in is not (maybe this works, but it's not tested).
-static void point_double(felem x_out, felem y_out, felem z_out,
- const felem x_in, const felem y_in, const felem z_in) {
- longfelem tmp, tmp2;
- felem delta, gamma, beta, alpha, ftmp, ftmp2;
- smallfelem small1, small2;
-
- felem_assign(ftmp, x_in);
- // ftmp[i] < 2^106
- felem_assign(ftmp2, x_in);
- // ftmp2[i] < 2^106
-
- // delta = z^2
- felem_square(tmp, z_in);
- felem_reduce(delta, tmp);
- // delta[i] < 2^101
-
- // gamma = y^2
- felem_square(tmp, y_in);
- felem_reduce(gamma, tmp);
- // gamma[i] < 2^101
- felem_shrink(small1, gamma);
-
- // beta = x*gamma
- felem_small_mul(tmp, small1, x_in);
- felem_reduce(beta, tmp);
- // beta[i] < 2^101
-
- // alpha = 3*(x-delta)*(x+delta)
- felem_diff(ftmp, delta);
- // ftmp[i] < 2^105 + 2^106 < 2^107
- felem_sum(ftmp2, delta);
- // ftmp2[i] < 2^105 + 2^106 < 2^107
- felem_scalar(ftmp2, 3);
- // ftmp2[i] < 3 * 2^107 < 2^109
- felem_mul(tmp, ftmp, ftmp2);
- felem_reduce(alpha, tmp);
- // alpha[i] < 2^101
- felem_shrink(small2, alpha);
-
- // x' = alpha^2 - 8*beta
- smallfelem_square(tmp, small2);
- felem_reduce(x_out, tmp);
- felem_assign(ftmp, beta);
- felem_scalar(ftmp, 8);
- // ftmp[i] < 8 * 2^101 = 2^104
- felem_diff(x_out, ftmp);
- // x_out[i] < 2^105 + 2^101 < 2^106
-
- // z' = (y + z)^2 - gamma - delta
- felem_sum(delta, gamma);
- // delta[i] < 2^101 + 2^101 = 2^102
- felem_assign(ftmp, y_in);
- felem_sum(ftmp, z_in);
- // ftmp[i] < 2^106 + 2^106 = 2^107
- felem_square(tmp, ftmp);
- felem_reduce(z_out, tmp);
- felem_diff(z_out, delta);
- // z_out[i] < 2^105 + 2^101 < 2^106
-
- // y' = alpha*(4*beta - x') - 8*gamma^2
- felem_scalar(beta, 4);
- // beta[i] < 4 * 2^101 = 2^103
- felem_diff_zero107(beta, x_out);
- // beta[i] < 2^107 + 2^103 < 2^108
- felem_small_mul(tmp, small2, beta);
- // tmp[i] < 7 * 2^64 < 2^67
- smallfelem_square(tmp2, small1);
- // tmp2[i] < 7 * 2^64
- longfelem_scalar(tmp2, 8);
- // tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67
- longfelem_diff(tmp, tmp2);
- // tmp[i] < 2^67 + 2^70 + 2^40 < 2^71
- felem_reduce_zero105(y_out, tmp);
- // y_out[i] < 2^106
-}
-
-// point_double_small is the same as point_double, except that it operates on
-// smallfelems.
-static void point_double_small(smallfelem x_out, smallfelem y_out,
- smallfelem z_out, const smallfelem x_in,
- const smallfelem y_in, const smallfelem z_in) {
- felem felem_x_out, felem_y_out, felem_z_out;
- felem felem_x_in, felem_y_in, felem_z_in;
-
- smallfelem_expand(felem_x_in, x_in);
- smallfelem_expand(felem_y_in, y_in);
- smallfelem_expand(felem_z_in, z_in);
- point_double(felem_x_out, felem_y_out, felem_z_out, felem_x_in, felem_y_in,
- felem_z_in);
- felem_shrink(x_out, felem_x_out);
- felem_shrink(y_out, felem_y_out);
- felem_shrink(z_out, felem_z_out);
-}
-
-// p256_copy_conditional copies in to out iff mask is all ones.
-static void p256_copy_conditional(felem out, const felem in, limb mask) {
- for (size_t i = 0; i < NLIMBS; ++i) {
- const limb tmp = mask & (in[i] ^ out[i]);
- out[i] ^= tmp;
- }
-}
-
-// copy_small_conditional copies in to out iff mask is all ones.
-static void copy_small_conditional(felem out, const smallfelem in, limb mask) {
- const uint64_t mask64 = mask;
- for (size_t i = 0; i < NLIMBS; ++i) {
- out[i] = ((limb)(in[i] & mask64)) | (out[i] & ~mask);
- }
-}
-
-// point_add calcuates (x1, y1, z1) + (x2, y2, z2)
-//
-// The method is taken from:
-// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
-// adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
-//
-// This function includes a branch for checking whether the two input points
-// are equal, (while not equal to the point at infinity). This case never
-// happens during single point multiplication, so there is no timing leak for
-// ECDH or ECDSA signing.
-static void point_add(felem x3, felem y3, felem z3, const felem x1,
- const felem y1, const felem z1, const int mixed,
- const smallfelem x2, const smallfelem y2,
- const smallfelem z2) {
- felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
- longfelem tmp, tmp2;
- smallfelem small1, small2, small3, small4, small5;
- limb x_equal, y_equal, z1_is_zero, z2_is_zero;
-
- felem_shrink(small3, z1);
-
- z1_is_zero = smallfelem_is_zero(small3);
- z2_is_zero = smallfelem_is_zero(z2);
-
- // ftmp = z1z1 = z1**2
- smallfelem_square(tmp, small3);
- felem_reduce(ftmp, tmp);
- // ftmp[i] < 2^101
- felem_shrink(small1, ftmp);
-
- if (!mixed) {
- // ftmp2 = z2z2 = z2**2
- smallfelem_square(tmp, z2);
- felem_reduce(ftmp2, tmp);
- // ftmp2[i] < 2^101
- felem_shrink(small2, ftmp2);
-
- felem_shrink(small5, x1);
-
- // u1 = ftmp3 = x1*z2z2
- smallfelem_mul(tmp, small5, small2);
- felem_reduce(ftmp3, tmp);
- // ftmp3[i] < 2^101
-
- // ftmp5 = z1 + z2
- felem_assign(ftmp5, z1);
- felem_small_sum(ftmp5, z2);
- // ftmp5[i] < 2^107
-
- // ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
- felem_square(tmp, ftmp5);
- felem_reduce(ftmp5, tmp);
- // ftmp2 = z2z2 + z1z1
- felem_sum(ftmp2, ftmp);
- // ftmp2[i] < 2^101 + 2^101 = 2^102
- felem_diff(ftmp5, ftmp2);
- // ftmp5[i] < 2^105 + 2^101 < 2^106
-
- // ftmp2 = z2 * z2z2
- smallfelem_mul(tmp, small2, z2);
- felem_reduce(ftmp2, tmp);
-
- // s1 = ftmp2 = y1 * z2**3
- felem_mul(tmp, y1, ftmp2);
- felem_reduce(ftmp6, tmp);
- // ftmp6[i] < 2^101
- } else {
- // We'll assume z2 = 1 (special case z2 = 0 is handled later).
-
- // u1 = ftmp3 = x1*z2z2
- felem_assign(ftmp3, x1);
- // ftmp3[i] < 2^106
-
- // ftmp5 = 2z1z2
- felem_assign(ftmp5, z1);
- felem_scalar(ftmp5, 2);
- // ftmp5[i] < 2*2^106 = 2^107
-
- // s1 = ftmp2 = y1 * z2**3
- felem_assign(ftmp6, y1);
- // ftmp6[i] < 2^106
- }
-
- // u2 = x2*z1z1
- smallfelem_mul(tmp, x2, small1);
- felem_reduce(ftmp4, tmp);
-
- // h = ftmp4 = u2 - u1
- felem_diff_zero107(ftmp4, ftmp3);
- // ftmp4[i] < 2^107 + 2^101 < 2^108
- felem_shrink(small4, ftmp4);
-
- x_equal = smallfelem_is_zero(small4);
-
- // z_out = ftmp5 * h
- felem_small_mul(tmp, small4, ftmp5);
- felem_reduce(z_out, tmp);
- // z_out[i] < 2^101
-
- // ftmp = z1 * z1z1
- smallfelem_mul(tmp, small1, small3);
- felem_reduce(ftmp, tmp);
-
- // s2 = tmp = y2 * z1**3
- felem_small_mul(tmp, y2, ftmp);
- felem_reduce(ftmp5, tmp);
-
- // r = ftmp5 = (s2 - s1)*2
- felem_diff_zero107(ftmp5, ftmp6);
- // ftmp5[i] < 2^107 + 2^107 = 2^108
- felem_scalar(ftmp5, 2);
- // ftmp5[i] < 2^109
- felem_shrink(small1, ftmp5);
- y_equal = smallfelem_is_zero(small1);
-
- if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
- point_double(x3, y3, z3, x1, y1, z1);
- return;
- }
-
- // I = ftmp = (2h)**2
- felem_assign(ftmp, ftmp4);
- felem_scalar(ftmp, 2);
- // ftmp[i] < 2*2^108 = 2^109
- felem_square(tmp, ftmp);
- felem_reduce(ftmp, tmp);
-
- // J = ftmp2 = h * I
- felem_mul(tmp, ftmp4, ftmp);
- felem_reduce(ftmp2, tmp);
-
- // V = ftmp4 = U1 * I
- felem_mul(tmp, ftmp3, ftmp);
- felem_reduce(ftmp4, tmp);
-
- // x_out = r**2 - J - 2V
- smallfelem_square(tmp, small1);
- felem_reduce(x_out, tmp);
- felem_assign(ftmp3, ftmp4);
- felem_scalar(ftmp4, 2);
- felem_sum(ftmp4, ftmp2);
- // ftmp4[i] < 2*2^101 + 2^101 < 2^103
- felem_diff(x_out, ftmp4);
- // x_out[i] < 2^105 + 2^101
-
- // y_out = r(V-x_out) - 2 * s1 * J
- felem_diff_zero107(ftmp3, x_out);
- // ftmp3[i] < 2^107 + 2^101 < 2^108
- felem_small_mul(tmp, small1, ftmp3);
- felem_mul(tmp2, ftmp6, ftmp2);
- longfelem_scalar(tmp2, 2);
- // tmp2[i] < 2*2^67 = 2^68
- longfelem_diff(tmp, tmp2);
- // tmp[i] < 2^67 + 2^70 + 2^40 < 2^71
- felem_reduce_zero105(y_out, tmp);
- // y_out[i] < 2^106
-
- copy_small_conditional(x_out, x2, z1_is_zero);
- p256_copy_conditional(x_out, x1, z2_is_zero);
- copy_small_conditional(y_out, y2, z1_is_zero);
- p256_copy_conditional(y_out, y1, z2_is_zero);
- copy_small_conditional(z_out, z2, z1_is_zero);
- p256_copy_conditional(z_out, z1, z2_is_zero);
- felem_assign(x3, x_out);
- felem_assign(y3, y_out);
- felem_assign(z3, z_out);
-}
-
-// point_add_small is the same as point_add, except that it operates on
-// smallfelems.
-static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
- smallfelem x1, smallfelem y1, smallfelem z1,
- smallfelem x2, smallfelem y2, smallfelem z2) {
- felem felem_x3, felem_y3, felem_z3;
- felem felem_x1, felem_y1, felem_z1;
- smallfelem_expand(felem_x1, x1);
- smallfelem_expand(felem_y1, y1);
- smallfelem_expand(felem_z1, z1);
- point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2,
- y2, z2);
- felem_shrink(x3, felem_x3);
- felem_shrink(y3, felem_y3);
- felem_shrink(z3, felem_z3);
-}
-
-// Base point pre computation
-// --------------------------
-//
-// Two different sorts of precomputed tables are used in the following code.
-// Each contain various points on the curve, where each point is three field
-// elements (x, y, z).
-//
-// For the base point table, z is usually 1 (0 for the point at infinity).
-// This table has 2 * 16 elements, starting with the following:
-// index | bits | point
-// ------+---------+------------------------------
-// 0 | 0 0 0 0 | 0G
-// 1 | 0 0 0 1 | 1G
-// 2 | 0 0 1 0 | 2^64G
-// 3 | 0 0 1 1 | (2^64 + 1)G
-// 4 | 0 1 0 0 | 2^128G
-// 5 | 0 1 0 1 | (2^128 + 1)G
-// 6 | 0 1 1 0 | (2^128 + 2^64)G
-// 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
-// 8 | 1 0 0 0 | 2^192G
-// 9 | 1 0 0 1 | (2^192 + 1)G
-// 10 | 1 0 1 0 | (2^192 + 2^64)G
-// 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
-// 12 | 1 1 0 0 | (2^192 + 2^128)G
-// 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
-// 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
-// 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
-// followed by a copy of this with each element multiplied by 2^32.
-//
-// The reason for this is so that we can clock bits into four different
-// locations when doing simple scalar multiplies against the base point,
-// and then another four locations using the second 16 elements.
-//
-// Tables for other points have table[i] = iG for i in 0 .. 16.
-
-// g_pre_comp is the table of precomputed base points
-static const smallfelem g_pre_comp[2][16][3] = {
- {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
- {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
- 0x6b17d1f2e12c4247},
- {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
- 0x4fe342e2fe1a7f9b},
- {1, 0, 0, 0}},
- {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
- 0x0fa822bc2811aaa5},
- {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
- 0xbff44ae8f5dba80d},
- {1, 0, 0, 0}},
- {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
- 0x300a4bbc89d6726f},
- {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
- 0x72aac7e0d09b4644},
- {1, 0, 0, 0}},
- {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
- 0x447d739beedb5e67},
- {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
- 0x2d4825ab834131ee},
- {1, 0, 0, 0}},
- {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
- 0xef9519328a9c72ff},
- {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
- 0x611e9fc37dbb2c9b},
- {1, 0, 0, 0}},
- {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
- 0x550663797b51f5d8},
- {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
- 0x157164848aecb851},
- {1, 0, 0, 0}},
- {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
- 0xeb5d7745b21141ea},
- {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
- 0xeafd72ebdbecc17b},
- {1, 0, 0, 0}},
- {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
- 0xa6d39677a7849276},
- {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
- 0x674f84749b0b8816},
- {1, 0, 0, 0}},
- {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
- 0x4e769e7672c9ddad},
- {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
- 0x42b99082de830663},
- {1, 0, 0, 0}},
- {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
- 0x78878ef61c6ce04d},
- {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
- 0xb6cb3f5d7b72c321},
- {1, 0, 0, 0}},
- {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
- 0x0c88bc4d716b1287},
- {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
- 0xdd5ddea3f3901dc6},
- {1, 0, 0, 0}},
- {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
- 0x68f344af6b317466},
- {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
- 0x31b9c405f8540a20},
- {1, 0, 0, 0}},
- {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
- 0x4052bf4b6f461db9},
- {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
- 0xfecf4d5190b0fc61},
- {1, 0, 0, 0}},
- {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
- 0x1eddbae2c802e41a},
- {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
- 0x43104d86560ebcfc},
- {1, 0, 0, 0}},
- {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
- 0xb48e26b484f7a21c},
- {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
- 0xfac015404d4d3dab},
- {1, 0, 0, 0}}},
- {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
- {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
- 0x7fe36b40af22af89},
- {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
- 0xe697d45825b63624},
- {1, 0, 0, 0}},
- {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
- 0x4a5b506612a677a6},
- {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
- 0xeb13461ceac089f1},
- {1, 0, 0, 0}},
- {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
- 0x0781b8291c6a220a},
- {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
- 0x690cde8df0151593},
- {1, 0, 0, 0}},
- {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
- 0x8a535f566ec73617},
- {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
- 0x0455c08468b08bd7},
- {1, 0, 0, 0}},
- {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
- 0x06bada7ab77f8276},
- {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
- 0x5b476dfd0e6cb18a},
- {1, 0, 0, 0}},
- {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
- 0x3e29864e8a2ec908},
- {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
- 0x239b90ea3dc31e7e},
- {1, 0, 0, 0}},
- {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
- 0x820f4dd949f72ff7},
- {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
- 0x140406ec783a05ec},
- {1, 0, 0, 0}},
- {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
- 0x68f6b8542783dfee},
- {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
- 0xcbe1feba92e40ce6},
- {1, 0, 0, 0}},
- {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
- 0xd0b2f94d2f420109},
- {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
- 0x971459828b0719e5},
- {1, 0, 0, 0}},
- {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
- 0x961610004a866aba},
- {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
- 0x7acb9fadcee75e44},
- {1, 0, 0, 0}},
- {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
- 0x24eb9acca333bf5b},
- {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
- 0x69f891c5acd079cc},
- {1, 0, 0, 0}},
- {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
- 0xe51f547c5972a107},
- {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
- 0x1c309a2b25bb1387},
- {1, 0, 0, 0}},
- {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
- 0x20b87b8aa2c4e503},
- {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
- 0xf5c6fa49919776be},
- {1, 0, 0, 0}},
- {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
- 0x1ed7d1b9332010b9},
- {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
- 0x3a2b03f03217257a},
- {1, 0, 0, 0}},
- {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
- 0x15fee545c78dd9f6},
- {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
- 0x4ab5b6b2b8753f81},
- {1, 0, 0, 0}}}};
-
-// select_point selects the |idx|th point from a precomputation table and
-// copies it to out.
-static void select_point(const uint64_t idx, size_t size,
- const smallfelem pre_comp[/*size*/][3],
- smallfelem out[3]) {
- uint64_t *outlimbs = &out[0][0];
- OPENSSL_memset(outlimbs, 0, 3 * sizeof(smallfelem));
-
- for (size_t i = 0; i < size; i++) {
- const uint64_t *inlimbs = (const uint64_t *)&pre_comp[i][0][0];
- uint64_t mask = i ^ idx;
- mask |= mask >> 4;
- mask |= mask >> 2;
- mask |= mask >> 1;
- mask &= 1;
- mask--;
- for (size_t j = 0; j < NLIMBS * 3; j++) {
- outlimbs[j] |= inlimbs[j] & mask;
- }
- }
-}
-
-// get_bit returns the |i|th bit in |in|
-static char get_bit(const felem_bytearray in, int i) {
- if (i < 0 || i >= 256) {
- return 0;
- }
- return (in[i >> 3] >> (i & 7)) & 1;
-}
-
-// Interleaved point multiplication using precomputed point multiples: The
-// small point multiples 0*P, 1*P, ..., 17*P are in p_pre_comp, the scalar
-// in p_scalar, if non-NULL. If g_scalar is non-NULL, we also add this multiple
-// of the generator, using certain (large) precomputed multiples in g_pre_comp.
-// Output point (X, Y, Z) is stored in x_out, y_out, z_out.
-static void batch_mul(felem x_out, felem y_out, felem z_out,
- const uint8_t *p_scalar, const uint8_t *g_scalar,
- const smallfelem p_pre_comp[17][3]) {
- felem nq[3], ftmp;
- smallfelem tmp[3];
- uint64_t bits;
- uint8_t sign, digit;
-
- // set nq to the point at infinity
- OPENSSL_memset(nq, 0, 3 * sizeof(felem));
-
- // Loop over both scalars msb-to-lsb, interleaving additions of multiples
- // of the generator (two in each of the last 32 rounds) and additions of p
- // (every 5th round).
-
- int skip = 1; // save two point operations in the first round
- size_t i = p_scalar != NULL ? 255 : 31;
- for (;;) {
- // double
- if (!skip) {
- point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
- }
-
- // add multiples of the generator
- if (g_scalar != NULL && i <= 31) {
- // first, look 32 bits upwards
- bits = get_bit(g_scalar, i + 224) << 3;
- bits |= get_bit(g_scalar, i + 160) << 2;
- bits |= get_bit(g_scalar, i + 96) << 1;
- bits |= get_bit(g_scalar, i + 32);
- // select the point to add, in constant time
- select_point(bits, 16, g_pre_comp[1], tmp);
-
- if (!skip) {
- point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
- tmp[0], tmp[1], tmp[2]);
- } else {
- smallfelem_expand(nq[0], tmp[0]);
- smallfelem_expand(nq[1], tmp[1]);
- smallfelem_expand(nq[2], tmp[2]);
- skip = 0;
- }
-
- // second, look at the current position
- bits = get_bit(g_scalar, i + 192) << 3;
- bits |= get_bit(g_scalar, i + 128) << 2;
- bits |= get_bit(g_scalar, i + 64) << 1;
- bits |= get_bit(g_scalar, i);
- // select the point to add, in constant time
- select_point(bits, 16, g_pre_comp[0], tmp);
- point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, tmp[0],
- tmp[1], tmp[2]);
- }
-
- // do other additions every 5 doublings
- if (p_scalar != NULL && i % 5 == 0) {
- bits = get_bit(p_scalar, i + 4) << 5;
- bits |= get_bit(p_scalar, i + 3) << 4;
- bits |= get_bit(p_scalar, i + 2) << 3;
- bits |= get_bit(p_scalar, i + 1) << 2;
- bits |= get_bit(p_scalar, i) << 1;
- bits |= get_bit(p_scalar, i - 1);
- ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
-
- // select the point to add or subtract, in constant time.
- select_point(digit, 17, p_pre_comp, tmp);
- smallfelem_neg(ftmp, tmp[1]); // (X, -Y, Z) is the negative
- // point
- copy_small_conditional(ftmp, tmp[1], (((limb)sign) - 1));
- felem_contract(tmp[1], ftmp);
-
- if (!skip) {
- point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
- tmp[0], tmp[1], tmp[2]);
- } else {
- smallfelem_expand(nq[0], tmp[0]);
- smallfelem_expand(nq[1], tmp[1]);
- smallfelem_expand(nq[2], tmp[2]);
- skip = 0;
- }
- }
-
- if (i == 0) {
- break;
- }
- --i;
- }
- felem_assign(x_out, nq[0]);
- felem_assign(y_out, nq[1]);
- felem_assign(z_out, nq[2]);
-}
-
-// OPENSSL EC_METHOD FUNCTIONS
-
-// Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
-// (X/Z^2, Y/Z^3).
-static int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y,
- BN_CTX *ctx) {
- felem z1, z2, x_in, y_in;
- smallfelem x_out, y_out;
- longfelem tmp;
-
- if (EC_POINT_is_at_infinity(group, point)) {
- OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
- return 0;
- }
- if (!BN_to_felem(x_in, &point->X) ||
- !BN_to_felem(y_in, &point->Y) ||
- !BN_to_felem(z1, &point->Z)) {
- return 0;
- }
- felem_inv(z2, z1);
- felem_square(tmp, z2);
- felem_reduce(z1, tmp);
-
- if (x != NULL) {
- felem_mul(tmp, x_in, z1);
- felem_reduce(x_in, tmp);
- felem_contract(x_out, x_in);
- if (!smallfelem_to_BN(x, x_out)) {
- OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
- return 0;
- }
- }
-
- if (y != NULL) {
- felem_mul(tmp, z1, z2);
- felem_reduce(z1, tmp);
- felem_mul(tmp, y_in, z1);
- felem_reduce(y_in, tmp);
- felem_contract(y_out, y_in);
- if (!smallfelem_to_BN(y, y_out)) {
- OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
- return 0;
- }
- }
-
- return 1;
-}
-
-static int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
- const EC_SCALAR *g_scalar,
- const EC_POINT *p,
- const EC_SCALAR *p_scalar, BN_CTX *ctx) {
- int ret = 0;
- BN_CTX *new_ctx = NULL;
- BIGNUM *x, *y, *z, *tmp_scalar;
- smallfelem p_pre_comp[17][3];
- smallfelem x_in, y_in, z_in;
- felem x_out, y_out, z_out;
-
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- return 0;
- }
- }
-
- BN_CTX_start(ctx);
- if ((x = BN_CTX_get(ctx)) == NULL ||
- (y = BN_CTX_get(ctx)) == NULL ||
- (z = BN_CTX_get(ctx)) == NULL ||
- (tmp_scalar = BN_CTX_get(ctx)) == NULL) {
- goto err;
- }
-
- if (p != NULL && p_scalar != NULL) {
- // We treat NULL scalars as 0, and NULL points as points at infinity, i.e.,
- // they contribute nothing to the linear combination.
- OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
- // Precompute multiples.
- if (!BN_to_felem(x_out, &p->X) ||
- !BN_to_felem(y_out, &p->Y) ||
- !BN_to_felem(z_out, &p->Z)) {
- goto err;
- }
- felem_shrink(p_pre_comp[1][0], x_out);
- felem_shrink(p_pre_comp[1][1], y_out);
- felem_shrink(p_pre_comp[1][2], z_out);
- for (size_t j = 2; j <= 16; ++j) {
- if (j & 1) {
- point_add_small(p_pre_comp[j][0], p_pre_comp[j][1],
- p_pre_comp[j][2], p_pre_comp[1][0],
- p_pre_comp[1][1], p_pre_comp[1][2],
- p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
- p_pre_comp[j - 1][2]);
- } else {
- point_double_small(p_pre_comp[j][0], p_pre_comp[j][1],
- p_pre_comp[j][2], p_pre_comp[j / 2][0],
- p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
- }
- }
- }
-
- batch_mul(x_out, y_out, z_out,
- (p != NULL && p_scalar != NULL) ? p_scalar->bytes : NULL,
- g_scalar != NULL ? g_scalar->bytes : NULL,
- (const smallfelem(*)[3]) & p_pre_comp);
-
- // reduce the output to its unique minimal representation
- felem_contract(x_in, x_out);
- felem_contract(y_in, y_out);
- felem_contract(z_in, z_out);
- if (!smallfelem_to_BN(x, x_in) ||
- !smallfelem_to_BN(y, y_in) ||
- !smallfelem_to_BN(z, z_in)) {
- OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
- goto err;
- }
- ret = ec_point_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
-
-err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
-}
-
-DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp256_method) {
- out->group_init = ec_GFp_simple_group_init;
- out->group_finish = ec_GFp_simple_group_finish;
- out->group_set_curve = ec_GFp_simple_group_set_curve;
- out->point_get_affine_coordinates =
- ec_GFp_nistp256_point_get_affine_coordinates;
- out->mul = ec_GFp_nistp256_points_mul;
- out->field_mul = ec_GFp_simple_field_mul;
- out->field_sqr = ec_GFp_simple_field_sqr;
- out->field_encode = NULL;
- out->field_decode = NULL;
-};
-
-#endif // 64_BIT && !WINDOWS
diff --git a/src/crypto/fipsmodule/ec/p256-x86_64.c b/src/crypto/fipsmodule/ec/p256-x86_64.c
index a9b603ae..0e79b6dc 100644
--- a/src/crypto/fipsmodule/ec/p256-x86_64.c
+++ b/src/crypto/fipsmodule/ec/p256-x86_64.c
@@ -446,6 +446,7 @@ DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) {
out->group_set_curve = ec_GFp_mont_group_set_curve;
out->point_get_affine_coordinates = ecp_nistz256_get_affine;
out->mul = ecp_nistz256_points_mul;
+ out->mul_public = ecp_nistz256_points_mul;
out->field_mul = ec_GFp_mont_field_mul;
out->field_sqr = ec_GFp_mont_field_sqr;
out->field_encode = ec_GFp_mont_field_encode;
diff --git a/src/crypto/fipsmodule/ec/util-64.c b/src/crypto/fipsmodule/ec/util.c
index 0cb117b4..7303a151 100644
--- a/src/crypto/fipsmodule/ec/util-64.c
+++ b/src/crypto/fipsmodule/ec/util.c
@@ -14,9 +14,6 @@
#include <openssl/base.h>
-
-#if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS)
-
#include <openssl/ec.h>
#include "internal.h"
@@ -105,5 +102,3 @@ void ec_GFp_nistp_recode_scalar_bits(uint8_t *sign, uint8_t *digit,
*sign = s & 1;
*digit = d;
}
-
-#endif // 64_BIT && !WINDOWS
diff --git a/src/crypto/fipsmodule/ecdsa/ecdsa.c b/src/crypto/fipsmodule/ecdsa/ecdsa.c
index 6571c941..9e038de1 100644
--- a/src/crypto/fipsmodule/ecdsa/ecdsa.c
+++ b/src/crypto/fipsmodule/ecdsa/ecdsa.c
@@ -275,7 +275,7 @@ int ECDSA_do_verify(const uint8_t *digest, size_t digest_len,
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
goto err;
}
- if (!ec_point_mul_scalar(group, point, &u1, pub_key, &u2, ctx)) {
+ if (!ec_point_mul_scalar_public(group, point, &u1, pub_key, &u2, ctx)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
goto err;
}
diff --git a/src/crypto/fipsmodule/modes/asm/ghash-armv4.pl b/src/crypto/fipsmodule/modes/asm/ghash-armv4.pl
index e0b4ee07..e93e5b38 100644
--- a/src/crypto/fipsmodule/modes/asm/ghash-armv4.pl
+++ b/src/crypto/fipsmodule/modes/asm/ghash-armv4.pl
@@ -142,6 +142,11 @@ ___
$code=<<___;
#include <openssl/arm_arch.h>
+@ Silence ARMv8 deprecated IT instruction warnings. This file is used by both
+@ ARMv7 and ARMv8 processors and does not use ARMv8 instructions. (ARMv8 PMULL
+@ instructions are in aesv8-armx.pl.)
+.arch armv7-a
+
.text
#if defined(__thumb2__) || defined(__clang__)
.syntax unified
diff --git a/src/crypto/fipsmodule/modes/asm/ghashv8-armx.pl b/src/crypto/fipsmodule/modes/asm/ghashv8-armx.pl
index b1b24810..9bbca104 100644
--- a/src/crypto/fipsmodule/modes/asm/ghashv8-armx.pl
+++ b/src/crypto/fipsmodule/modes/asm/ghashv8-armx.pl
@@ -66,11 +66,7 @@ $code=<<___;
.text
___
-$code.=<<___ if ($flavour =~ /64/);
-#if !defined(__clang__) || defined(BORINGSSL_CLANG_SUPPORTS_DOT_ARCH)
-.arch armv8-a+crypto
-#endif
-___
+$code.=".arch armv8-a+crypto\n" if ($flavour =~ /64/);
$code.=<<___ if ($flavour !~ /64/);
.fpu neon
.code 32
diff --git a/src/crypto/fipsmodule/rsa/rsa_impl.c b/src/crypto/fipsmodule/rsa/rsa_impl.c
index fb27320e..c3912284 100644
--- a/src/crypto/fipsmodule/rsa/rsa_impl.c
+++ b/src/crypto/fipsmodule/rsa/rsa_impl.c
@@ -641,6 +641,35 @@ err:
return ret;
}
+// mod_montgomery sets |r| to |I| mod |p|. |I| must already be fully reduced
+// modulo |p| times |q|. It returns one on success and zero on error.
+static int mod_montgomery(BIGNUM *r, const BIGNUM *I, const BIGNUM *p,
+ const BN_MONT_CTX *mont_p, const BIGNUM *q,
+ BN_CTX *ctx) {
+ // Reduce in constant time with Montgomery reduction, which requires I <= p *
+ // R. If p and q are the same size, which is true for any RSA keys we or
+ // anyone sane generates, we have q < R and I < p * q, so this holds.
+ //
+ // If q is too big, fall back to |BN_mod|.
+ if (q->top > p->top) {
+ return BN_mod(r, I, p, ctx);
+ }
+
+ if (// Reduce mod p with Montgomery reduction. This computes I * R^-1 mod p.
+ !BN_from_montgomery(r, I, mont_p, ctx) ||
+ // Multiply by R^2 and do another Montgomery reduction to compute
+ // I * R^-1 * R^2 * R^-1 = I mod p.
+ !BN_to_montgomery(r, r, mont_p, ctx)) {
+ return 0;
+ }
+
+ // By precomputing R^3 mod p (normally |BN_MONT_CTX| only uses R^2 mod p) and
+ // adjusting the API for |BN_mod_exp_mont_consttime|, we could instead compute
+ // I * R mod p here and save a reduction per prime. But this would require
+ // changing the RSAZ code and may not be worth it.
+ return 1;
+}
+
static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) {
assert(ctx != NULL);
@@ -675,8 +704,12 @@ static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) {
goto err;
}
+ // This is a pre-condition for |mod_montgomery|. It was already checked by the
+ // caller.
+ assert(BN_ucmp(I, rsa->n) < 0);
+
// compute I mod q
- if (!BN_mod(r1, I, rsa->q, ctx)) {
+ if (!mod_montgomery(r1, I, rsa->q, rsa->mont_q, rsa->p, ctx)) {
goto err;
}
@@ -686,7 +719,7 @@ static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) {
}
// compute I mod p
- if (!BN_mod(r1, I, rsa->p, ctx)) {
+ if (!mod_montgomery(r1, I, rsa->p, rsa->mont_p, rsa->q, ctx)) {
goto err;
}
@@ -695,6 +728,23 @@ static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) {
goto err;
}
+ // TODO(davidben): The code below is not constant-time, even ignoring
+ // |bn_correct_top|. To fix this:
+ //
+ // 1. Canonicalize keys on p > q. (p > q for keys we generate, but not ones we
+ // import.) We have exposed structs, but we can generalize the
+ // |BN_MONT_CTX_set_locked| trick to do a one-time canonicalization of the
+ // private key where we optionally swap p and q (re-computing iqmp if
+ // necessary) and fill in mont_*. This removes the p < q case below.
+ //
+ // 2. Compute r0 - m1 (mod p) in constant-time. With (1) done, this is just a
+ // constant-time modular subtraction. It should be doable with
+ // |bn_sub_words| and a select on the borrow bit.
+ //
+ // 3. When computing mont_*, additionally compute iqmp_mont, iqmp in
+ // Montgomery form. The |BN_mul| and |BN_mod| pair can then be replaced
+ // with |BN_mod_mul_montgomery|.
+
if (!BN_sub(r0, r0, m1)) {
goto err;
}
diff --git a/src/crypto/fipsmodule/sha/asm/sha256-armv4.pl b/src/crypto/fipsmodule/sha/asm/sha256-armv4.pl
index 3eea0801..e5ecdfd1 100644
--- a/src/crypto/fipsmodule/sha/asm/sha256-armv4.pl
+++ b/src/crypto/fipsmodule/sha/asm/sha256-armv4.pl
@@ -181,6 +181,11 @@ $code=<<___;
# define __ARM_MAX_ARCH__ 7
#endif
+@ Silence ARMv8 deprecated IT instruction warnings. This file is used by both
+@ ARMv7 and ARMv8 processors. It does have ARMv8-only code, but those
+@ instructions are manually-encoded. (See unsha256.)
+.arch armv7-a
+
.text
#if defined(__thumb2__)
.syntax unified
diff --git a/src/crypto/fipsmodule/sha/asm/sha512-armv4.pl b/src/crypto/fipsmodule/sha/asm/sha512-armv4.pl
index 85f403ec..cc247a44 100644
--- a/src/crypto/fipsmodule/sha/asm/sha512-armv4.pl
+++ b/src/crypto/fipsmodule/sha/asm/sha512-armv4.pl
@@ -208,6 +208,10 @@ $code=<<___;
# define VFP_ABI_POP
#endif
+@ Silence ARMv8 deprecated IT instruction warnings. This file is used by both
+@ ARMv7 and ARMv8 processors and does not use ARMv8 instructions.
+.arch armv7-a
+
#ifdef __ARMEL__
# define LO 0
# define HI 4
diff --git a/src/crypto/internal.h b/src/crypto/internal.h
index 76d39b74..57064142 100644
--- a/src/crypto/internal.h
+++ b/src/crypto/internal.h
@@ -151,9 +151,16 @@ void OPENSSL_cpuid_setup(void);
#endif
-#if !defined(_MSC_VER) && defined(OPENSSL_64_BIT)
+#if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
+#define BORINGSSL_HAS_UINT128
typedef __int128_t int128_t;
typedef __uint128_t uint128_t;
+
+// clang-cl supports __uint128_t but modulus and division don't work.
+// https://crbug.com/787617.
+#if !defined(_MSC_VER) || !defined(__clang__)
+#define BORINGSSL_CAN_DIVIDE_UINT128
+#endif
#endif
#define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
diff --git a/src/include/openssl/err.h b/src/include/openssl/err.h
index 920c3066..a39c0909 100644
--- a/src/include/openssl/err.h
+++ b/src/include/openssl/err.h
@@ -395,7 +395,7 @@ OPENSSL_EXPORT const char *ERR_func_error_string(uint32_t packed_error);
//
// TODO(fork): remove this function.
OPENSSL_EXPORT char *ERR_error_string(uint32_t packed_error, char *buf);
-#define ERR_ERROR_STRING_BUF_LEN 256
+#define ERR_ERROR_STRING_BUF_LEN 120
// ERR_GET_FUNC returns zero. BoringSSL errors do not report a function code.
#define ERR_GET_FUNC(packed_error) 0
diff --git a/src/include/openssl/ssl.h b/src/include/openssl/ssl.h
index c5b95e9d..066390b6 100644
--- a/src/include/openssl/ssl.h
+++ b/src/include/openssl/ssl.h
@@ -2988,6 +2988,13 @@ OPENSSL_EXPORT int SSL_early_data_accepted(const SSL *ssl);
// |SSL_ERROR_EARLY_DATA_REJECTED|.
OPENSSL_EXPORT void SSL_reset_early_data_reject(SSL *ssl);
+// SSL_export_early_keying_material behaves like |SSL_export_keying_material|,
+// but it uses the early exporter. The operation will fail if |ssl| did not
+// negotiate TLS 1.3 or 0-RTT.
+OPENSSL_EXPORT int SSL_export_early_keying_material(
+ SSL *ssl, uint8_t *out, size_t out_len, const char *label, size_t label_len,
+ const uint8_t *context, size_t context_len);
+
// Alerts.
//
@@ -4561,6 +4568,8 @@ OPENSSL_EXPORT bool SealRecord(SSL *ssl, Span<uint8_t> out_prefix,
#define SSL_R_NO_SUPPORTED_VERSIONS_ENABLED 280
#define SSL_R_APPLICATION_DATA_INSTEAD_OF_HANDSHAKE 281
#define SSL_R_EMPTY_HELLO_RETRY_REQUEST 282
+#define SSL_R_EARLY_DATA_NOT_IN_USE 283
+#define SSL_R_HANDSHAKE_NOT_COMPLETE 284
#define SSL_R_SSLV3_ALERT_CLOSE_NOTIFY 1000
#define SSL_R_SSLV3_ALERT_UNEXPECTED_MESSAGE 1010
#define SSL_R_SSLV3_ALERT_BAD_RECORD_MAC 1020
diff --git a/src/ssl/handshake_client.cc b/src/ssl/handshake_client.cc
index b801e82e..cdda4593 100644
--- a/src/ssl/handshake_client.cc
+++ b/src/ssl/handshake_client.cc
@@ -464,7 +464,7 @@ static enum ssl_hs_wait_t do_start_connect(SSL_HANDSHAKE *hs) {
hs->session_id_len = ssl->session->session_id_length;
OPENSSL_memcpy(hs->session_id, ssl->session->session_id,
hs->session_id_len);
- } else if (ssl_is_resumption_variant(ssl->tls13_variant)) {
+ } else if (ssl_is_resumption_variant(hs->max_version, ssl->tls13_variant)) {
hs->session_id_len = sizeof(hs->session_id);
if (!RAND_bytes(hs->session_id, hs->session_id_len)) {
return ssl_hs_error;
diff --git a/src/ssl/internal.h b/src/ssl/internal.h
index 4bef3582..4151d2b5 100644
--- a/src/ssl/internal.h
+++ b/src/ssl/internal.h
@@ -404,9 +404,10 @@ bool ssl_is_draft22(uint16_t version);
// TLS 1.3 resumption experiment.
bool ssl_is_resumption_experiment(uint16_t version);
-// ssl_is_resumption_variant returns whether the version corresponds to a
+// ssl_is_resumption_variant returns whether the variant corresponds to a
// TLS 1.3 resumption experiment.
-bool ssl_is_resumption_variant(enum tls13_variant_t variant);
+bool ssl_is_resumption_variant(uint16_t max_version,
+ enum tls13_variant_t variant);
// ssl_is_resumption_client_ccs_experiment returns whether the version
// corresponds to a TLS 1.3 resumption experiment that sends a client CCS.
@@ -1244,10 +1245,10 @@ int tls13_derive_resumption_secret(SSL_HANDSHAKE *hs);
// tls13_export_keying_material provides an exporter interface to use the
// |exporter_secret|.
-int tls13_export_keying_material(SSL *ssl, uint8_t *out, size_t out_len,
- const char *label, size_t label_len,
- const uint8_t *context, size_t context_len,
- int use_context);
+int tls13_export_keying_material(SSL *ssl, Span<uint8_t> out,
+ Span<const uint8_t> secret,
+ Span<const char> label,
+ Span<const uint8_t> context);
// tls13_finished_mac calculates the MAC of the handshake transcript to verify
// the integrity of the Finished message, and stores the result in |out| and
diff --git a/src/ssl/ssl_versions.cc b/src/ssl/ssl_versions.cc
index 15b02943..2406bd81 100644
--- a/src/ssl/ssl_versions.cc
+++ b/src/ssl/ssl_versions.cc
@@ -412,7 +412,11 @@ bool ssl_is_resumption_experiment(uint16_t version) {
version == TLS1_3_DRAFT22_VERSION;
}
-bool ssl_is_resumption_variant(enum tls13_variant_t variant) {
+bool ssl_is_resumption_variant(uint16_t max_version,
+ enum tls13_variant_t variant) {
+ if (max_version < TLS1_3_VERSION) {
+ return false;
+ }
return variant == tls13_experiment || variant == tls13_experiment2 ||
variant == tls13_experiment3 || variant == tls13_draft22;
}
diff --git a/src/ssl/t1_enc.cc b/src/ssl/t1_enc.cc
index 2a099878..6b5447d9 100644
--- a/src/ssl/t1_enc.cc
+++ b/src/ssl/t1_enc.cc
@@ -458,17 +458,28 @@ int SSL_export_keying_material(SSL *ssl, uint8_t *out, size_t out_len,
const uint8_t *context, size_t context_len,
int use_context) {
if (!ssl->s3->have_version || ssl->version == SSL3_VERSION) {
+ OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE);
return 0;
}
- // Exporters may not be used in the middle of a renegotiation.
- if (SSL_in_init(ssl) && !SSL_in_false_start(ssl)) {
+ // Exporters may be used in False Start and server 0-RTT, where the handshake
+ // has progressed enough. Otherwise, they may not be used during a handshake.
+ if (SSL_in_init(ssl) &&
+ !SSL_in_false_start(ssl) &&
+ !(SSL_is_server(ssl) && SSL_in_early_data(ssl))) {
+ OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE);
return 0;
}
if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
- return tls13_export_keying_material(ssl, out, out_len, label, label_len,
- context, context_len, use_context);
+ if (!use_context) {
+ context = nullptr;
+ context_len = 0;
+ }
+ return tls13_export_keying_material(
+ ssl, MakeSpan(out, out_len),
+ MakeConstSpan(ssl->s3->exporter_secret, ssl->s3->exporter_secret_len),
+ MakeConstSpan(label, label_len), MakeConstSpan(context, context_len));
}
size_t seed_len = 2 * SSL3_RANDOM_SIZE;
@@ -501,3 +512,27 @@ int SSL_export_keying_material(SSL *ssl, uint8_t *out, size_t out_len,
MakeConstSpan(session->master_key, session->master_key_length),
MakeConstSpan(label, label_len), seed, {});
}
+
+int SSL_export_early_keying_material(
+ SSL *ssl, uint8_t *out, size_t out_len, const char *label, size_t label_len,
+ const uint8_t *context, size_t context_len) {
+ if (!SSL_in_early_data(ssl) &&
+ (!ssl->s3->have_version ||
+ ssl_protocol_version(ssl) < TLS1_3_VERSION)) {
+ OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION);
+ return 0;
+ }
+
+ // The early exporter only exists if we accepted early data or offered it as
+ // a client.
+ if (!SSL_in_early_data(ssl) && !SSL_early_data_accepted(ssl)) {
+ OPENSSL_PUT_ERROR(SSL, SSL_R_EARLY_DATA_NOT_IN_USE);
+ return 0;
+ }
+
+ return tls13_export_keying_material(
+ ssl, MakeSpan(out, out_len),
+ MakeConstSpan(ssl->s3->early_exporter_secret,
+ ssl->s3->early_exporter_secret_len),
+ MakeConstSpan(label, label_len), MakeConstSpan(context, context_len));
+}
diff --git a/src/ssl/test/bssl_shim.cc b/src/ssl/test/bssl_shim.cc
index 1f43be6d..0b4c7604 100644
--- a/src/ssl/test/bssl_shim.cc
+++ b/src/ssl/test/bssl_shim.cc
@@ -2205,6 +2205,22 @@ static bool DoExchange(bssl::UniquePtr<SSL_SESSION> *out_session, SSL *ssl,
GetTestState(ssl)->got_new_session = false;
}
+ if (config->export_early_keying_material > 0) {
+ std::vector<uint8_t> result(
+ static_cast<size_t>(config->export_early_keying_material));
+ if (!SSL_export_early_keying_material(
+ ssl, result.data(), result.size(), config->export_label.data(),
+ config->export_label.size(),
+ reinterpret_cast<const uint8_t *>(config->export_context.data()),
+ config->export_context.size())) {
+ fprintf(stderr, "failed to export keying material\n");
+ return false;
+ }
+ if (WriteAll(ssl, result.data(), result.size()) < 0) {
+ return false;
+ }
+ }
+
if (config->export_keying_material > 0) {
std::vector<uint8_t> result(
static_cast<size_t>(config->export_keying_material));
diff --git a/src/ssl/test/runner/common.go b/src/ssl/test/runner/common.go
index 53433463..c6d5c650 100644
--- a/src/ssl/test/runner/common.go
+++ b/src/ssl/test/runner/common.go
@@ -1289,6 +1289,21 @@ type ProtocolBugs struct {
// it was accepted.
SendEarlyDataExtension bool
+ // ExpectEarlyKeyingMaterial, if non-zero, causes a TLS 1.3 server to
+ // read an application data record after the ClientHello before it sends
+ // a ServerHello. The record's contents have the specified length and
+ // match the corresponding early exporter value. This is used to test
+ // the client using the early exporter in the 0-RTT state.
+ ExpectEarlyKeyingMaterial int
+
+ // ExpectEarlyKeyingLabel is the label to use with
+ // ExpectEarlyKeyingMaterial.
+ ExpectEarlyKeyingLabel string
+
+ // ExpectEarlyKeyingContext is the context string to use with
+ // ExpectEarlyKeyingMaterial
+ ExpectEarlyKeyingContext string
+
// ExpectEarlyData causes a TLS 1.3 server to read application
// data after the ClientHello (assuming the server is able to
// derive the key under which the data is encrypted) before it
diff --git a/src/ssl/test/runner/conn.go b/src/ssl/test/runner/conn.go
index ec320aeb..c6ee443c 100644
--- a/src/ssl/test/runner/conn.go
+++ b/src/ssl/test/runner/conn.go
@@ -44,6 +44,7 @@ type Conn struct {
didResume bool // whether this connection was a session resumption
extendedMasterSecret bool // whether this session used an extended master secret
cipherSuite *cipherSuite
+ earlyCipherSuite *cipherSuite
ocspResponse []byte // stapled OCSP response
sctList []byte // signed certificate timestamp list
peerCertificates []*x509.Certificate
@@ -63,6 +64,7 @@ type Conn struct {
curveID CurveID
clientRandom, serverRandom [32]byte
+ earlyExporterSecret []byte
exporterSecret []byte
resumptionSecret []byte
@@ -1847,6 +1849,23 @@ func (c *Conn) VerifyHostname(host string) error {
return c.peerCertificates[0].VerifyHostname(host)
}
+func (c *Conn) exportKeyingMaterialTLS13(length int, secret, label, context []byte) []byte {
+ cipherSuite := c.cipherSuite
+ if cipherSuite == nil {
+ cipherSuite = c.earlyCipherSuite
+ }
+ if isDraft21(c.wireVersion) {
+ hash := cipherSuite.hash()
+ exporterKeyingLabel := []byte("exporter")
+ contextHash := hash.New()
+ contextHash.Write(context)
+ exporterContext := hash.New().Sum(nil)
+ derivedSecret := hkdfExpandLabel(cipherSuite.hash(), c.wireVersion, secret, label, exporterContext, hash.Size())
+ return hkdfExpandLabel(cipherSuite.hash(), c.wireVersion, derivedSecret, exporterKeyingLabel, contextHash.Sum(nil), length)
+ }
+ return hkdfExpandLabel(cipherSuite.hash(), c.wireVersion, secret, label, context, length)
+}
+
// ExportKeyingMaterial exports keying material from the current connection
// state, as per RFC 5705.
func (c *Conn) ExportKeyingMaterial(length int, label, context []byte, useContext bool) ([]byte, error) {
@@ -1857,16 +1876,7 @@ func (c *Conn) ExportKeyingMaterial(length int, label, context []byte, useContex
}
if c.vers >= VersionTLS13 {
- if isDraft21(c.wireVersion) {
- hash := c.cipherSuite.hash()
- exporterKeyingLabel := []byte("exporter")
- contextHash := hash.New()
- contextHash.Write(context)
- exporterContext := hash.New().Sum(nil)
- derivedSecret := hkdfExpandLabel(c.cipherSuite.hash(), c.wireVersion, c.exporterSecret, label, exporterContext, hash.Size())
- return hkdfExpandLabel(c.cipherSuite.hash(), c.wireVersion, derivedSecret, exporterKeyingLabel, contextHash.Sum(nil), length), nil
- }
- return hkdfExpandLabel(c.cipherSuite.hash(), c.wireVersion, c.exporterSecret, label, context, length), nil
+ return c.exportKeyingMaterialTLS13(length, c.exporterSecret, label, context), nil
}
seedLen := len(c.clientRandom) + len(c.serverRandom)
@@ -1885,6 +1895,18 @@ func (c *Conn) ExportKeyingMaterial(length int, label, context []byte, useContex
return result, nil
}
+func (c *Conn) ExportEarlyKeyingMaterial(length int, label, context []byte) ([]byte, error) {
+ if c.vers < VersionTLS13 {
+ return nil, errors.New("tls: early exporters not defined before TLS 1.3")
+ }
+
+ if c.earlyExporterSecret == nil {
+ return nil, errors.New("tls: no early exporter secret")
+ }
+
+ return c.exportKeyingMaterialTLS13(length, c.earlyExporterSecret, label, context), nil
+}
+
// noRenegotiationInfo returns true if the renegotiation info extension
// should be supported in the current handshake.
func (c *Conn) noRenegotiationInfo() bool {
diff --git a/src/ssl/test/runner/fuzzer_mode.json b/src/ssl/test/runner/fuzzer_mode.json
index fd029d31..89ba707e 100644
--- a/src/ssl/test/runner/fuzzer_mode.json
+++ b/src/ssl/test/runner/fuzzer_mode.json
@@ -46,6 +46,7 @@
"*-EarlyData-RejectUnfinishedWrite-Client-*": "Trial decryption does not work with the NULL cipher.",
"EarlyData-Reject-Client-*": "Trial decryption does not work with the NULL cipher.",
"EarlyData-RejectTicket-Client-*": "Trial decryption does not work with the NULL cipher.",
+ "CustomExtensions-Server-EarlyDataOffered": "Trial decryption does not work with the NULL cipher.",
"Renegotiate-Client-BadExt*": "Fuzzer mode does not check renegotiation_info.",
diff --git a/src/ssl/test/runner/handshake_client.go b/src/ssl/test/runner/handshake_client.go
index 5f22ecd4..55d21c97 100644
--- a/src/ssl/test/runner/handshake_client.go
+++ b/src/ssl/test/runner/handshake_client.go
@@ -414,18 +414,21 @@ NextCipherSuite:
finishedHash.addEntropy(session.masterSecret)
finishedHash.Write(helloBytes)
- earlyLabel := earlyTrafficLabel
- if isDraft21(session.wireVersion) {
- earlyLabel = earlyTrafficLabelDraft21
- }
-
if !c.config.Bugs.SkipChangeCipherSpec && isDraft22(session.wireVersion) {
c.wireVersion = session.wireVersion
c.writeRecord(recordTypeChangeCipherSpec, []byte{1})
c.wireVersion = 0
}
- earlyTrafficSecret := finishedHash.deriveSecret(earlyLabel)
+ var earlyTrafficSecret []byte
+ if isDraft21(session.wireVersion) {
+ earlyTrafficSecret = finishedHash.deriveSecret(earlyTrafficLabelDraft21)
+ c.earlyExporterSecret = finishedHash.deriveSecret(earlyExporterLabelDraft21)
+ } else {
+ earlyTrafficSecret = finishedHash.deriveSecret(earlyTrafficLabel)
+ c.earlyExporterSecret = finishedHash.deriveSecret(earlyExporterLabel)
+ }
+
c.useOutTrafficSecret(session.wireVersion, pskCipherSuite, earlyTrafficSecret)
for _, earlyData := range c.config.Bugs.SendEarlyData {
if _, err := c.writeRecord(recordTypeApplicationData, earlyData); err != nil {
diff --git a/src/ssl/test/runner/handshake_server.go b/src/ssl/test/runner/handshake_server.go
index 595f8daa..9ba6c2c4 100644
--- a/src/ssl/test/runner/handshake_server.go
+++ b/src/ssl/test/runner/handshake_server.go
@@ -694,22 +694,36 @@ ResendHelloRetryRequest:
}
}
if encryptedExtensions.extensions.hasEarlyData {
- earlyLabel := earlyTrafficLabel
+ var earlyTrafficSecret []byte
if isDraft21(c.wireVersion) {
- earlyLabel = earlyTrafficLabelDraft21
+ earlyTrafficSecret = hs.finishedHash.deriveSecret(earlyTrafficLabelDraft21)
+ c.earlyExporterSecret = hs.finishedHash.deriveSecret(earlyExporterLabelDraft21)
+ } else {
+ earlyTrafficSecret = hs.finishedHash.deriveSecret(earlyTrafficLabel)
+ c.earlyExporterSecret = hs.finishedHash.deriveSecret(earlyExporterLabel)
}
- earlyTrafficSecret := hs.finishedHash.deriveSecret(earlyLabel)
if err := c.useInTrafficSecret(c.wireVersion, hs.suite, earlyTrafficSecret); err != nil {
return err
}
- for _, expectedMsg := range config.Bugs.ExpectEarlyData {
+ c.earlyCipherSuite = hs.suite
+ expectEarlyData := config.Bugs.ExpectEarlyData
+ if n := config.Bugs.ExpectEarlyKeyingMaterial; n > 0 {
+ exporter, err := c.ExportEarlyKeyingMaterial(n, []byte(config.Bugs.ExpectEarlyKeyingLabel), []byte(config.Bugs.ExpectEarlyKeyingContext))
+ if err != nil {
+ return err
+ }
+ expectEarlyData = append([][]byte{exporter}, expectEarlyData...)
+ }
+
+ for _, expectedMsg := range expectEarlyData {
if err := c.readRecord(recordTypeApplicationData); err != nil {
return err
}
- if !bytes.Equal(c.input.data[c.input.off:], expectedMsg) {
- return errors.New("ExpectEarlyData: did not get expected message")
+ msg := c.input.data[c.input.off:]
+ if !bytes.Equal(msg, expectedMsg) {
+ return fmt.Errorf("tls: got early data record %x, wanted %x", msg, expectedMsg)
}
c.in.freeBlock(c.input)
c.input = nil
diff --git a/src/ssl/test/runner/prf.go b/src/ssl/test/runner/prf.go
index 6fa3c4c6..54e18cba 100644
--- a/src/ssl/test/runner/prf.go
+++ b/src/ssl/test/runner/prf.go
@@ -446,6 +446,7 @@ var (
clientApplicationTrafficLabel = []byte("client application traffic secret")
serverApplicationTrafficLabel = []byte("server application traffic secret")
applicationTrafficLabel = []byte("application traffic secret")
+ earlyExporterLabel = []byte("early exporter master secret")
exporterLabel = []byte("exporter master secret")
resumptionLabel = []byte("resumption master secret")
@@ -457,6 +458,7 @@ var (
clientApplicationTrafficLabelDraft21 = []byte("c ap traffic")
serverApplicationTrafficLabelDraft21 = []byte("s ap traffic")
applicationTrafficLabelDraft21 = []byte("traffic upd")
+ earlyExporterLabelDraft21 = []byte("e exp master")
exporterLabelDraft21 = []byte("exp master")
resumptionLabelDraft21 = []byte("res master")
diff --git a/src/ssl/test/runner/runner.go b/src/ssl/test/runner/runner.go
index 362a7a53..4cfce261 100644
--- a/src/ssl/test/runner/runner.go
+++ b/src/ssl/test/runner/runner.go
@@ -431,6 +431,9 @@ type testCase struct {
exportLabel string
exportContext string
useExportContext bool
+ // exportEarlyKeyingMaterial, if non-zero, behaves like
+ // exportKeyingMaterial, but for the early exporter.
+ exportEarlyKeyingMaterial int
// flags, if not empty, contains a list of command-line flags that will
// be passed to the shim program.
flags []string
@@ -694,6 +697,20 @@ func doExchange(test *testCase, config *Config, conn net.Conn, isResume bool, tr
}
}
+ if isResume && test.exportEarlyKeyingMaterial > 0 {
+ actual := make([]byte, test.exportEarlyKeyingMaterial)
+ if _, err := io.ReadFull(tlsConn, actual); err != nil {
+ return err
+ }
+ expected, err := tlsConn.ExportEarlyKeyingMaterial(test.exportEarlyKeyingMaterial, []byte(test.exportLabel), []byte(test.exportContext))
+ if err != nil {
+ return err
+ }
+ if !bytes.Equal(actual, expected) {
+ return fmt.Errorf("early keying material mismatch; got %x, wanted %x", actual, expected)
+ }
+ }
+
if test.exportKeyingMaterial > 0 {
actual := make([]byte, test.exportKeyingMaterial)
if _, err := io.ReadFull(tlsConn, actual); err != nil {
@@ -704,7 +721,7 @@ func doExchange(test *testCase, config *Config, conn net.Conn, isResume bool, tr
return err
}
if !bytes.Equal(actual, expected) {
- return fmt.Errorf("keying material mismatch")
+ return fmt.Errorf("keying material mismatch; got %x, wanted %x", actual, expected)
}
}
@@ -1037,12 +1054,18 @@ func runTest(test *testCase, shimPath string, mallocNumToFail int64) error {
if test.exportKeyingMaterial > 0 {
flags = append(flags, "-export-keying-material", strconv.Itoa(test.exportKeyingMaterial))
- flags = append(flags, "-export-label", test.exportLabel)
- flags = append(flags, "-export-context", test.exportContext)
if test.useExportContext {
flags = append(flags, "-use-export-context")
}
}
+ if test.exportEarlyKeyingMaterial > 0 {
+ flags = append(flags, "-on-resume-export-early-keying-material", strconv.Itoa(test.exportEarlyKeyingMaterial))
+ }
+ if test.exportKeyingMaterial > 0 || test.exportEarlyKeyingMaterial > 0 {
+ flags = append(flags, "-export-label", test.exportLabel)
+ flags = append(flags, "-export-context", test.exportContext)
+ }
+
if test.expectResumeRejected {
flags = append(flags, "-expect-session-miss")
}
@@ -9047,6 +9070,9 @@ func addExportKeyingMaterialTests() {
config: Config{
MaxVersion: vers.version,
},
+ // Test the exporter in both initial and resumption
+ // handshakes.
+ resumeSession: true,
tls13Variant: vers.tls13Variant,
exportKeyingMaterial: 1024,
exportLabel: "label",
@@ -9081,6 +9107,229 @@ func addExportKeyingMaterialTests() {
exportContext: "context",
useExportContext: true,
})
+
+ if vers.version >= VersionTLS13 {
+ // Test the exporters do not work while the client is
+ // sending 0-RTT data.
+ testCases = append(testCases, testCase{
+ name: "NoEarlyKeyingMaterial-Client-InEarlyData-" + vers.name,
+ config: Config{
+ MaxVersion: vers.version,
+ MaxEarlyDataSize: 16384,
+ },
+ resumeSession: true,
+ tls13Variant: vers.tls13Variant,
+ flags: []string{
+ "-enable-early-data",
+ "-expect-ticket-supports-early-data",
+ "-expect-accept-early-data",
+ "-on-resume-export-keying-material", "1024",
+ "-on-resume-export-label", "label",
+ "-on-resume-export-context", "context",
+ },
+ shouldFail: true,
+ expectedError: ":HANDSHAKE_NOT_COMPLETE:",
+ })
+
+ // Test the early exporter works while the client is
+ // sending 0-RTT data. This data arrives during the
+ // server handshake, so we test it with ProtocolBugs.
+ testCases = append(testCases, testCase{
+ name: "ExportEarlyKeyingMaterial-Client-InEarlyData-" + vers.name,
+ config: Config{
+ MaxVersion: vers.version,
+ MaxEarlyDataSize: 16384,
+ },
+ resumeConfig: &Config{
+ MaxVersion: vers.version,
+ MaxEarlyDataSize: 16384,
+ Bugs: ProtocolBugs{
+ ExpectEarlyKeyingMaterial: 1024,
+ ExpectEarlyKeyingLabel: "label",
+ ExpectEarlyKeyingContext: "context",
+ },
+ },
+ resumeSession: true,
+ tls13Variant: vers.tls13Variant,
+ flags: []string{
+ "-enable-early-data",
+ "-expect-ticket-supports-early-data",
+ "-expect-accept-early-data",
+ "-on-resume-export-early-keying-material", "1024",
+ "-on-resume-export-label", "label",
+ "-on-resume-export-context", "context",
+ },
+ })
+
+ // Test the early exporter still works on the client
+ // after the handshake is confirmed. This arrives after
+ // the server handshake, so the normal hooks work.
+ testCases = append(testCases, testCase{
+ name: "ExportEarlyKeyingMaterial-Client-EarlyDataAccept-" + vers.name,
+ config: Config{
+ MaxVersion: vers.version,
+ MaxEarlyDataSize: 16384,
+ },
+ resumeConfig: &Config{
+ MaxVersion: vers.version,
+ MaxEarlyDataSize: 16384,
+ },
+ resumeSession: true,
+ tls13Variant: vers.tls13Variant,
+ exportEarlyKeyingMaterial: 1024,
+ exportLabel: "label",
+ exportContext: "context",
+ flags: []string{
+ "-enable-early-data",
+ "-expect-ticket-supports-early-data",
+ "-expect-accept-early-data",
+ // Handshake twice on the client to force
+ // handshake confirmation.
+ "-handshake-twice",
+ },
+ })
+
+ // Test the early exporter does not work on the client
+ // if 0-RTT was not offered.
+ testCases = append(testCases, testCase{
+ name: "NoExportEarlyKeyingMaterial-Client-Initial-" + vers.name,
+ config: Config{
+ MaxVersion: vers.version,
+ },
+ tls13Variant: vers.tls13Variant,
+ flags: []string{"-export-early-keying-material", "1024"},
+ shouldFail: true,
+ expectedError: ":EARLY_DATA_NOT_IN_USE:",
+ })
+ testCases = append(testCases, testCase{
+ name: "NoExportEarlyKeyingMaterial-Client-Resume-" + vers.name,
+ config: Config{
+ MaxVersion: vers.version,
+ },
+ resumeSession: true,
+ tls13Variant: vers.tls13Variant,
+ flags: []string{"-on-resume-export-early-keying-material", "1024"},
+ shouldFail: true,
+ expectedError: ":EARLY_DATA_NOT_IN_USE:",
+ })
+
+ // Test the early exporter does not work on the client
+ // after a 0-RTT reject.
+ testCases = append(testCases, testCase{
+ name: "NoExportEarlyKeyingMaterial-Client-EarlyDataReject-" + vers.name,
+ config: Config{
+ MaxVersion: vers.version,
+ MaxEarlyDataSize: 16384,
+ Bugs: ProtocolBugs{
+ AlwaysRejectEarlyData: true,
+ },
+ },
+ resumeSession: true,
+ tls13Variant: vers.tls13Variant,
+ flags: []string{
+ "-enable-early-data",
+ "-expect-ticket-supports-early-data",
+ "-expect-reject-early-data",
+ "-on-retry-export-early-keying-material", "1024",
+ },
+ shouldFail: true,
+ expectedError: ":EARLY_DATA_NOT_IN_USE:",
+ })
+
+ // Test the normal exporter on the server in half-RTT.
+ testCases = append(testCases, testCase{
+ testType: serverTest,
+ name: "ExportKeyingMaterial-Server-HalfRTT-" + vers.name,
+ config: Config{
+ MaxVersion: vers.version,
+ Bugs: ProtocolBugs{
+ SendEarlyData: [][]byte{},
+ ExpectEarlyDataAccepted: true,
+ },
+ },
+ tls13Variant: vers.tls13Variant,
+ resumeSession: true,
+ exportKeyingMaterial: 1024,
+ exportLabel: "label",
+ exportContext: "context",
+ useExportContext: true,
+ flags: []string{"-enable-early-data"},
+ })
+
+ // Test the early exporter works on the server in half-RTT.
+ testCases = append(testCases, testCase{
+ testType: serverTest,
+ name: "ExportEarlyKeyingMaterial-Server-HalfRTT-" + vers.name,
+ config: Config{
+ MaxVersion: vers.version,
+ Bugs: ProtocolBugs{
+ SendEarlyData: [][]byte{},
+ ExpectEarlyDataAccepted: true,
+ },
+ },
+ tls13Variant: vers.tls13Variant,
+ resumeSession: true,
+ exportEarlyKeyingMaterial: 1024,
+ exportLabel: "label",
+ exportContext: "context",
+ flags: []string{"-enable-early-data"},
+ })
+
+ // Test the early exporter does not work on the server
+ // if 0-RTT was not offered.
+ testCases = append(testCases, testCase{
+ testType: serverTest,
+ name: "NoExportEarlyKeyingMaterial-Server-Initial-" + vers.name,
+ config: Config{
+ MaxVersion: vers.version,
+ },
+ tls13Variant: vers.tls13Variant,
+ flags: []string{"-export-early-keying-material", "1024"},
+ shouldFail: true,
+ expectedError: ":EARLY_DATA_NOT_IN_USE:",
+ })
+ testCases = append(testCases, testCase{
+ testType: serverTest,
+ name: "NoExportEarlyKeyingMaterial-Server-Resume-" + vers.name,
+ config: Config{
+ MaxVersion: vers.version,
+ },
+ resumeSession: true,
+ tls13Variant: vers.tls13Variant,
+ flags: []string{"-on-resume-export-early-keying-material", "1024"},
+ shouldFail: true,
+ expectedError: ":EARLY_DATA_NOT_IN_USE:",
+ })
+ } else {
+ // Test the early exporter fails before TLS 1.3.
+ testCases = append(testCases, testCase{
+ name: "NoExportEarlyKeyingMaterial-Client-" + vers.name,
+ config: Config{
+ MaxVersion: vers.version,
+ },
+ resumeSession: true,
+ tls13Variant: vers.tls13Variant,
+ exportEarlyKeyingMaterial: 1024,
+ exportLabel: "label",
+ exportContext: "context",
+ shouldFail: true,
+ expectedError: ":WRONG_SSL_VERSION:",
+ })
+ testCases = append(testCases, testCase{
+ testType: serverTest,
+ name: "NoExportEarlyKeyingMaterial-Server-" + vers.name,
+ config: Config{
+ MaxVersion: vers.version,
+ },
+ resumeSession: true,
+ tls13Variant: vers.tls13Variant,
+ exportEarlyKeyingMaterial: 1024,
+ exportLabel: "label",
+ exportContext: "context",
+ shouldFail: true,
+ expectedError: ":WRONG_SSL_VERSION:",
+ })
+ }
}
testCases = append(testCases, testCase{
@@ -11149,6 +11398,20 @@ func addTLS13HandshakeTests() {
tls13Variant: variant,
})
+ // Test that the client omits the fake session ID when the max version is TLS 1.2 and below.
+ testCases = append(testCases, testCase{
+ testType: clientTest,
+ name: "TLS12NoSessionID-" + name,
+ config: Config{
+ MaxVersion: VersionTLS13,
+ Bugs: ProtocolBugs{
+ ExpectNoTLS12Session: true,
+ },
+ },
+ tls13Variant: variant,
+ flags: []string{"-max-version", strconv.Itoa(VersionTLS12)},
+ })
+
testCases = append(testCases, testCase{
testType: clientTest,
name: "EarlyData-Client-" + name,
diff --git a/src/ssl/test/test_config.cc b/src/ssl/test/test_config.cc
index efe5acbc..579cf895 100644
--- a/src/ssl/test/test_config.cc
+++ b/src/ssl/test/test_config.cc
@@ -177,6 +177,8 @@ const Flag<int> kIntFlags[] = {
{ "-max-version", &TestConfig::max_version },
{ "-expect-version", &TestConfig::expect_version },
{ "-mtu", &TestConfig::mtu },
+ { "-export-early-keying-material",
+ &TestConfig::export_early_keying_material },
{ "-export-keying-material", &TestConfig::export_keying_material },
{ "-expect-total-renegotiations", &TestConfig::expect_total_renegotiations },
{ "-expect-peer-signature-algorithm",
diff --git a/src/ssl/test/test_config.h b/src/ssl/test/test_config.h
index 783471ad..49b86edc 100644
--- a/src/ssl/test/test_config.h
+++ b/src/ssl/test/test_config.h
@@ -79,6 +79,7 @@ struct TestConfig {
bool fail_cert_callback = false;
std::string cipher;
bool handshake_never_done = false;
+ int export_early_keying_material = 0;
int export_keying_material = 0;
std::string export_label;
std::string export_context;
diff --git a/src/ssl/tls13_enc.cc b/src/ssl/tls13_enc.cc
index 14f4a787..9dcd0711 100644
--- a/src/ssl/tls13_enc.cc
+++ b/src/ssl/tls13_enc.cc
@@ -68,7 +68,7 @@ int tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk,
static int hkdf_expand_label(uint8_t *out, uint16_t version,
const EVP_MD *digest, const uint8_t *secret,
- size_t secret_len, const uint8_t *label,
+ size_t secret_len, const char *label,
size_t label_len, const uint8_t *hash,
size_t hash_len, size_t len) {
const char *kTLS13LabelVersion =
@@ -84,7 +84,7 @@ static int hkdf_expand_label(uint8_t *out, uint16_t version,
!CBB_add_u8_length_prefixed(cbb.get(), &child) ||
!CBB_add_bytes(&child, (const uint8_t *)kTLS13LabelVersion,
strlen(kTLS13LabelVersion)) ||
- !CBB_add_bytes(&child, label, label_len) ||
+ !CBB_add_bytes(&child, (const uint8_t *)label, label_len) ||
!CBB_add_u8_length_prefixed(cbb.get(), &child) ||
!CBB_add_bytes(&child, hash, hash_len) ||
!CBB_finish(cbb.get(), &hkdf_label, &hkdf_label_len)) {
@@ -113,8 +113,7 @@ int tls13_advance_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *in,
}
if (!hkdf_expand_label(hs->secret, ssl->version, hs->transcript.Digest(),
- hs->secret, hs->hash_len,
- (const uint8_t *)kTLS13LabelDerived,
+ hs->secret, hs->hash_len, kTLS13LabelDerived,
strlen(kTLS13LabelDerived), derive_context,
derive_context_len, hs->hash_len)) {
return 0;
@@ -129,7 +128,7 @@ int tls13_advance_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *in,
// with the given label and the current base secret and most recently-saved
// handshake context. It returns one on success and zero on error.
static int derive_secret(SSL_HANDSHAKE *hs, uint8_t *out, size_t len,
- const uint8_t *label, size_t label_len) {
+ const char *label, size_t label_len) {
uint8_t context_hash[EVP_MAX_MD_SIZE];
size_t context_hash_len;
if (!hs->transcript.GetHash(context_hash, &context_hash_len)) {
@@ -167,8 +166,7 @@ int tls13_set_traffic_key(SSL *ssl, enum evp_aead_direction_t direction,
size_t key_len = EVP_AEAD_key_length(aead);
uint8_t key[EVP_AEAD_MAX_KEY_LENGTH];
if (!hkdf_expand_label(key, session->ssl_version, digest, traffic_secret,
- traffic_secret_len, (const uint8_t *)"key", 3, NULL, 0,
- key_len)) {
+ traffic_secret_len, "key", 3, NULL, 0, key_len)) {
return 0;
}
@@ -176,8 +174,7 @@ int tls13_set_traffic_key(SSL *ssl, enum evp_aead_direction_t direction,
size_t iv_len = EVP_AEAD_nonce_length(aead);
uint8_t iv[EVP_AEAD_MAX_NONCE_LENGTH];
if (!hkdf_expand_label(iv, session->ssl_version, digest, traffic_secret,
- traffic_secret_len, (const uint8_t *)"iv", 2, NULL, 0,
- iv_len)) {
+ traffic_secret_len, "iv", 2, NULL, 0, iv_len)) {
return 0;
}
@@ -246,14 +243,16 @@ int tls13_derive_early_secrets(SSL_HANDSHAKE *hs) {
const char *early_exporter_label = ssl_is_draft21(version)
? kTLS13Draft21LabelEarlyExporter
: kTLS13LabelEarlyExporter;
- return derive_secret(hs, hs->early_traffic_secret, hs->hash_len,
- (const uint8_t *)early_traffic_label,
- strlen(early_traffic_label)) &&
- ssl_log_secret(ssl, "CLIENT_EARLY_TRAFFIC_SECRET",
- hs->early_traffic_secret, hs->hash_len) &&
- derive_secret(hs, ssl->s3->early_exporter_secret, hs->hash_len,
- (const uint8_t *)early_exporter_label,
- strlen(early_exporter_label));
+ if (!derive_secret(hs, hs->early_traffic_secret, hs->hash_len,
+ early_traffic_label, strlen(early_traffic_label)) ||
+ !ssl_log_secret(ssl, "CLIENT_EARLY_TRAFFIC_SECRET",
+ hs->early_traffic_secret, hs->hash_len) ||
+ !derive_secret(hs, ssl->s3->early_exporter_secret, hs->hash_len,
+ early_exporter_label, strlen(early_exporter_label))) {
+ return 0;
+ }
+ ssl->s3->early_exporter_secret_len = hs->hash_len;
+ return 1;
}
int tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs) {
@@ -265,11 +264,11 @@ int tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs) {
? kTLS13Draft21LabelServerHandshakeTraffic
: kTLS13LabelServerHandshakeTraffic;
return derive_secret(hs, hs->client_handshake_secret, hs->hash_len,
- (const uint8_t *)client_label, strlen(client_label)) &&
+ client_label, strlen(client_label)) &&
ssl_log_secret(ssl, "CLIENT_HANDSHAKE_TRAFFIC_SECRET",
hs->client_handshake_secret, hs->hash_len) &&
derive_secret(hs, hs->server_handshake_secret, hs->hash_len,
- (const uint8_t *)server_label, strlen(server_label)) &&
+ server_label, strlen(server_label)) &&
ssl_log_secret(ssl, "SERVER_HANDSHAKE_TRAFFIC_SECRET",
hs->server_handshake_secret, hs->hash_len);
}
@@ -287,16 +286,15 @@ int tls13_derive_application_secrets(SSL_HANDSHAKE *hs) {
? kTLS13Draft21LabelExporter
: kTLS13LabelExporter;
return derive_secret(hs, hs->client_traffic_secret_0, hs->hash_len,
- (const uint8_t *)client_label, strlen(client_label)) &&
+ client_label, strlen(client_label)) &&
ssl_log_secret(ssl, "CLIENT_TRAFFIC_SECRET_0",
hs->client_traffic_secret_0, hs->hash_len) &&
derive_secret(hs, hs->server_traffic_secret_0, hs->hash_len,
- (const uint8_t *)server_label, strlen(server_label)) &&
+ server_label, strlen(server_label)) &&
ssl_log_secret(ssl, "SERVER_TRAFFIC_SECRET_0",
hs->server_traffic_secret_0, hs->hash_len) &&
derive_secret(hs, ssl->s3->exporter_secret, hs->hash_len,
- (const uint8_t *)exporter_label,
- strlen(exporter_label)) &&
+ exporter_label, strlen(exporter_label)) &&
ssl_log_secret(ssl, "EXPORTER_SECRET", ssl->s3->exporter_secret,
hs->hash_len);
}
@@ -322,8 +320,8 @@ int tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction) {
const EVP_MD *digest = ssl_session_get_digest(SSL_get_session(ssl));
if (!hkdf_expand_label(secret, ssl->version, digest, secret, secret_len,
- (const uint8_t *)traffic_label, strlen(traffic_label),
- NULL, 0, secret_len)) {
+ traffic_label, strlen(traffic_label), NULL, 0,
+ secret_len)) {
return 0;
}
@@ -342,9 +340,9 @@ int tls13_derive_resumption_secret(SSL_HANDSHAKE *hs) {
? kTLS13Draft21LabelResumption
: kTLS13LabelResumption;
hs->new_session->master_key_length = hs->hash_len;
- return derive_secret(
- hs, hs->new_session->master_key, hs->new_session->master_key_length,
- (const uint8_t *)resumption_label, strlen(resumption_label));
+ return derive_secret(hs, hs->new_session->master_key,
+ hs->new_session->master_key_length, resumption_label,
+ strlen(resumption_label));
}
static const char kTLS13LabelFinished[] = "finished";
@@ -358,8 +356,8 @@ static int tls13_verify_data(const EVP_MD *digest, uint16_t version,
uint8_t key[EVP_MAX_MD_SIZE];
unsigned len;
if (!hkdf_expand_label(key, version, digest, secret, hash_len,
- (const uint8_t *)kTLS13LabelFinished,
- strlen(kTLS13LabelFinished), NULL, 0, hash_len) ||
+ kTLS13LabelFinished, strlen(kTLS13LabelFinished), NULL,
+ 0, hash_len) ||
HMAC(digest, key, hash_len, context, context_len, out, &len) == NULL) {
return 0;
}
@@ -397,30 +395,29 @@ bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce) {
const EVP_MD *digest = ssl_session_get_digest(session);
return hkdf_expand_label(session->master_key, session->ssl_version, digest,
session->master_key, session->master_key_length,
- (const uint8_t *)kTLS13LabelResumptionPSK,
+ kTLS13LabelResumptionPSK,
strlen(kTLS13LabelResumptionPSK), nonce.data(),
nonce.size(), session->master_key_length);
}
static const char kTLS13LabelExportKeying[] = "exporter";
-int tls13_export_keying_material(SSL *ssl, uint8_t *out, size_t out_len,
- const char *label, size_t label_len,
- const uint8_t *context_in,
- size_t context_in_len, int use_context) {
- const uint8_t *context = NULL;
- size_t context_len = 0;
- if (use_context) {
- context = context_in;
- context_len = context_in_len;
+int tls13_export_keying_material(SSL *ssl, Span<uint8_t> out,
+ Span<const uint8_t> secret,
+ Span<const char> label,
+ Span<const uint8_t> context) {
+ if (secret.empty()) {
+ assert(0);
+ OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
+ return 0;
}
- if (!ssl_is_draft21(ssl->version)) {
+ uint16_t version = SSL_get_session(ssl)->ssl_version;
+ if (!ssl_is_draft21(version)) {
const EVP_MD *digest = ssl_session_get_digest(SSL_get_session(ssl));
- return hkdf_expand_label(
- out, ssl->version, digest, ssl->s3->exporter_secret,
- ssl->s3->exporter_secret_len, (const uint8_t *)label, label_len,
- context, context_len, out_len);
+ return hkdf_expand_label(out.data(), version, digest, secret.data(),
+ secret.size(), label.data(), label.size(),
+ context.data(), context.size(), out.size());
}
const EVP_MD *digest = ssl_session_get_digest(SSL_get_session(ssl));
@@ -431,18 +428,18 @@ int tls13_export_keying_material(SSL *ssl, uint8_t *out, size_t out_len,
unsigned hash_len;
unsigned export_context_len;
unsigned derived_secret_len = EVP_MD_size(digest);
- if (!EVP_Digest(context, context_len, hash, &hash_len, digest, NULL) ||
- !EVP_Digest(NULL, 0, export_context, &export_context_len, digest, NULL)) {
- return 0;
- }
- return hkdf_expand_label(
- derived_secret, ssl->version, digest, ssl->s3->exporter_secret,
- ssl->s3->exporter_secret_len, (const uint8_t *)label, label_len,
- export_context, export_context_len, derived_secret_len) &&
- hkdf_expand_label(
- out, ssl->version, digest, derived_secret, derived_secret_len,
- (const uint8_t *)kTLS13LabelExportKeying,
- strlen(kTLS13LabelExportKeying), hash, hash_len, out_len);
+ return EVP_Digest(context.data(), context.size(), hash, &hash_len, digest,
+ nullptr) &&
+ EVP_Digest(nullptr, 0, export_context, &export_context_len, digest,
+ nullptr) &&
+ hkdf_expand_label(derived_secret, version, digest, secret.data(),
+ secret.size(), label.data(), label.size(),
+ export_context, export_context_len,
+ derived_secret_len) &&
+ hkdf_expand_label(out.data(), version, digest, derived_secret,
+ derived_secret_len, kTLS13LabelExportKeying,
+ strlen(kTLS13LabelExportKeying), hash, hash_len,
+ out.size());
}
static const char kTLS13LabelPSKBinder[] = "resumption psk binder key";
@@ -471,8 +468,8 @@ static int tls13_psk_binder(uint8_t *out, uint16_t version,
uint8_t binder_key[EVP_MAX_MD_SIZE] = {0};
size_t len;
if (!hkdf_expand_label(binder_key, version, digest, early_secret, hash_len,
- (const uint8_t *)binder_label, strlen(binder_label),
- binder_context, binder_context_len, hash_len) ||
+ binder_label, strlen(binder_label), binder_context,
+ binder_context_len, hash_len) ||
!tls13_verify_data(digest, version, out, &len, binder_key, hash_len,
context, context_len)) {
return 0;
diff --git a/src/third_party/fiat/p256.c b/src/third_party/fiat/p256.c
new file mode 100644
index 00000000..25ef3830
--- /dev/null
+++ b/src/third_party/fiat/p256.c
@@ -0,0 +1,1725 @@
+// The MIT License (MIT)
+//
+// Copyright (c) 2015-2016 the fiat-crypto authors (see the AUTHORS file).
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+// The field arithmetic code is generated by Fiat
+// (https://github.com/mit-plv/fiat-crypto), which is MIT licensed.
+//
+// An implementation of the NIST P-256 elliptic curve point multiplication.
+// 256-bit Montgomery form, generated using fiat-crypto, for 64 and 32-bit.
+// Field operations with inputs in [0,p) return outputs in [0,p).
+
+#include <openssl/base.h>
+
+#include <openssl/bn.h>
+#include <openssl/ec.h>
+#include <openssl/err.h>
+#include <openssl/mem.h>
+
+#include <string.h>
+
+#include "../../crypto/fipsmodule/delocate.h"
+#include "../../crypto/fipsmodule/ec/internal.h"
+#include "../../crypto/internal.h"
+
+
+// MSVC does not implement uint128_t, and crashes with intrinsics
+#if defined(BORINGSSL_HAS_UINT128)
+#define BORINGSSL_NISTP256_64BIT 1
+#endif
+
+// "intrinsics"
+
+#if defined(BORINGSSL_NISTP256_64BIT)
+
+static uint64_t mulx_u64(uint64_t a, uint64_t b, uint64_t *high) {
+ uint128_t x = (uint128_t)a * b;
+ *high = (uint64_t) (x >> 64);
+ return (uint64_t) x;
+}
+
+static uint64_t addcarryx_u64(uint8_t c, uint64_t a, uint64_t b, uint64_t *low) {
+ uint128_t x = (uint128_t)a + b + c;
+ *low = (uint64_t) x;
+ return (uint64_t) (x>>64);
+}
+
+static uint64_t subborrow_u64(uint8_t c, uint64_t a, uint64_t b, uint64_t *low) {
+ uint128_t t = ((uint128_t) b + c);
+ uint128_t x = a-t;
+ *low = (uint64_t) x;
+ return (uint8_t) (x>>127);
+}
+
+static uint64_t cmovznz_u64(uint64_t t, uint64_t z, uint64_t nz) {
+ t = -!!t; // all set if nonzero, 0 if 0
+ return (t&nz) | ((~t)&z);
+}
+
+#else
+
+static uint32_t mulx_u32(uint32_t a, uint32_t b, uint32_t *high) {
+ uint64_t x = (uint64_t)a * b;
+ *high = (uint32_t) (x >> 32);
+ return (uint32_t) x;
+}
+
+static uint32_t addcarryx_u32(uint8_t c, uint32_t a, uint32_t b, uint32_t *low) {
+ uint64_t x = (uint64_t)a + b + c;
+ *low = (uint32_t) x;
+ return (uint32_t) (x>>32);
+}
+
+static uint32_t subborrow_u32(uint8_t c, uint32_t a, uint32_t b, uint32_t *low) {
+ uint64_t t = ((uint64_t) b + c);
+ uint64_t x = a-t;
+ *low = (uint32_t) x;
+ return (uint8_t) (x>>63);
+}
+
+static uint32_t cmovznz_u32(uint32_t t, uint32_t z, uint32_t nz) {
+ t = -!!t; // all set if nonzero, 0 if 0
+ return (t&nz) | ((~t)&z);
+}
+
+#endif
+
+// fiat-crypto generated code
+
+#if defined(BORINGSSL_NISTP256_64BIT)
+
+static void fe_add(uint64_t out[4], const uint64_t in1[4], const uint64_t in2[4]) {
+ { const uint64_t x8 = in1[3];
+ { const uint64_t x9 = in1[2];
+ { const uint64_t x7 = in1[1];
+ { const uint64_t x5 = in1[0];
+ { const uint64_t x14 = in2[3];
+ { const uint64_t x15 = in2[2];
+ { const uint64_t x13 = in2[1];
+ { const uint64_t x11 = in2[0];
+ { uint64_t x17; uint8_t x18 = addcarryx_u64(0x0, x5, x11, &x17);
+ { uint64_t x20; uint8_t x21 = addcarryx_u64(x18, x7, x13, &x20);
+ { uint64_t x23; uint8_t x24 = addcarryx_u64(x21, x9, x15, &x23);
+ { uint64_t x26; uint8_t x27 = addcarryx_u64(x24, x8, x14, &x26);
+ { uint64_t x29; uint8_t x30 = subborrow_u64(0x0, x17, 0xffffffffffffffffL, &x29);
+ { uint64_t x32; uint8_t x33 = subborrow_u64(x30, x20, 0xffffffff, &x32);
+ { uint64_t x35; uint8_t x36 = subborrow_u64(x33, x23, 0x0, &x35);
+ { uint64_t x38; uint8_t x39 = subborrow_u64(x36, x26, 0xffffffff00000001L, &x38);
+ { uint64_t _1; uint8_t x42 = subborrow_u64(x39, x27, 0x0, &_1);
+ { uint64_t x43 = cmovznz_u64(x42, x38, x26);
+ { uint64_t x44 = cmovznz_u64(x42, x35, x23);
+ { uint64_t x45 = cmovznz_u64(x42, x32, x20);
+ { uint64_t x46 = cmovznz_u64(x42, x29, x17);
+ out[0] = x46;
+ out[1] = x45;
+ out[2] = x44;
+ out[3] = x43;
+ }}}}}}}}}}}}}}}}}}}}}
+}
+
+// fe_op sets out = -in
+static void fe_opp(uint64_t out[4], const uint64_t in1[4]) {
+ const uint64_t x5 = in1[3];
+ const uint64_t x6 = in1[2];
+ const uint64_t x4 = in1[1];
+ const uint64_t x2 = in1[0];
+ uint64_t x8; uint8_t x9 = subborrow_u64(0x0, 0x0, x2, &x8);
+ uint64_t x11; uint8_t x12 = subborrow_u64(x9, 0x0, x4, &x11);
+ uint64_t x14; uint8_t x15 = subborrow_u64(x12, 0x0, x6, &x14);
+ uint64_t x17; uint8_t x18 = subborrow_u64(x15, 0x0, x5, &x17);
+ uint64_t x19 = (uint64_t)cmovznz_u64(x18, 0x0, 0xffffffffffffffffL);
+ uint64_t x20 = (x19 & 0xffffffffffffffffL);
+ uint64_t x22; uint8_t x23 = addcarryx_u64(0x0, x8, x20, &x22);
+ uint64_t x24 = (x19 & 0xffffffff);
+ uint64_t x26; uint8_t x27 = addcarryx_u64(x23, x11, x24, &x26);
+ uint64_t x29; uint8_t x30 = addcarryx_u64(x27, x14, 0x0, &x29);
+ uint64_t x31 = (x19 & 0xffffffff00000001L);
+ uint64_t x33; addcarryx_u64(x30, x17, x31, &x33);
+ out[0] = x22;
+ out[1] = x26;
+ out[2] = x29;
+ out[3] = x33;
+}
+
+static void fe_mul(uint64_t out[4], const uint64_t in1[4], const uint64_t in2[4]) {
+ const uint64_t x8 = in1[3];
+ const uint64_t x9 = in1[2];
+ const uint64_t x7 = in1[1];
+ const uint64_t x5 = in1[0];
+ const uint64_t x14 = in2[3];
+ const uint64_t x15 = in2[2];
+ const uint64_t x13 = in2[1];
+ const uint64_t x11 = in2[0];
+ uint64_t x18; uint64_t x17 = mulx_u64(x5, x11, &x18);
+ uint64_t x21; uint64_t x20 = mulx_u64(x5, x13, &x21);
+ uint64_t x24; uint64_t x23 = mulx_u64(x5, x15, &x24);
+ uint64_t x27; uint64_t x26 = mulx_u64(x5, x14, &x27);
+ uint64_t x29; uint8_t x30 = addcarryx_u64(0x0, x18, x20, &x29);
+ uint64_t x32; uint8_t x33 = addcarryx_u64(x30, x21, x23, &x32);
+ uint64_t x35; uint8_t x36 = addcarryx_u64(x33, x24, x26, &x35);
+ uint64_t x38; addcarryx_u64(0x0, x36, x27, &x38);
+ uint64_t x42; uint64_t x41 = mulx_u64(x17, 0xffffffffffffffffL, &x42);
+ uint64_t x45; uint64_t x44 = mulx_u64(x17, 0xffffffff, &x45);
+ uint64_t x48; uint64_t x47 = mulx_u64(x17, 0xffffffff00000001L, &x48);
+ uint64_t x50; uint8_t x51 = addcarryx_u64(0x0, x42, x44, &x50);
+ uint64_t x53; uint8_t x54 = addcarryx_u64(x51, x45, 0x0, &x53);
+ uint64_t x56; uint8_t x57 = addcarryx_u64(x54, 0x0, x47, &x56);
+ uint64_t x59; addcarryx_u64(0x0, x57, x48, &x59);
+ uint64_t _2; uint8_t x63 = addcarryx_u64(0x0, x17, x41, &_2);
+ uint64_t x65; uint8_t x66 = addcarryx_u64(x63, x29, x50, &x65);
+ uint64_t x68; uint8_t x69 = addcarryx_u64(x66, x32, x53, &x68);
+ uint64_t x71; uint8_t x72 = addcarryx_u64(x69, x35, x56, &x71);
+ uint64_t x74; uint8_t x75 = addcarryx_u64(x72, x38, x59, &x74);
+ uint64_t x78; uint64_t x77 = mulx_u64(x7, x11, &x78);
+ uint64_t x81; uint64_t x80 = mulx_u64(x7, x13, &x81);
+ uint64_t x84; uint64_t x83 = mulx_u64(x7, x15, &x84);
+ uint64_t x87; uint64_t x86 = mulx_u64(x7, x14, &x87);
+ uint64_t x89; uint8_t x90 = addcarryx_u64(0x0, x78, x80, &x89);
+ uint64_t x92; uint8_t x93 = addcarryx_u64(x90, x81, x83, &x92);
+ uint64_t x95; uint8_t x96 = addcarryx_u64(x93, x84, x86, &x95);
+ uint64_t x98; addcarryx_u64(0x0, x96, x87, &x98);
+ uint64_t x101; uint8_t x102 = addcarryx_u64(0x0, x65, x77, &x101);
+ uint64_t x104; uint8_t x105 = addcarryx_u64(x102, x68, x89, &x104);
+ uint64_t x107; uint8_t x108 = addcarryx_u64(x105, x71, x92, &x107);
+ uint64_t x110; uint8_t x111 = addcarryx_u64(x108, x74, x95, &x110);
+ uint64_t x113; uint8_t x114 = addcarryx_u64(x111, x75, x98, &x113);
+ uint64_t x117; uint64_t x116 = mulx_u64(x101, 0xffffffffffffffffL, &x117);
+ uint64_t x120; uint64_t x119 = mulx_u64(x101, 0xffffffff, &x120);
+ uint64_t x123; uint64_t x122 = mulx_u64(x101, 0xffffffff00000001L, &x123);
+ uint64_t x125; uint8_t x126 = addcarryx_u64(0x0, x117, x119, &x125);
+ uint64_t x128; uint8_t x129 = addcarryx_u64(x126, x120, 0x0, &x128);
+ uint64_t x131; uint8_t x132 = addcarryx_u64(x129, 0x0, x122, &x131);
+ uint64_t x134; addcarryx_u64(0x0, x132, x123, &x134);
+ uint64_t _3; uint8_t x138 = addcarryx_u64(0x0, x101, x116, &_3);
+ uint64_t x140; uint8_t x141 = addcarryx_u64(x138, x104, x125, &x140);
+ uint64_t x143; uint8_t x144 = addcarryx_u64(x141, x107, x128, &x143);
+ uint64_t x146; uint8_t x147 = addcarryx_u64(x144, x110, x131, &x146);
+ uint64_t x149; uint8_t x150 = addcarryx_u64(x147, x113, x134, &x149);
+ uint8_t x151 = (x150 + x114);
+ uint64_t x154; uint64_t x153 = mulx_u64(x9, x11, &x154);
+ uint64_t x157; uint64_t x156 = mulx_u64(x9, x13, &x157);
+ uint64_t x160; uint64_t x159 = mulx_u64(x9, x15, &x160);
+ uint64_t x163; uint64_t x162 = mulx_u64(x9, x14, &x163);
+ uint64_t x165; uint8_t x166 = addcarryx_u64(0x0, x154, x156, &x165);
+ uint64_t x168; uint8_t x169 = addcarryx_u64(x166, x157, x159, &x168);
+ uint64_t x171; uint8_t x172 = addcarryx_u64(x169, x160, x162, &x171);
+ uint64_t x174; addcarryx_u64(0x0, x172, x163, &x174);
+ uint64_t x177; uint8_t x178 = addcarryx_u64(0x0, x140, x153, &x177);
+ uint64_t x180; uint8_t x181 = addcarryx_u64(x178, x143, x165, &x180);
+ uint64_t x183; uint8_t x184 = addcarryx_u64(x181, x146, x168, &x183);
+ uint64_t x186; uint8_t x187 = addcarryx_u64(x184, x149, x171, &x186);
+ uint64_t x189; uint8_t x190 = addcarryx_u64(x187, x151, x174, &x189);
+ uint64_t x193; uint64_t x192 = mulx_u64(x177, 0xffffffffffffffffL, &x193);
+ uint64_t x196; uint64_t x195 = mulx_u64(x177, 0xffffffff, &x196);
+ uint64_t x199; uint64_t x198 = mulx_u64(x177, 0xffffffff00000001L, &x199);
+ uint64_t x201; uint8_t x202 = addcarryx_u64(0x0, x193, x195, &x201);
+ uint64_t x204; uint8_t x205 = addcarryx_u64(x202, x196, 0x0, &x204);
+ uint64_t x207; uint8_t x208 = addcarryx_u64(x205, 0x0, x198, &x207);
+ uint64_t x210; addcarryx_u64(0x0, x208, x199, &x210);
+ uint64_t _4; uint8_t x214 = addcarryx_u64(0x0, x177, x192, &_4);
+ uint64_t x216; uint8_t x217 = addcarryx_u64(x214, x180, x201, &x216);
+ uint64_t x219; uint8_t x220 = addcarryx_u64(x217, x183, x204, &x219);
+ uint64_t x222; uint8_t x223 = addcarryx_u64(x220, x186, x207, &x222);
+ uint64_t x225; uint8_t x226 = addcarryx_u64(x223, x189, x210, &x225);
+ uint8_t x227 = (x226 + x190);
+ uint64_t x230; uint64_t x229 = mulx_u64(x8, x11, &x230);
+ uint64_t x233; uint64_t x232 = mulx_u64(x8, x13, &x233);
+ uint64_t x236; uint64_t x235 = mulx_u64(x8, x15, &x236);
+ uint64_t x239; uint64_t x238 = mulx_u64(x8, x14, &x239);
+ uint64_t x241; uint8_t x242 = addcarryx_u64(0x0, x230, x232, &x241);
+ uint64_t x244; uint8_t x245 = addcarryx_u64(x242, x233, x235, &x244);
+ uint64_t x247; uint8_t x248 = addcarryx_u64(x245, x236, x238, &x247);
+ uint64_t x250; addcarryx_u64(0x0, x248, x239, &x250);
+ uint64_t x253; uint8_t x254 = addcarryx_u64(0x0, x216, x229, &x253);
+ uint64_t x256; uint8_t x257 = addcarryx_u64(x254, x219, x241, &x256);
+ uint64_t x259; uint8_t x260 = addcarryx_u64(x257, x222, x244, &x259);
+ uint64_t x262; uint8_t x263 = addcarryx_u64(x260, x225, x247, &x262);
+ uint64_t x265; uint8_t x266 = addcarryx_u64(x263, x227, x250, &x265);
+ uint64_t x269; uint64_t x268 = mulx_u64(x253, 0xffffffffffffffffL, &x269);
+ uint64_t x272; uint64_t x271 = mulx_u64(x253, 0xffffffff, &x272);
+ uint64_t x275; uint64_t x274 = mulx_u64(x253, 0xffffffff00000001L, &x275);
+ uint64_t x277; uint8_t x278 = addcarryx_u64(0x0, x269, x271, &x277);
+ uint64_t x280; uint8_t x281 = addcarryx_u64(x278, x272, 0x0, &x280);
+ uint64_t x283; uint8_t x284 = addcarryx_u64(x281, 0x0, x274, &x283);
+ uint64_t x286; addcarryx_u64(0x0, x284, x275, &x286);
+ uint64_t _5; uint8_t x290 = addcarryx_u64(0x0, x253, x268, &_5);
+ uint64_t x292; uint8_t x293 = addcarryx_u64(x290, x256, x277, &x292);
+ uint64_t x295; uint8_t x296 = addcarryx_u64(x293, x259, x280, &x295);
+ uint64_t x298; uint8_t x299 = addcarryx_u64(x296, x262, x283, &x298);
+ uint64_t x301; uint8_t x302 = addcarryx_u64(x299, x265, x286, &x301);
+ uint8_t x303 = (x302 + x266);
+ uint64_t x305; uint8_t x306 = subborrow_u64(0x0, x292, 0xffffffffffffffffL, &x305);
+ uint64_t x308; uint8_t x309 = subborrow_u64(x306, x295, 0xffffffff, &x308);
+ uint64_t x311; uint8_t x312 = subborrow_u64(x309, x298, 0x0, &x311);
+ uint64_t x314; uint8_t x315 = subborrow_u64(x312, x301, 0xffffffff00000001L, &x314);
+ uint64_t _6; uint8_t x318 = subborrow_u64(x315, x303, 0x0, &_6);
+ uint64_t x319 = cmovznz_u64(x318, x314, x301);
+ uint64_t x320 = cmovznz_u64(x318, x311, x298);
+ uint64_t x321 = cmovznz_u64(x318, x308, x295);
+ uint64_t x322 = cmovznz_u64(x318, x305, x292);
+ out[0] = x322;
+ out[1] = x321;
+ out[2] = x320;
+ out[3] = x319;
+}
+
+static void fe_sub(uint64_t out[4], const uint64_t in1[4], const uint64_t in2[4]) {
+ const uint64_t x8 = in1[3];
+ const uint64_t x9 = in1[2];
+ const uint64_t x7 = in1[1];
+ const uint64_t x5 = in1[0];
+ const uint64_t x14 = in2[3];
+ const uint64_t x15 = in2[2];
+ const uint64_t x13 = in2[1];
+ const uint64_t x11 = in2[0];
+ uint64_t x17; uint8_t x18 = subborrow_u64(0x0, x5, x11, &x17);
+ uint64_t x20; uint8_t x21 = subborrow_u64(x18, x7, x13, &x20);
+ uint64_t x23; uint8_t x24 = subborrow_u64(x21, x9, x15, &x23);
+ uint64_t x26; uint8_t x27 = subborrow_u64(x24, x8, x14, &x26);
+ uint64_t x28 = (uint64_t)cmovznz_u64(x27, 0x0, 0xffffffffffffffffL);
+ uint64_t x29 = (x28 & 0xffffffffffffffffL);
+ uint64_t x31; uint8_t x32 = addcarryx_u64(0x0, x17, x29, &x31);
+ uint64_t x33 = (x28 & 0xffffffff);
+ uint64_t x35; uint8_t x36 = addcarryx_u64(x32, x20, x33, &x35);
+ uint64_t x38; uint8_t x39 = addcarryx_u64(x36, x23, 0x0, &x38);
+ uint64_t x40 = (x28 & 0xffffffff00000001L);
+ uint64_t x42; addcarryx_u64(x39, x26, x40, &x42);
+ out[0] = x31;
+ out[1] = x35;
+ out[2] = x38;
+ out[3] = x42;
+}
+
+#else // 64BIT, else 32BIT
+
+static void fe_add(uint32_t out[8], const uint32_t in1[8], const uint32_t in2[8]) {
+ const uint32_t x16 = in1[7];
+ const uint32_t x17 = in1[6];
+ const uint32_t x15 = in1[5];
+ const uint32_t x13 = in1[4];
+ const uint32_t x11 = in1[3];
+ const uint32_t x9 = in1[2];
+ const uint32_t x7 = in1[1];
+ const uint32_t x5 = in1[0];
+ const uint32_t x30 = in2[7];
+ const uint32_t x31 = in2[6];
+ const uint32_t x29 = in2[5];
+ const uint32_t x27 = in2[4];
+ const uint32_t x25 = in2[3];
+ const uint32_t x23 = in2[2];
+ const uint32_t x21 = in2[1];
+ const uint32_t x19 = in2[0];
+ uint32_t x33; uint8_t x34 = addcarryx_u32(0x0, x5, x19, &x33);
+ uint32_t x36; uint8_t x37 = addcarryx_u32(x34, x7, x21, &x36);
+ uint32_t x39; uint8_t x40 = addcarryx_u32(x37, x9, x23, &x39);
+ uint32_t x42; uint8_t x43 = addcarryx_u32(x40, x11, x25, &x42);
+ uint32_t x45; uint8_t x46 = addcarryx_u32(x43, x13, x27, &x45);
+ uint32_t x48; uint8_t x49 = addcarryx_u32(x46, x15, x29, &x48);
+ uint32_t x51; uint8_t x52 = addcarryx_u32(x49, x17, x31, &x51);
+ uint32_t x54; uint8_t x55 = addcarryx_u32(x52, x16, x30, &x54);
+ uint32_t x57; uint8_t x58 = subborrow_u32(0x0, x33, 0xffffffff, &x57);
+ uint32_t x60; uint8_t x61 = subborrow_u32(x58, x36, 0xffffffff, &x60);
+ uint32_t x63; uint8_t x64 = subborrow_u32(x61, x39, 0xffffffff, &x63);
+ uint32_t x66; uint8_t x67 = subborrow_u32(x64, x42, 0x0, &x66);
+ uint32_t x69; uint8_t x70 = subborrow_u32(x67, x45, 0x0, &x69);
+ uint32_t x72; uint8_t x73 = subborrow_u32(x70, x48, 0x0, &x72);
+ uint32_t x75; uint8_t x76 = subborrow_u32(x73, x51, 0x1, &x75);
+ uint32_t x78; uint8_t x79 = subborrow_u32(x76, x54, 0xffffffff, &x78);
+ uint32_t _; uint8_t x82 = subborrow_u32(x79, x55, 0x0, &_);
+ uint32_t x83 = cmovznz_u32(x82, x78, x54);
+ uint32_t x84 = cmovznz_u32(x82, x75, x51);
+ uint32_t x85 = cmovznz_u32(x82, x72, x48);
+ uint32_t x86 = cmovznz_u32(x82, x69, x45);
+ uint32_t x87 = cmovznz_u32(x82, x66, x42);
+ uint32_t x88 = cmovznz_u32(x82, x63, x39);
+ uint32_t x89 = cmovznz_u32(x82, x60, x36);
+ uint32_t x90 = cmovznz_u32(x82, x57, x33);
+ out[0] = x90;
+ out[1] = x89;
+ out[2] = x88;
+ out[3] = x87;
+ out[4] = x86;
+ out[5] = x85;
+ out[6] = x84;
+ out[7] = x83;
+}
+
+static void fe_mul(uint32_t out[8], const uint32_t in1[8], const uint32_t in2[8]) {
+ const uint32_t x16 = in1[7];
+ const uint32_t x17 = in1[6];
+ const uint32_t x15 = in1[5];
+ const uint32_t x13 = in1[4];
+ const uint32_t x11 = in1[3];
+ const uint32_t x9 = in1[2];
+ const uint32_t x7 = in1[1];
+ const uint32_t x5 = in1[0];
+ const uint32_t x30 = in2[7];
+ const uint32_t x31 = in2[6];
+ const uint32_t x29 = in2[5];
+ const uint32_t x27 = in2[4];
+ const uint32_t x25 = in2[3];
+ const uint32_t x23 = in2[2];
+ const uint32_t x21 = in2[1];
+ const uint32_t x19 = in2[0];
+ uint32_t x34; uint32_t x33 = mulx_u32(x5, x19, &x34);
+ uint32_t x37; uint32_t x36 = mulx_u32(x5, x21, &x37);
+ uint32_t x40; uint32_t x39 = mulx_u32(x5, x23, &x40);
+ uint32_t x43; uint32_t x42 = mulx_u32(x5, x25, &x43);
+ uint32_t x46; uint32_t x45 = mulx_u32(x5, x27, &x46);
+ uint32_t x49; uint32_t x48 = mulx_u32(x5, x29, &x49);
+ uint32_t x52; uint32_t x51 = mulx_u32(x5, x31, &x52);
+ uint32_t x55; uint32_t x54 = mulx_u32(x5, x30, &x55);
+ uint32_t x57; uint8_t x58 = addcarryx_u32(0x0, x34, x36, &x57);
+ uint32_t x60; uint8_t x61 = addcarryx_u32(x58, x37, x39, &x60);
+ uint32_t x63; uint8_t x64 = addcarryx_u32(x61, x40, x42, &x63);
+ uint32_t x66; uint8_t x67 = addcarryx_u32(x64, x43, x45, &x66);
+ uint32_t x69; uint8_t x70 = addcarryx_u32(x67, x46, x48, &x69);
+ uint32_t x72; uint8_t x73 = addcarryx_u32(x70, x49, x51, &x72);
+ uint32_t x75; uint8_t x76 = addcarryx_u32(x73, x52, x54, &x75);
+ uint32_t x78; addcarryx_u32(0x0, x76, x55, &x78);
+ uint32_t x82; uint32_t x81 = mulx_u32(x33, 0xffffffff, &x82);
+ uint32_t x85; uint32_t x84 = mulx_u32(x33, 0xffffffff, &x85);
+ uint32_t x88; uint32_t x87 = mulx_u32(x33, 0xffffffff, &x88);
+ uint32_t x91; uint32_t x90 = mulx_u32(x33, 0xffffffff, &x91);
+ uint32_t x93; uint8_t x94 = addcarryx_u32(0x0, x82, x84, &x93);
+ uint32_t x96; uint8_t x97 = addcarryx_u32(x94, x85, x87, &x96);
+ uint32_t x99; uint8_t x100 = addcarryx_u32(x97, x88, 0x0, &x99);
+ uint8_t x101 = (0x0 + 0x0);
+ uint32_t _1; uint8_t x104 = addcarryx_u32(0x0, x33, x81, &_1);
+ uint32_t x106; uint8_t x107 = addcarryx_u32(x104, x57, x93, &x106);
+ uint32_t x109; uint8_t x110 = addcarryx_u32(x107, x60, x96, &x109);
+ uint32_t x112; uint8_t x113 = addcarryx_u32(x110, x63, x99, &x112);
+ uint32_t x115; uint8_t x116 = addcarryx_u32(x113, x66, x100, &x115);
+ uint32_t x118; uint8_t x119 = addcarryx_u32(x116, x69, x101, &x118);
+ uint32_t x121; uint8_t x122 = addcarryx_u32(x119, x72, x33, &x121);
+ uint32_t x124; uint8_t x125 = addcarryx_u32(x122, x75, x90, &x124);
+ uint32_t x127; uint8_t x128 = addcarryx_u32(x125, x78, x91, &x127);
+ uint8_t x129 = (x128 + 0x0);
+ uint32_t x132; uint32_t x131 = mulx_u32(x7, x19, &x132);
+ uint32_t x135; uint32_t x134 = mulx_u32(x7, x21, &x135);
+ uint32_t x138; uint32_t x137 = mulx_u32(x7, x23, &x138);
+ uint32_t x141; uint32_t x140 = mulx_u32(x7, x25, &x141);
+ uint32_t x144; uint32_t x143 = mulx_u32(x7, x27, &x144);
+ uint32_t x147; uint32_t x146 = mulx_u32(x7, x29, &x147);
+ uint32_t x150; uint32_t x149 = mulx_u32(x7, x31, &x150);
+ uint32_t x153; uint32_t x152 = mulx_u32(x7, x30, &x153);
+ uint32_t x155; uint8_t x156 = addcarryx_u32(0x0, x132, x134, &x155);
+ uint32_t x158; uint8_t x159 = addcarryx_u32(x156, x135, x137, &x158);
+ uint32_t x161; uint8_t x162 = addcarryx_u32(x159, x138, x140, &x161);
+ uint32_t x164; uint8_t x165 = addcarryx_u32(x162, x141, x143, &x164);
+ uint32_t x167; uint8_t x168 = addcarryx_u32(x165, x144, x146, &x167);
+ uint32_t x170; uint8_t x171 = addcarryx_u32(x168, x147, x149, &x170);
+ uint32_t x173; uint8_t x174 = addcarryx_u32(x171, x150, x152, &x173);
+ uint32_t x176; addcarryx_u32(0x0, x174, x153, &x176);
+ uint32_t x179; uint8_t x180 = addcarryx_u32(0x0, x106, x131, &x179);
+ uint32_t x182; uint8_t x183 = addcarryx_u32(x180, x109, x155, &x182);
+ uint32_t x185; uint8_t x186 = addcarryx_u32(x183, x112, x158, &x185);
+ uint32_t x188; uint8_t x189 = addcarryx_u32(x186, x115, x161, &x188);
+ uint32_t x191; uint8_t x192 = addcarryx_u32(x189, x118, x164, &x191);
+ uint32_t x194; uint8_t x195 = addcarryx_u32(x192, x121, x167, &x194);
+ uint32_t x197; uint8_t x198 = addcarryx_u32(x195, x124, x170, &x197);
+ uint32_t x200; uint8_t x201 = addcarryx_u32(x198, x127, x173, &x200);
+ uint32_t x203; uint8_t x204 = addcarryx_u32(x201, x129, x176, &x203);
+ uint32_t x207; uint32_t x206 = mulx_u32(x179, 0xffffffff, &x207);
+ uint32_t x210; uint32_t x209 = mulx_u32(x179, 0xffffffff, &x210);
+ uint32_t x213; uint32_t x212 = mulx_u32(x179, 0xffffffff, &x213);
+ uint32_t x216; uint32_t x215 = mulx_u32(x179, 0xffffffff, &x216);
+ uint32_t x218; uint8_t x219 = addcarryx_u32(0x0, x207, x209, &x218);
+ uint32_t x221; uint8_t x222 = addcarryx_u32(x219, x210, x212, &x221);
+ uint32_t x224; uint8_t x225 = addcarryx_u32(x222, x213, 0x0, &x224);
+ uint8_t x226 = (0x0 + 0x0);
+ uint32_t _2; uint8_t x229 = addcarryx_u32(0x0, x179, x206, &_2);
+ uint32_t x231; uint8_t x232 = addcarryx_u32(x229, x182, x218, &x231);
+ uint32_t x234; uint8_t x235 = addcarryx_u32(x232, x185, x221, &x234);
+ uint32_t x237; uint8_t x238 = addcarryx_u32(x235, x188, x224, &x237);
+ uint32_t x240; uint8_t x241 = addcarryx_u32(x238, x191, x225, &x240);
+ uint32_t x243; uint8_t x244 = addcarryx_u32(x241, x194, x226, &x243);
+ uint32_t x246; uint8_t x247 = addcarryx_u32(x244, x197, x179, &x246);
+ uint32_t x249; uint8_t x250 = addcarryx_u32(x247, x200, x215, &x249);
+ uint32_t x252; uint8_t x253 = addcarryx_u32(x250, x203, x216, &x252);
+ uint8_t x254 = (x253 + x204);
+ uint32_t x257; uint32_t x256 = mulx_u32(x9, x19, &x257);
+ uint32_t x260; uint32_t x259 = mulx_u32(x9, x21, &x260);
+ uint32_t x263; uint32_t x262 = mulx_u32(x9, x23, &x263);
+ uint32_t x266; uint32_t x265 = mulx_u32(x9, x25, &x266);
+ uint32_t x269; uint32_t x268 = mulx_u32(x9, x27, &x269);
+ uint32_t x272; uint32_t x271 = mulx_u32(x9, x29, &x272);
+ uint32_t x275; uint32_t x274 = mulx_u32(x9, x31, &x275);
+ uint32_t x278; uint32_t x277 = mulx_u32(x9, x30, &x278);
+ uint32_t x280; uint8_t x281 = addcarryx_u32(0x0, x257, x259, &x280);
+ uint32_t x283; uint8_t x284 = addcarryx_u32(x281, x260, x262, &x283);
+ uint32_t x286; uint8_t x287 = addcarryx_u32(x284, x263, x265, &x286);
+ uint32_t x289; uint8_t x290 = addcarryx_u32(x287, x266, x268, &x289);
+ uint32_t x292; uint8_t x293 = addcarryx_u32(x290, x269, x271, &x292);
+ uint32_t x295; uint8_t x296 = addcarryx_u32(x293, x272, x274, &x295);
+ uint32_t x298; uint8_t x299 = addcarryx_u32(x296, x275, x277, &x298);
+ uint32_t x301; addcarryx_u32(0x0, x299, x278, &x301);
+ uint32_t x304; uint8_t x305 = addcarryx_u32(0x0, x231, x256, &x304);
+ uint32_t x307; uint8_t x308 = addcarryx_u32(x305, x234, x280, &x307);
+ uint32_t x310; uint8_t x311 = addcarryx_u32(x308, x237, x283, &x310);
+ uint32_t x313; uint8_t x314 = addcarryx_u32(x311, x240, x286, &x313);
+ uint32_t x316; uint8_t x317 = addcarryx_u32(x314, x243, x289, &x316);
+ uint32_t x319; uint8_t x320 = addcarryx_u32(x317, x246, x292, &x319);
+ uint32_t x322; uint8_t x323 = addcarryx_u32(x320, x249, x295, &x322);
+ uint32_t x325; uint8_t x326 = addcarryx_u32(x323, x252, x298, &x325);
+ uint32_t x328; uint8_t x329 = addcarryx_u32(x326, x254, x301, &x328);
+ uint32_t x332; uint32_t x331 = mulx_u32(x304, 0xffffffff, &x332);
+ uint32_t x335; uint32_t x334 = mulx_u32(x304, 0xffffffff, &x335);
+ uint32_t x338; uint32_t x337 = mulx_u32(x304, 0xffffffff, &x338);
+ uint32_t x341; uint32_t x340 = mulx_u32(x304, 0xffffffff, &x341);
+ uint32_t x343; uint8_t x344 = addcarryx_u32(0x0, x332, x334, &x343);
+ uint32_t x346; uint8_t x347 = addcarryx_u32(x344, x335, x337, &x346);
+ uint32_t x349; uint8_t x350 = addcarryx_u32(x347, x338, 0x0, &x349);
+ uint8_t x351 = (0x0 + 0x0);
+ uint32_t _3; uint8_t x354 = addcarryx_u32(0x0, x304, x331, &_3);
+ uint32_t x356; uint8_t x357 = addcarryx_u32(x354, x307, x343, &x356);
+ uint32_t x359; uint8_t x360 = addcarryx_u32(x357, x310, x346, &x359);
+ uint32_t x362; uint8_t x363 = addcarryx_u32(x360, x313, x349, &x362);
+ uint32_t x365; uint8_t x366 = addcarryx_u32(x363, x316, x350, &x365);
+ uint32_t x368; uint8_t x369 = addcarryx_u32(x366, x319, x351, &x368);
+ uint32_t x371; uint8_t x372 = addcarryx_u32(x369, x322, x304, &x371);
+ uint32_t x374; uint8_t x375 = addcarryx_u32(x372, x325, x340, &x374);
+ uint32_t x377; uint8_t x378 = addcarryx_u32(x375, x328, x341, &x377);
+ uint8_t x379 = (x378 + x329);
+ uint32_t x382; uint32_t x381 = mulx_u32(x11, x19, &x382);
+ uint32_t x385; uint32_t x384 = mulx_u32(x11, x21, &x385);
+ uint32_t x388; uint32_t x387 = mulx_u32(x11, x23, &x388);
+ uint32_t x391; uint32_t x390 = mulx_u32(x11, x25, &x391);
+ uint32_t x394; uint32_t x393 = mulx_u32(x11, x27, &x394);
+ uint32_t x397; uint32_t x396 = mulx_u32(x11, x29, &x397);
+ uint32_t x400; uint32_t x399 = mulx_u32(x11, x31, &x400);
+ uint32_t x403; uint32_t x402 = mulx_u32(x11, x30, &x403);
+ uint32_t x405; uint8_t x406 = addcarryx_u32(0x0, x382, x384, &x405);
+ uint32_t x408; uint8_t x409 = addcarryx_u32(x406, x385, x387, &x408);
+ uint32_t x411; uint8_t x412 = addcarryx_u32(x409, x388, x390, &x411);
+ uint32_t x414; uint8_t x415 = addcarryx_u32(x412, x391, x393, &x414);
+ uint32_t x417; uint8_t x418 = addcarryx_u32(x415, x394, x396, &x417);
+ uint32_t x420; uint8_t x421 = addcarryx_u32(x418, x397, x399, &x420);
+ uint32_t x423; uint8_t x424 = addcarryx_u32(x421, x400, x402, &x423);
+ uint32_t x426; addcarryx_u32(0x0, x424, x403, &x426);
+ uint32_t x429; uint8_t x430 = addcarryx_u32(0x0, x356, x381, &x429);
+ uint32_t x432; uint8_t x433 = addcarryx_u32(x430, x359, x405, &x432);
+ uint32_t x435; uint8_t x436 = addcarryx_u32(x433, x362, x408, &x435);
+ uint32_t x438; uint8_t x439 = addcarryx_u32(x436, x365, x411, &x438);
+ uint32_t x441; uint8_t x442 = addcarryx_u32(x439, x368, x414, &x441);
+ uint32_t x444; uint8_t x445 = addcarryx_u32(x442, x371, x417, &x444);
+ uint32_t x447; uint8_t x448 = addcarryx_u32(x445, x374, x420, &x447);
+ uint32_t x450; uint8_t x451 = addcarryx_u32(x448, x377, x423, &x450);
+ uint32_t x453; uint8_t x454 = addcarryx_u32(x451, x379, x426, &x453);
+ uint32_t x457; uint32_t x456 = mulx_u32(x429, 0xffffffff, &x457);
+ uint32_t x460; uint32_t x459 = mulx_u32(x429, 0xffffffff, &x460);
+ uint32_t x463; uint32_t x462 = mulx_u32(x429, 0xffffffff, &x463);
+ uint32_t x466; uint32_t x465 = mulx_u32(x429, 0xffffffff, &x466);
+ uint32_t x468; uint8_t x469 = addcarryx_u32(0x0, x457, x459, &x468);
+ uint32_t x471; uint8_t x472 = addcarryx_u32(x469, x460, x462, &x471);
+ uint32_t x474; uint8_t x475 = addcarryx_u32(x472, x463, 0x0, &x474);
+ uint8_t x476 = (0x0 + 0x0);
+ uint32_t _4; uint8_t x479 = addcarryx_u32(0x0, x429, x456, &_4);
+ uint32_t x481; uint8_t x482 = addcarryx_u32(x479, x432, x468, &x481);
+ uint32_t x484; uint8_t x485 = addcarryx_u32(x482, x435, x471, &x484);
+ uint32_t x487; uint8_t x488 = addcarryx_u32(x485, x438, x474, &x487);
+ uint32_t x490; uint8_t x491 = addcarryx_u32(x488, x441, x475, &x490);
+ uint32_t x493; uint8_t x494 = addcarryx_u32(x491, x444, x476, &x493);
+ uint32_t x496; uint8_t x497 = addcarryx_u32(x494, x447, x429, &x496);
+ uint32_t x499; uint8_t x500 = addcarryx_u32(x497, x450, x465, &x499);
+ uint32_t x502; uint8_t x503 = addcarryx_u32(x500, x453, x466, &x502);
+ uint8_t x504 = (x503 + x454);
+ uint32_t x507; uint32_t x506 = mulx_u32(x13, x19, &x507);
+ uint32_t x510; uint32_t x509 = mulx_u32(x13, x21, &x510);
+ uint32_t x513; uint32_t x512 = mulx_u32(x13, x23, &x513);
+ uint32_t x516; uint32_t x515 = mulx_u32(x13, x25, &x516);
+ uint32_t x519; uint32_t x518 = mulx_u32(x13, x27, &x519);
+ uint32_t x522; uint32_t x521 = mulx_u32(x13, x29, &x522);
+ uint32_t x525; uint32_t x524 = mulx_u32(x13, x31, &x525);
+ uint32_t x528; uint32_t x527 = mulx_u32(x13, x30, &x528);
+ uint32_t x530; uint8_t x531 = addcarryx_u32(0x0, x507, x509, &x530);
+ uint32_t x533; uint8_t x534 = addcarryx_u32(x531, x510, x512, &x533);
+ uint32_t x536; uint8_t x537 = addcarryx_u32(x534, x513, x515, &x536);
+ uint32_t x539; uint8_t x540 = addcarryx_u32(x537, x516, x518, &x539);
+ uint32_t x542; uint8_t x543 = addcarryx_u32(x540, x519, x521, &x542);
+ uint32_t x545; uint8_t x546 = addcarryx_u32(x543, x522, x524, &x545);
+ uint32_t x548; uint8_t x549 = addcarryx_u32(x546, x525, x527, &x548);
+ uint32_t x551; addcarryx_u32(0x0, x549, x528, &x551);
+ uint32_t x554; uint8_t x555 = addcarryx_u32(0x0, x481, x506, &x554);
+ uint32_t x557; uint8_t x558 = addcarryx_u32(x555, x484, x530, &x557);
+ uint32_t x560; uint8_t x561 = addcarryx_u32(x558, x487, x533, &x560);
+ uint32_t x563; uint8_t x564 = addcarryx_u32(x561, x490, x536, &x563);
+ uint32_t x566; uint8_t x567 = addcarryx_u32(x564, x493, x539, &x566);
+ uint32_t x569; uint8_t x570 = addcarryx_u32(x567, x496, x542, &x569);
+ uint32_t x572; uint8_t x573 = addcarryx_u32(x570, x499, x545, &x572);
+ uint32_t x575; uint8_t x576 = addcarryx_u32(x573, x502, x548, &x575);
+ uint32_t x578; uint8_t x579 = addcarryx_u32(x576, x504, x551, &x578);
+ uint32_t x582; uint32_t x581 = mulx_u32(x554, 0xffffffff, &x582);
+ uint32_t x585; uint32_t x584 = mulx_u32(x554, 0xffffffff, &x585);
+ uint32_t x588; uint32_t x587 = mulx_u32(x554, 0xffffffff, &x588);
+ uint32_t x591; uint32_t x590 = mulx_u32(x554, 0xffffffff, &x591);
+ uint32_t x593; uint8_t x594 = addcarryx_u32(0x0, x582, x584, &x593);
+ uint32_t x596; uint8_t x597 = addcarryx_u32(x594, x585, x587, &x596);
+ uint32_t x599; uint8_t x600 = addcarryx_u32(x597, x588, 0x0, &x599);
+ uint8_t x601 = (0x0 + 0x0);
+ uint32_t _5; uint8_t x604 = addcarryx_u32(0x0, x554, x581, &_5);
+ uint32_t x606; uint8_t x607 = addcarryx_u32(x604, x557, x593, &x606);
+ uint32_t x609; uint8_t x610 = addcarryx_u32(x607, x560, x596, &x609);
+ uint32_t x612; uint8_t x613 = addcarryx_u32(x610, x563, x599, &x612);
+ uint32_t x615; uint8_t x616 = addcarryx_u32(x613, x566, x600, &x615);
+ uint32_t x618; uint8_t x619 = addcarryx_u32(x616, x569, x601, &x618);
+ uint32_t x621; uint8_t x622 = addcarryx_u32(x619, x572, x554, &x621);
+ uint32_t x624; uint8_t x625 = addcarryx_u32(x622, x575, x590, &x624);
+ uint32_t x627; uint8_t x628 = addcarryx_u32(x625, x578, x591, &x627);
+ uint8_t x629 = (x628 + x579);
+ uint32_t x632; uint32_t x631 = mulx_u32(x15, x19, &x632);
+ uint32_t x635; uint32_t x634 = mulx_u32(x15, x21, &x635);
+ uint32_t x638; uint32_t x637 = mulx_u32(x15, x23, &x638);
+ uint32_t x641; uint32_t x640 = mulx_u32(x15, x25, &x641);
+ uint32_t x644; uint32_t x643 = mulx_u32(x15, x27, &x644);
+ uint32_t x647; uint32_t x646 = mulx_u32(x15, x29, &x647);
+ uint32_t x650; uint32_t x649 = mulx_u32(x15, x31, &x650);
+ uint32_t x653; uint32_t x652 = mulx_u32(x15, x30, &x653);
+ uint32_t x655; uint8_t x656 = addcarryx_u32(0x0, x632, x634, &x655);
+ uint32_t x658; uint8_t x659 = addcarryx_u32(x656, x635, x637, &x658);
+ uint32_t x661; uint8_t x662 = addcarryx_u32(x659, x638, x640, &x661);
+ uint32_t x664; uint8_t x665 = addcarryx_u32(x662, x641, x643, &x664);
+ uint32_t x667; uint8_t x668 = addcarryx_u32(x665, x644, x646, &x667);
+ uint32_t x670; uint8_t x671 = addcarryx_u32(x668, x647, x649, &x670);
+ uint32_t x673; uint8_t x674 = addcarryx_u32(x671, x650, x652, &x673);
+ uint32_t x676; addcarryx_u32(0x0, x674, x653, &x676);
+ uint32_t x679; uint8_t x680 = addcarryx_u32(0x0, x606, x631, &x679);
+ uint32_t x682; uint8_t x683 = addcarryx_u32(x680, x609, x655, &x682);
+ uint32_t x685; uint8_t x686 = addcarryx_u32(x683, x612, x658, &x685);
+ uint32_t x688; uint8_t x689 = addcarryx_u32(x686, x615, x661, &x688);
+ uint32_t x691; uint8_t x692 = addcarryx_u32(x689, x618, x664, &x691);
+ uint32_t x694; uint8_t x695 = addcarryx_u32(x692, x621, x667, &x694);
+ uint32_t x697; uint8_t x698 = addcarryx_u32(x695, x624, x670, &x697);
+ uint32_t x700; uint8_t x701 = addcarryx_u32(x698, x627, x673, &x700);
+ uint32_t x703; uint8_t x704 = addcarryx_u32(x701, x629, x676, &x703);
+ uint32_t x707; uint32_t x706 = mulx_u32(x679, 0xffffffff, &x707);
+ uint32_t x710; uint32_t x709 = mulx_u32(x679, 0xffffffff, &x710);
+ uint32_t x713; uint32_t x712 = mulx_u32(x679, 0xffffffff, &x713);
+ uint32_t x716; uint32_t x715 = mulx_u32(x679, 0xffffffff, &x716);
+ uint32_t x718; uint8_t x719 = addcarryx_u32(0x0, x707, x709, &x718);
+ uint32_t x721; uint8_t x722 = addcarryx_u32(x719, x710, x712, &x721);
+ uint32_t x724; uint8_t x725 = addcarryx_u32(x722, x713, 0x0, &x724);
+ uint8_t x726 = (0x0 + 0x0);
+ uint32_t _6; uint8_t x729 = addcarryx_u32(0x0, x679, x706, &_6);
+ uint32_t x731; uint8_t x732 = addcarryx_u32(x729, x682, x718, &x731);
+ uint32_t x734; uint8_t x735 = addcarryx_u32(x732, x685, x721, &x734);
+ uint32_t x737; uint8_t x738 = addcarryx_u32(x735, x688, x724, &x737);
+ uint32_t x740; uint8_t x741 = addcarryx_u32(x738, x691, x725, &x740);
+ uint32_t x743; uint8_t x744 = addcarryx_u32(x741, x694, x726, &x743);
+ uint32_t x746; uint8_t x747 = addcarryx_u32(x744, x697, x679, &x746);
+ uint32_t x749; uint8_t x750 = addcarryx_u32(x747, x700, x715, &x749);
+ uint32_t x752; uint8_t x753 = addcarryx_u32(x750, x703, x716, &x752);
+ uint8_t x754 = (x753 + x704);
+ uint32_t x757; uint32_t x756 = mulx_u32(x17, x19, &x757);
+ uint32_t x760; uint32_t x759 = mulx_u32(x17, x21, &x760);
+ uint32_t x763; uint32_t x762 = mulx_u32(x17, x23, &x763);
+ uint32_t x766; uint32_t x765 = mulx_u32(x17, x25, &x766);
+ uint32_t x769; uint32_t x768 = mulx_u32(x17, x27, &x769);
+ uint32_t x772; uint32_t x771 = mulx_u32(x17, x29, &x772);
+ uint32_t x775; uint32_t x774 = mulx_u32(x17, x31, &x775);
+ uint32_t x778; uint32_t x777 = mulx_u32(x17, x30, &x778);
+ uint32_t x780; uint8_t x781 = addcarryx_u32(0x0, x757, x759, &x780);
+ uint32_t x783; uint8_t x784 = addcarryx_u32(x781, x760, x762, &x783);
+ uint32_t x786; uint8_t x787 = addcarryx_u32(x784, x763, x765, &x786);
+ uint32_t x789; uint8_t x790 = addcarryx_u32(x787, x766, x768, &x789);
+ uint32_t x792; uint8_t x793 = addcarryx_u32(x790, x769, x771, &x792);
+ uint32_t x795; uint8_t x796 = addcarryx_u32(x793, x772, x774, &x795);
+ uint32_t x798; uint8_t x799 = addcarryx_u32(x796, x775, x777, &x798);
+ uint32_t x801; addcarryx_u32(0x0, x799, x778, &x801);
+ uint32_t x804; uint8_t x805 = addcarryx_u32(0x0, x731, x756, &x804);
+ uint32_t x807; uint8_t x808 = addcarryx_u32(x805, x734, x780, &x807);
+ uint32_t x810; uint8_t x811 = addcarryx_u32(x808, x737, x783, &x810);
+ uint32_t x813; uint8_t x814 = addcarryx_u32(x811, x740, x786, &x813);
+ uint32_t x816; uint8_t x817 = addcarryx_u32(x814, x743, x789, &x816);
+ uint32_t x819; uint8_t x820 = addcarryx_u32(x817, x746, x792, &x819);
+ uint32_t x822; uint8_t x823 = addcarryx_u32(x820, x749, x795, &x822);
+ uint32_t x825; uint8_t x826 = addcarryx_u32(x823, x752, x798, &x825);
+ uint32_t x828; uint8_t x829 = addcarryx_u32(x826, x754, x801, &x828);
+ uint32_t x832; uint32_t x831 = mulx_u32(x804, 0xffffffff, &x832);
+ uint32_t x835; uint32_t x834 = mulx_u32(x804, 0xffffffff, &x835);
+ uint32_t x838; uint32_t x837 = mulx_u32(x804, 0xffffffff, &x838);
+ uint32_t x841; uint32_t x840 = mulx_u32(x804, 0xffffffff, &x841);
+ uint32_t x843; uint8_t x844 = addcarryx_u32(0x0, x832, x834, &x843);
+ uint32_t x846; uint8_t x847 = addcarryx_u32(x844, x835, x837, &x846);
+ uint32_t x849; uint8_t x850 = addcarryx_u32(x847, x838, 0x0, &x849);
+ uint8_t x851 = (0x0 + 0x0);
+ uint32_t _7; uint8_t x854 = addcarryx_u32(0x0, x804, x831, &_7);
+ uint32_t x856; uint8_t x857 = addcarryx_u32(x854, x807, x843, &x856);
+ uint32_t x859; uint8_t x860 = addcarryx_u32(x857, x810, x846, &x859);
+ uint32_t x862; uint8_t x863 = addcarryx_u32(x860, x813, x849, &x862);
+ uint32_t x865; uint8_t x866 = addcarryx_u32(x863, x816, x850, &x865);
+ uint32_t x868; uint8_t x869 = addcarryx_u32(x866, x819, x851, &x868);
+ uint32_t x871; uint8_t x872 = addcarryx_u32(x869, x822, x804, &x871);
+ uint32_t x874; uint8_t x875 = addcarryx_u32(x872, x825, x840, &x874);
+ uint32_t x877; uint8_t x878 = addcarryx_u32(x875, x828, x841, &x877);
+ uint8_t x879 = (x878 + x829);
+ uint32_t x882; uint32_t x881 = mulx_u32(x16, x19, &x882);
+ uint32_t x885; uint32_t x884 = mulx_u32(x16, x21, &x885);
+ uint32_t x888; uint32_t x887 = mulx_u32(x16, x23, &x888);
+ uint32_t x891; uint32_t x890 = mulx_u32(x16, x25, &x891);
+ uint32_t x894; uint32_t x893 = mulx_u32(x16, x27, &x894);
+ uint32_t x897; uint32_t x896 = mulx_u32(x16, x29, &x897);
+ uint32_t x900; uint32_t x899 = mulx_u32(x16, x31, &x900);
+ uint32_t x903; uint32_t x902 = mulx_u32(x16, x30, &x903);
+ uint32_t x905; uint8_t x906 = addcarryx_u32(0x0, x882, x884, &x905);
+ uint32_t x908; uint8_t x909 = addcarryx_u32(x906, x885, x887, &x908);
+ uint32_t x911; uint8_t x912 = addcarryx_u32(x909, x888, x890, &x911);
+ uint32_t x914; uint8_t x915 = addcarryx_u32(x912, x891, x893, &x914);
+ uint32_t x917; uint8_t x918 = addcarryx_u32(x915, x894, x896, &x917);
+ uint32_t x920; uint8_t x921 = addcarryx_u32(x918, x897, x899, &x920);
+ uint32_t x923; uint8_t x924 = addcarryx_u32(x921, x900, x902, &x923);
+ uint32_t x926; addcarryx_u32(0x0, x924, x903, &x926);
+ uint32_t x929; uint8_t x930 = addcarryx_u32(0x0, x856, x881, &x929);
+ uint32_t x932; uint8_t x933 = addcarryx_u32(x930, x859, x905, &x932);
+ uint32_t x935; uint8_t x936 = addcarryx_u32(x933, x862, x908, &x935);
+ uint32_t x938; uint8_t x939 = addcarryx_u32(x936, x865, x911, &x938);
+ uint32_t x941; uint8_t x942 = addcarryx_u32(x939, x868, x914, &x941);
+ uint32_t x944; uint8_t x945 = addcarryx_u32(x942, x871, x917, &x944);
+ uint32_t x947; uint8_t x948 = addcarryx_u32(x945, x874, x920, &x947);
+ uint32_t x950; uint8_t x951 = addcarryx_u32(x948, x877, x923, &x950);
+ uint32_t x953; uint8_t x954 = addcarryx_u32(x951, x879, x926, &x953);
+ uint32_t x957; uint32_t x956 = mulx_u32(x929, 0xffffffff, &x957);
+ uint32_t x960; uint32_t x959 = mulx_u32(x929, 0xffffffff, &x960);
+ uint32_t x963; uint32_t x962 = mulx_u32(x929, 0xffffffff, &x963);
+ uint32_t x966; uint32_t x965 = mulx_u32(x929, 0xffffffff, &x966);
+ uint32_t x968; uint8_t x969 = addcarryx_u32(0x0, x957, x959, &x968);
+ uint32_t x971; uint8_t x972 = addcarryx_u32(x969, x960, x962, &x971);
+ uint32_t x974; uint8_t x975 = addcarryx_u32(x972, x963, 0x0, &x974);
+ uint8_t x976 = (0x0 + 0x0);
+ uint32_t _8; uint8_t x979 = addcarryx_u32(0x0, x929, x956, &_8);
+ uint32_t x981; uint8_t x982 = addcarryx_u32(x979, x932, x968, &x981);
+ uint32_t x984; uint8_t x985 = addcarryx_u32(x982, x935, x971, &x984);
+ uint32_t x987; uint8_t x988 = addcarryx_u32(x985, x938, x974, &x987);
+ uint32_t x990; uint8_t x991 = addcarryx_u32(x988, x941, x975, &x990);
+ uint32_t x993; uint8_t x994 = addcarryx_u32(x991, x944, x976, &x993);
+ uint32_t x996; uint8_t x997 = addcarryx_u32(x994, x947, x929, &x996);
+ uint32_t x999; uint8_t x1000 = addcarryx_u32(x997, x950, x965, &x999);
+ uint32_t x1002; uint8_t x1003 = addcarryx_u32(x1000, x953, x966, &x1002);
+ uint8_t x1004 = (x1003 + x954);
+ uint32_t x1006; uint8_t x1007 = subborrow_u32(0x0, x981, 0xffffffff, &x1006);
+ uint32_t x1009; uint8_t x1010 = subborrow_u32(x1007, x984, 0xffffffff, &x1009);
+ uint32_t x1012; uint8_t x1013 = subborrow_u32(x1010, x987, 0xffffffff, &x1012);
+ uint32_t x1015; uint8_t x1016 = subborrow_u32(x1013, x990, 0x0, &x1015);
+ uint32_t x1018; uint8_t x1019 = subborrow_u32(x1016, x993, 0x0, &x1018);
+ uint32_t x1021; uint8_t x1022 = subborrow_u32(x1019, x996, 0x0, &x1021);
+ uint32_t x1024; uint8_t x1025 = subborrow_u32(x1022, x999, 0x1, &x1024);
+ uint32_t x1027; uint8_t x1028 = subborrow_u32(x1025, x1002, 0xffffffff, &x1027);
+ uint32_t _9; uint8_t x1031 = subborrow_u32(x1028, x1004, 0x0, &_9);
+ uint32_t x1032 = cmovznz_u32(x1031, x1027, x1002);
+ uint32_t x1033 = cmovznz_u32(x1031, x1024, x999);
+ uint32_t x1034 = cmovznz_u32(x1031, x1021, x996);
+ uint32_t x1035 = cmovznz_u32(x1031, x1018, x993);
+ uint32_t x1036 = cmovznz_u32(x1031, x1015, x990);
+ uint32_t x1037 = cmovznz_u32(x1031, x1012, x987);
+ uint32_t x1038 = cmovznz_u32(x1031, x1009, x984);
+ uint32_t x1039 = cmovznz_u32(x1031, x1006, x981);
+ out[0] = x1039;
+ out[1] = x1038;
+ out[2] = x1037;
+ out[3] = x1036;
+ out[4] = x1035;
+ out[5] = x1034;
+ out[6] = x1033;
+ out[7] = x1032;
+}
+
+// NOTE: the following functions are generated from fiat-crypto, from the same
+// template as their 64-bit counterparts above, but the correctness proof of
+// the template was not composed with the correctness proof of the
+// specialization pipeline. This is because Coq unexplainedly loops on trying
+// to synthesize opp and sub using the normal pipeline.
+
+static void fe_sub(uint32_t out[8], const uint32_t in1[8], const uint32_t in2[8]) {
+ const uint32_t x14 = in1[7];
+ const uint32_t x15 = in1[6];
+ const uint32_t x13 = in1[5];
+ const uint32_t x11 = in1[4];
+ const uint32_t x9 = in1[3];
+ const uint32_t x7 = in1[2];
+ const uint32_t x5 = in1[1];
+ const uint32_t x3 = in1[0];
+ const uint32_t x28 = in2[7];
+ const uint32_t x29 = in2[6];
+ const uint32_t x27 = in2[5];
+ const uint32_t x25 = in2[4];
+ const uint32_t x23 = in2[3];
+ const uint32_t x21 = in2[2];
+ const uint32_t x19 = in2[1];
+ const uint32_t x17 = in2[0];
+ uint32_t x31; uint8_t x32 = subborrow_u32(0x0, x3, x17, &x31);
+ uint32_t x34; uint8_t x35 = subborrow_u32(x32, x5, x19, &x34);
+ uint32_t x37; uint8_t x38 = subborrow_u32(x35, x7, x21, &x37);
+ uint32_t x40; uint8_t x41 = subborrow_u32(x38, x9, x23, &x40);
+ uint32_t x43; uint8_t x44 = subborrow_u32(x41, x11, x25, &x43);
+ uint32_t x46; uint8_t x47 = subborrow_u32(x44, x13, x27, &x46);
+ uint32_t x49; uint8_t x50 = subborrow_u32(x47, x15, x29, &x49);
+ uint32_t x52; uint8_t x53 = subborrow_u32(x50, x14, x28, &x52);
+ uint32_t x54 = cmovznz_u32(x53, 0x0, 0xffffffff);
+ uint32_t x56; uint8_t x57 = addcarryx_u32(0x0, x31, (x54 & 0xffffffff), &x56);
+ uint32_t x59; uint8_t x60 = addcarryx_u32(x57, x34, (x54 & 0xffffffff), &x59);
+ uint32_t x62; uint8_t x63 = addcarryx_u32(x60, x37, (x54 & 0xffffffff), &x62);
+ uint32_t x65; uint8_t x66 = addcarryx_u32(x63, x40, 0x0, &x65);
+ uint32_t x68; uint8_t x69 = addcarryx_u32(x66, x43, 0x0, &x68);
+ uint32_t x71; uint8_t x72 = addcarryx_u32(x69, x46, 0x0, &x71);
+ uint32_t x74; uint8_t x75 = addcarryx_u32(x72, x49, ((uint8_t)x54 & 0x1), &x74);
+ uint32_t x77; addcarryx_u32(x75, x52, (x54 & 0xffffffff), &x77);
+ out[0] = x56;
+ out[1] = x59;
+ out[2] = x62;
+ out[3] = x65;
+ out[4] = x68;
+ out[5] = x71;
+ out[6] = x74;
+ out[7] = x77;
+}
+
+// fe_op sets out = -in
+static void fe_opp(uint32_t out[8], const uint32_t in1[8]) {
+ const uint32_t x12 = in1[7];
+ const uint32_t x13 = in1[6];
+ const uint32_t x11 = in1[5];
+ const uint32_t x9 = in1[4];
+ const uint32_t x7 = in1[3];
+ const uint32_t x5 = in1[2];
+ const uint32_t x3 = in1[1];
+ const uint32_t x1 = in1[0];
+ uint32_t x15; uint8_t x16 = subborrow_u32(0x0, 0x0, x1, &x15);
+ uint32_t x18; uint8_t x19 = subborrow_u32(x16, 0x0, x3, &x18);
+ uint32_t x21; uint8_t x22 = subborrow_u32(x19, 0x0, x5, &x21);
+ uint32_t x24; uint8_t x25 = subborrow_u32(x22, 0x0, x7, &x24);
+ uint32_t x27; uint8_t x28 = subborrow_u32(x25, 0x0, x9, &x27);
+ uint32_t x30; uint8_t x31 = subborrow_u32(x28, 0x0, x11, &x30);
+ uint32_t x33; uint8_t x34 = subborrow_u32(x31, 0x0, x13, &x33);
+ uint32_t x36; uint8_t x37 = subborrow_u32(x34, 0x0, x12, &x36);
+ uint32_t x38 = cmovznz_u32(x37, 0x0, 0xffffffff);
+ uint32_t x40; uint8_t x41 = addcarryx_u32(0x0, x15, (x38 & 0xffffffff), &x40);
+ uint32_t x43; uint8_t x44 = addcarryx_u32(x41, x18, (x38 & 0xffffffff), &x43);
+ uint32_t x46; uint8_t x47 = addcarryx_u32(x44, x21, (x38 & 0xffffffff), &x46);
+ uint32_t x49; uint8_t x50 = addcarryx_u32(x47, x24, 0x0, &x49);
+ uint32_t x52; uint8_t x53 = addcarryx_u32(x50, x27, 0x0, &x52);
+ uint32_t x55; uint8_t x56 = addcarryx_u32(x53, x30, 0x0, &x55);
+ uint32_t x58; uint8_t x59 = addcarryx_u32(x56, x33, ((uint8_t)x38 & 0x1), &x58);
+ uint32_t x61; addcarryx_u32(x59, x36, (x38 & 0xffffffff), &x61);
+ out[0] = x40;
+ out[1] = x43;
+ out[2] = x46;
+ out[3] = x49;
+ out[4] = x52;
+ out[5] = x55;
+ out[6] = x58;
+ out[7] = x61;
+}
+
+#endif
+
+// utility functions, handwritten
+
+#define NBYTES 32
+
+#if defined(BORINGSSL_NISTP256_64BIT)
+
+#define NLIMBS 4
+typedef uint64_t limb_t;
+#define cmovznz_limb cmovznz_u64
+typedef uint64_t fe[NLIMBS];
+#else // 64BIT; else 32BIT
+
+#define NLIMBS 8
+typedef uint32_t limb_t;
+#define cmovznz_limb cmovznz_u32
+typedef uint32_t fe[NLIMBS];
+
+#endif // 64BIT
+
+static limb_t fe_nz(const limb_t in1[NLIMBS]) {
+ limb_t ret = 0;
+ for (int i = 0; i < NLIMBS; i++) {
+ ret |= in1[i];
+ }
+ return ret;
+}
+
+static void fe_copy(limb_t out[NLIMBS], const limb_t in1[NLIMBS]) {
+ for (int i = 0; i < NLIMBS; i++) {
+ out[i] = in1[i];
+ }
+}
+
+static void fe_cmovznz(limb_t out[NLIMBS], limb_t t, const limb_t z[NLIMBS],
+ const limb_t nz[NLIMBS]) {
+ for (int i = 0; i < NLIMBS; i++) {
+ out[i] = cmovznz_limb(t, z[i], nz[i]);
+ }
+}
+
+static void fe_sqr(fe out, const fe in) {
+ fe_mul(out, in, in);
+}
+
+static void fe_tobytes(uint8_t out[NBYTES], const fe in) {
+ for (int i = 0; i<NBYTES; i++) {
+ out[i] = (uint8_t)(in[i/sizeof(in[0])] >> (8*(i%sizeof(in[0]))));
+ }
+}
+
+static void fe_frombytes(fe out, const uint8_t in[NBYTES]) {
+ for (int i = 0; i<NLIMBS; i++) {
+ out[i] = 0;
+ }
+ for (int i = 0; i<NBYTES; i++) {
+ out[i/sizeof(out[0])] |= ((limb_t)in[i]) << (8*(i%sizeof(out[0])));
+ }
+}
+
+static void fe_from_montgomery(fe x) {
+ static const limb_t kOne[NLIMBS] = {1, 0};
+ fe_mul(x, x, kOne);
+}
+
+// BN_* compatability wrappers
+
+static int BN_to_fe(fe out, const BIGNUM *bn) {
+ uint8_t tmp[NBYTES];
+ if (!BN_bn2le_padded(tmp, NBYTES, bn)) {
+ return 0;
+ }
+ fe_frombytes(out, tmp);
+ return 1;
+}
+
+static BIGNUM *fe_to_BN(BIGNUM *out, const fe in) {
+ uint8_t tmp[NBYTES];
+ fe_tobytes(tmp, in);
+ return BN_le2bn(tmp, NBYTES, out);
+}
+
+// fe_inv calculates |out| = |in|^{-1}
+//
+// Based on Fermat's Little Theorem:
+// a^p = a (mod p)
+// a^{p-1} = 1 (mod p)
+// a^{p-2} = a^{-1} (mod p)
+static void fe_inv(fe out, const fe in) {
+ fe ftmp, ftmp2;
+ // each e_I will hold |in|^{2^I - 1}
+ fe e2, e4, e8, e16, e32, e64;
+
+ fe_sqr(ftmp, in); // 2^1
+ fe_mul(ftmp, in, ftmp); // 2^2 - 2^0
+ fe_copy(e2, ftmp);
+ fe_sqr(ftmp, ftmp); // 2^3 - 2^1
+ fe_sqr(ftmp, ftmp); // 2^4 - 2^2
+ fe_mul(ftmp, ftmp, e2); // 2^4 - 2^0
+ fe_copy(e4, ftmp);
+ fe_sqr(ftmp, ftmp); // 2^5 - 2^1
+ fe_sqr(ftmp, ftmp); // 2^6 - 2^2
+ fe_sqr(ftmp, ftmp); // 2^7 - 2^3
+ fe_sqr(ftmp, ftmp); // 2^8 - 2^4
+ fe_mul(ftmp, ftmp, e4); // 2^8 - 2^0
+ fe_copy(e8, ftmp);
+ for (size_t i = 0; i < 8; i++) {
+ fe_sqr(ftmp, ftmp);
+ } // 2^16 - 2^8
+ fe_mul(ftmp, ftmp, e8); // 2^16 - 2^0
+ fe_copy(e16, ftmp);
+ for (size_t i = 0; i < 16; i++) {
+ fe_sqr(ftmp, ftmp);
+ } // 2^32 - 2^16
+ fe_mul(ftmp, ftmp, e16); // 2^32 - 2^0
+ fe_copy(e32, ftmp);
+ for (size_t i = 0; i < 32; i++) {
+ fe_sqr(ftmp, ftmp);
+ } // 2^64 - 2^32
+ fe_copy(e64, ftmp);
+ fe_mul(ftmp, ftmp, in); // 2^64 - 2^32 + 2^0
+ for (size_t i = 0; i < 192; i++) {
+ fe_sqr(ftmp, ftmp);
+ } // 2^256 - 2^224 + 2^192
+
+ fe_mul(ftmp2, e64, e32); // 2^64 - 2^0
+ for (size_t i = 0; i < 16; i++) {
+ fe_sqr(ftmp2, ftmp2);
+ } // 2^80 - 2^16
+ fe_mul(ftmp2, ftmp2, e16); // 2^80 - 2^0
+ for (size_t i = 0; i < 8; i++) {
+ fe_sqr(ftmp2, ftmp2);
+ } // 2^88 - 2^8
+ fe_mul(ftmp2, ftmp2, e8); // 2^88 - 2^0
+ for (size_t i = 0; i < 4; i++) {
+ fe_sqr(ftmp2, ftmp2);
+ } // 2^92 - 2^4
+ fe_mul(ftmp2, ftmp2, e4); // 2^92 - 2^0
+ fe_sqr(ftmp2, ftmp2); // 2^93 - 2^1
+ fe_sqr(ftmp2, ftmp2); // 2^94 - 2^2
+ fe_mul(ftmp2, ftmp2, e2); // 2^94 - 2^0
+ fe_sqr(ftmp2, ftmp2); // 2^95 - 2^1
+ fe_sqr(ftmp2, ftmp2); // 2^96 - 2^2
+ fe_mul(ftmp2, ftmp2, in); // 2^96 - 3
+
+ fe_mul(out, ftmp2, ftmp); // 2^256 - 2^224 + 2^192 + 2^96 - 3
+}
+
+// Group operations
+// ----------------
+//
+// Building on top of the field operations we have the operations on the
+// elliptic curve group itself. Points on the curve are represented in Jacobian
+// coordinates.
+
+// point_double calculates 2*(x_in, y_in, z_in)
+//
+// The method is taken from:
+// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
+//
+// Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
+// while x_out == y_in is not (maybe this works, but it's not tested).
+static void point_double(fe x_out, fe y_out, fe z_out,
+ const fe x_in, const fe y_in, const fe z_in) {
+ fe delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
+ // delta = z^2
+ fe_sqr(delta, z_in);
+ // gamma = y^2
+ fe_sqr(gamma, y_in);
+ // beta = x*gamma
+ fe_mul(beta, x_in, gamma);
+
+ // alpha = 3*(x-delta)*(x+delta)
+ fe_sub(ftmp, x_in, delta);
+ fe_add(ftmp2, x_in, delta);
+
+ fe_add(tmptmp, ftmp2, ftmp2);
+ fe_add(ftmp2, ftmp2, tmptmp);
+ fe_mul(alpha, ftmp, ftmp2);
+
+ // x' = alpha^2 - 8*beta
+ fe_sqr(x_out, alpha);
+ fe_add(fourbeta, beta, beta);
+ fe_add(fourbeta, fourbeta, fourbeta);
+ fe_add(tmptmp, fourbeta, fourbeta);
+ fe_sub(x_out, x_out, tmptmp);
+
+ // z' = (y + z)^2 - gamma - delta
+ fe_add(delta, gamma, delta);
+ fe_add(ftmp, y_in, z_in);
+ fe_sqr(z_out, ftmp);
+ fe_sub(z_out, z_out, delta);
+
+ // y' = alpha*(4*beta - x') - 8*gamma^2
+ fe_sub(y_out, fourbeta, x_out);
+ fe_add(gamma, gamma, gamma);
+ fe_sqr(gamma, gamma);
+ fe_mul(y_out, alpha, y_out);
+ fe_add(gamma, gamma, gamma);
+ fe_sub(y_out, y_out, gamma);
+}
+
+// point_add calcuates (x1, y1, z1) + (x2, y2, z2)
+//
+// The method is taken from:
+// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
+// adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
+//
+// This function includes a branch for checking whether the two input points
+// are equal, (while not equal to the point at infinity). This case never
+// happens during single point multiplication, so there is no timing leak for
+// ECDH or ECDSA signing.
+static void point_add(fe x3, fe y3, fe z3, const fe x1,
+ const fe y1, const fe z1, const int mixed,
+ const fe x2, const fe y2, const fe z2) {
+ fe x_out, y_out, z_out;
+ limb_t z1nz = fe_nz(z1);
+ limb_t z2nz = fe_nz(z2);
+
+ // z1z1 = z1z1 = z1**2
+ fe z1z1; fe_sqr(z1z1, z1);
+
+ fe u1, s1, two_z1z2;
+ if (!mixed) {
+ // ftmp2 = z2z2 = z2**2
+ fe z2z2; fe_sqr(z2z2, z2);
+
+ // u1 = ftmp3 = x1*z2z2
+ fe_mul(u1, x1, z2z2);
+
+ // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
+ fe_add(two_z1z2, z1, z2);
+ fe_sqr(two_z1z2, two_z1z2);
+ fe_sub(two_z1z2, two_z1z2, z1z1);
+ fe_sub(two_z1z2, two_z1z2, z2z2);
+
+ // s1 = ftmp2 = y1 * z2**3
+ fe_mul(s1, z2, z2z2);
+ fe_mul(s1, s1, y1);
+ } else {
+ // We'll assume z2 = 1 (special case z2 = 0 is handled later).
+
+ // u1 = ftmp3 = x1*z2z2
+ fe_copy(u1, x1);
+ // two_z1z2 = 2z1z2
+ fe_add(two_z1z2, z1, z1);
+ // s1 = ftmp2 = y1 * z2**3
+ fe_copy(s1, y1);
+ }
+
+ // u2 = x2*z1z1
+ fe u2; fe_mul(u2, x2, z1z1);
+
+ // h = ftmp4 = u2 - u1
+ fe h; fe_sub(h, u2, u1);
+
+ limb_t xneq = fe_nz(h);
+
+ // z_out = two_z1z2 * h
+ fe_mul(z_out, h, two_z1z2);
+
+ // z1z1z1 = z1 * z1z1
+ fe z1z1z1; fe_mul(z1z1z1, z1, z1z1);
+
+ // s2 = tmp = y2 * z1**3
+ fe s2; fe_mul(s2, y2, z1z1z1);
+
+ // r = (s2 - s1)*2
+ fe r;
+ fe_sub(r, s2, s1);
+ fe_add(r, r, r);
+
+ limb_t yneq = fe_nz(r);
+
+ if (!xneq && !yneq && z1nz && z2nz) {
+ point_double(x_out, y_out, z_out, x1, y1, z1);
+ return;
+ }
+
+ // I = (2h)**2
+ fe i;
+ fe_add(i, h, h);
+ fe_sqr(i, i);
+
+ // J = ftmp2 = h * I
+ fe j; fe_mul(j, h, i);
+
+ // V = ftmp4 = U1 * I
+ fe v; fe_mul(v, u1, i);
+
+ // x_out = r**2 - J - 2V
+ fe_sqr(x_out, r);
+ fe_sub(x_out, x_out, j);
+ fe_sub(x_out, x_out, v);
+ fe_sub(x_out, x_out, v);
+
+ // y_out = r(V-x_out) - 2 * s1 * J
+ fe_sub(y_out, v, x_out);
+ fe_mul(y_out, y_out, r);
+ fe s1j;
+ fe_mul(s1j, s1, j);
+ fe_sub(y_out, y_out, s1j);
+ fe_sub(y_out, y_out, s1j);
+
+ fe_cmovznz(x_out, z1nz, x2, x_out);
+ fe_cmovznz(x3, z2nz, x1, x_out);
+ fe_cmovznz(y_out, z1nz, y2, y_out);
+ fe_cmovznz(y3, z2nz, y1, y_out);
+ fe_cmovznz(z_out, z1nz, z2, z_out);
+ fe_cmovznz(z3, z2nz, z1, z_out);
+}
+
+// Base point pre computation
+// --------------------------
+//
+// Two different sorts of precomputed tables are used in the following code.
+// Each contain various points on the curve, where each point is three field
+// elements (x, y, z).
+//
+// For the base point table, z is usually 1 (0 for the point at infinity).
+// This table has 2 * 16 elements, starting with the following:
+// index | bits | point
+// ------+---------+------------------------------
+// 0 | 0 0 0 0 | 0G
+// 1 | 0 0 0 1 | 1G
+// 2 | 0 0 1 0 | 2^64G
+// 3 | 0 0 1 1 | (2^64 + 1)G
+// 4 | 0 1 0 0 | 2^128G
+// 5 | 0 1 0 1 | (2^128 + 1)G
+// 6 | 0 1 1 0 | (2^128 + 2^64)G
+// 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
+// 8 | 1 0 0 0 | 2^192G
+// 9 | 1 0 0 1 | (2^192 + 1)G
+// 10 | 1 0 1 0 | (2^192 + 2^64)G
+// 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
+// 12 | 1 1 0 0 | (2^192 + 2^128)G
+// 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
+// 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
+// 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
+// followed by a copy of this with each element multiplied by 2^32.
+//
+// The reason for this is so that we can clock bits into four different
+// locations when doing simple scalar multiplies against the base point,
+// and then another four locations using the second 16 elements.
+//
+// Tables for other points have table[i] = iG for i in 0 .. 16.
+
+// g_pre_comp is the table of precomputed base points
+#if defined(BORINGSSL_NISTP256_64BIT)
+static const fe g_pre_comp[2][16][3] = {
+ {{{0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}},
+ {{0x79e730d418a9143c, 0x75ba95fc5fedb601, 0x79fb732b77622510,
+ 0x18905f76a53755c6},
+ {0xddf25357ce95560a, 0x8b4ab8e4ba19e45c, 0xd2e88688dd21f325,
+ 0x8571ff1825885d85},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0x4f922fc516a0d2bb, 0xd5cc16c1a623499, 0x9241cf3a57c62c8b,
+ 0x2f5e6961fd1b667f},
+ {0x5c15c70bf5a01797, 0x3d20b44d60956192, 0x4911b37071fdb52,
+ 0xf648f9168d6f0f7b},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0x9e566847e137bbbc, 0xe434469e8a6a0bec, 0xb1c4276179d73463,
+ 0x5abe0285133d0015},
+ {0x92aa837cc04c7dab, 0x573d9f4c43260c07, 0xc93156278e6cc37,
+ 0x94bb725b6b6f7383},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0x62a8c244bfe20925, 0x91c19ac38fdce867, 0x5a96a5d5dd387063,
+ 0x61d587d421d324f6},
+ {0xe87673a2a37173ea, 0x2384800853778b65, 0x10f8441e05bab43e,
+ 0xfa11fe124621efbe},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0x1c891f2b2cb19ffd, 0x1ba8d5bb1923c23, 0xb6d03d678ac5ca8e,
+ 0x586eb04c1f13bedc},
+ {0xc35c6e527e8ed09, 0x1e81a33c1819ede2, 0x278fd6c056c652fa,
+ 0x19d5ac0870864f11},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0x62577734d2b533d5, 0x673b8af6a1bdddc0, 0x577e7c9aa79ec293,
+ 0xbb6de651c3b266b1},
+ {0xe7e9303ab65259b3, 0xd6a0afd3d03a7480, 0xc5ac83d19b3cfc27,
+ 0x60b4619a5d18b99b},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xbd6a38e11ae5aa1c, 0xb8b7652b49e73658, 0xb130014ee5f87ed,
+ 0x9d0f27b2aeebffcd},
+ {0xca9246317a730a55, 0x9c955b2fddbbc83a, 0x7c1dfe0ac019a71,
+ 0x244a566d356ec48d},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0x56f8410ef4f8b16a, 0x97241afec47b266a, 0xa406b8e6d9c87c1,
+ 0x803f3e02cd42ab1b},
+ {0x7f0309a804dbec69, 0xa83b85f73bbad05f, 0xc6097273ad8e197f,
+ 0xc097440e5067adc1},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0x846a56f2c379ab34, 0xa8ee068b841df8d1, 0x20314459176c68ef,
+ 0xf1af32d5915f1f30},
+ {0x99c375315d75bd50, 0x837cffbaf72f67bc, 0x613a41848d7723f,
+ 0x23d0f130e2d41c8b},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xed93e225d5be5a2b, 0x6fe799835934f3c6, 0x4314092622626ffc,
+ 0x50bbb4d97990216a},
+ {0x378191c6e57ec63e, 0x65422c40181dcdb2, 0x41a8099b0236e0f6,
+ 0x2b10011801fe49c3},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xfc68b5c59b391593, 0xc385f5a2598270fc, 0x7144f3aad19adcbb,
+ 0xdd55899983fbae0c},
+ {0x93b88b8e74b82ff4, 0xd2e03c4071e734c9, 0x9a7a9eaf43c0322a,
+ 0xe6e4c551149d6041},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0x5fe14bfe80ec21fe, 0xf6ce116ac255be82, 0x98bc5a072f4a5d67,
+ 0xfad27148db7e63af},
+ {0x90c0b6ac29ab05b3, 0x37a9a83c4e251ae6, 0xa7dc875c2aade7d,
+ 0x77387de39f0e1a84},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0x1e9ecc49a56c0dd7, 0xa5cffcd846086c74, 0x8f7a1408f505aece,
+ 0xb37b85c0bef0c47e},
+ {0x3596b6e4cc0e6a8f, 0xfd6d4bbf6b388f23, 0xaba453fac39cef4e,
+ 0x9c135ac8f9f628d5},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xa1c729495c8f8be, 0x2961c4803bf362bf, 0x9e418403df63d4ac,
+ 0xc109f9cb91ece900},
+ {0xc2d095d058945705, 0xb9083d96ddeb85c0, 0x84692b8d7a40449b,
+ 0x9bc3344f2eee1ee1},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xd5ae35642913074, 0x55491b2748a542b1, 0x469ca665b310732a,
+ 0x29591d525f1a4cc1},
+ {0xe76f5b6bb84f983f, 0xbe7eef419f5f84e1, 0x1200d49680baa189,
+ 0x6376551f18ef332c},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}}},
+ {{{0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}},
+ {{0x202886024147519a, 0xd0981eac26b372f0, 0xa9d4a7caa785ebc8,
+ 0xd953c50ddbdf58e9},
+ {0x9d6361ccfd590f8f, 0x72e9626b44e6c917, 0x7fd9611022eb64cf,
+ 0x863ebb7e9eb288f3},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0x4fe7ee31b0e63d34, 0xf4600572a9e54fab, 0xc0493334d5e7b5a4,
+ 0x8589fb9206d54831},
+ {0xaa70f5cc6583553a, 0x879094ae25649e5, 0xcc90450710044652,
+ 0xebb0696d02541c4f},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xabbaa0c03b89da99, 0xa6f2d79eb8284022, 0x27847862b81c05e8,
+ 0x337a4b5905e54d63},
+ {0x3c67500d21f7794a, 0x207005b77d6d7f61, 0xa5a378104cfd6e8,
+ 0xd65e0d5f4c2fbd6},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xd433e50f6d3549cf, 0x6f33696ffacd665e, 0x695bfdacce11fcb4,
+ 0x810ee252af7c9860},
+ {0x65450fe17159bb2c, 0xf7dfbebe758b357b, 0x2b057e74d69fea72,
+ 0xd485717a92731745},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xce1f69bbe83f7669, 0x9f8ae8272877d6b, 0x9548ae543244278d,
+ 0x207755dee3c2c19c},
+ {0x87bd61d96fef1945, 0x18813cefb12d28c3, 0x9fbcd1d672df64aa,
+ 0x48dc5ee57154b00d},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xef0f469ef49a3154, 0x3e85a5956e2b2e9a, 0x45aaec1eaa924a9c,
+ 0xaa12dfc8a09e4719},
+ {0x26f272274df69f1d, 0xe0e4c82ca2ff5e73, 0xb9d8ce73b7a9dd44,
+ 0x6c036e73e48ca901},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xe1e421e1a47153f0, 0xb86c3b79920418c9, 0x93bdce87705d7672,
+ 0xf25ae793cab79a77},
+ {0x1f3194a36d869d0c, 0x9d55c8824986c264, 0x49fb5ea3096e945e,
+ 0x39b8e65313db0a3e},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xe3417bc035d0b34a, 0x440b386b8327c0a7, 0x8fb7262dac0362d1,
+ 0x2c41114ce0cdf943},
+ {0x2ba5cef1ad95a0b1, 0xc09b37a867d54362, 0x26d6cdd201e486c9,
+ 0x20477abf42ff9297},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xf121b41bc0a67d2, 0x62d4760a444d248a, 0xe044f1d659b4737,
+ 0x8fde365250bb4a8},
+ {0xaceec3da848bf287, 0xc2a62182d3369d6e, 0x3582dfdc92449482,
+ 0x2f7e2fd2565d6cd7},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xa0122b5178a876b, 0x51ff96ff085104b4, 0x50b31ab14f29f76,
+ 0x84abb28b5f87d4e6},
+ {0xd5ed439f8270790a, 0x2d6cb59d85e3f46b, 0x75f55c1b6c1e2212,
+ 0xe5436f6717655640},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xc2965ecc9aeb596d, 0x1ea03e7023c92b4, 0x4704b4b62e013961,
+ 0xca8fd3f905ea367},
+ {0x92523a42551b2b61, 0x1eb7a89c390fcd06, 0xe7f1d2be0392a63e,
+ 0x96dca2644ddb0c33},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0x231c210e15339848, 0xe87a28e870778c8d, 0x9d1de6616956e170,
+ 0x4ac3c9382bb09c0b},
+ {0x19be05516998987d, 0x8b2376c4ae09f4d6, 0x1de0b7651a3f933d,
+ 0x380d94c7e39705f4},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0x3685954b8c31c31d, 0x68533d005bf21a0c, 0xbd7626e75c79ec9,
+ 0xca17754742c69d54},
+ {0xcc6edafff6d2dbb2, 0xfd0d8cbd174a9d18, 0x875e8793aa4578e8,
+ 0xa976a7139cab2ce6},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0xce37ab11b43ea1db, 0xa7ff1a95259d292, 0x851b02218f84f186,
+ 0xa7222beadefaad13},
+ {0xa2ac78ec2b0a9144, 0x5a024051f2fa59c5, 0x91d1eca56147ce38,
+ 0xbe94d523bc2ac690},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
+ {{0x2d8daefd79ec1a0f, 0x3bbcd6fdceb39c97, 0xf5575ffc58f61a95,
+ 0xdbd986c4adf7b420},
+ {0x81aa881415f39eb7, 0x6ee2fcf5b98d976c, 0x5465475dcf2f717d,
+ 0x8e24d3c46860bbd0},
+ {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}}}};
+#else
+static const fe g_pre_comp[2][16][3] = {
+ {{{0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
+ {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
+ {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0}},
+ {{0x18a9143c,0x79e730d4, 0x5fedb601,0x75ba95fc, 0x77622510,0x79fb732b,
+ 0xa53755c6,0x18905f76},
+ {0xce95560a,0xddf25357, 0xba19e45c,0x8b4ab8e4, 0xdd21f325,0xd2e88688,
+ 0x25885d85,0x8571ff18},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x16a0d2bb,0x4f922fc5, 0x1a623499,0xd5cc16c, 0x57c62c8b,0x9241cf3a,
+ 0xfd1b667f,0x2f5e6961},
+ {0xf5a01797,0x5c15c70b, 0x60956192,0x3d20b44d, 0x71fdb52,0x4911b37,
+ 0x8d6f0f7b,0xf648f916},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0xe137bbbc,0x9e566847, 0x8a6a0bec,0xe434469e, 0x79d73463,0xb1c42761,
+ 0x133d0015,0x5abe0285},
+ {0xc04c7dab,0x92aa837c, 0x43260c07,0x573d9f4c, 0x78e6cc37,0xc931562,
+ 0x6b6f7383,0x94bb725b},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0xbfe20925,0x62a8c244, 0x8fdce867,0x91c19ac3, 0xdd387063,0x5a96a5d5,
+ 0x21d324f6,0x61d587d4},
+ {0xa37173ea,0xe87673a2, 0x53778b65,0x23848008, 0x5bab43e,0x10f8441e,
+ 0x4621efbe,0xfa11fe12},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x2cb19ffd,0x1c891f2b, 0xb1923c23,0x1ba8d5b, 0x8ac5ca8e,0xb6d03d67,
+ 0x1f13bedc,0x586eb04c},
+ {0x27e8ed09,0xc35c6e5, 0x1819ede2,0x1e81a33c, 0x56c652fa,0x278fd6c0,
+ 0x70864f11,0x19d5ac08},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0xd2b533d5,0x62577734, 0xa1bdddc0,0x673b8af6, 0xa79ec293,0x577e7c9a,
+ 0xc3b266b1,0xbb6de651},
+ {0xb65259b3,0xe7e9303a, 0xd03a7480,0xd6a0afd3, 0x9b3cfc27,0xc5ac83d1,
+ 0x5d18b99b,0x60b4619a},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x1ae5aa1c,0xbd6a38e1, 0x49e73658,0xb8b7652b, 0xee5f87ed,0xb130014,
+ 0xaeebffcd,0x9d0f27b2},
+ {0x7a730a55,0xca924631, 0xddbbc83a,0x9c955b2f, 0xac019a71,0x7c1dfe0,
+ 0x356ec48d,0x244a566d},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0xf4f8b16a,0x56f8410e, 0xc47b266a,0x97241afe, 0x6d9c87c1,0xa406b8e,
+ 0xcd42ab1b,0x803f3e02},
+ {0x4dbec69,0x7f0309a8, 0x3bbad05f,0xa83b85f7, 0xad8e197f,0xc6097273,
+ 0x5067adc1,0xc097440e},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0xc379ab34,0x846a56f2, 0x841df8d1,0xa8ee068b, 0x176c68ef,0x20314459,
+ 0x915f1f30,0xf1af32d5},
+ {0x5d75bd50,0x99c37531, 0xf72f67bc,0x837cffba, 0x48d7723f,0x613a418,
+ 0xe2d41c8b,0x23d0f130},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0xd5be5a2b,0xed93e225, 0x5934f3c6,0x6fe79983, 0x22626ffc,0x43140926,
+ 0x7990216a,0x50bbb4d9},
+ {0xe57ec63e,0x378191c6, 0x181dcdb2,0x65422c40, 0x236e0f6,0x41a8099b,
+ 0x1fe49c3,0x2b100118},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x9b391593,0xfc68b5c5, 0x598270fc,0xc385f5a2, 0xd19adcbb,0x7144f3aa,
+ 0x83fbae0c,0xdd558999},
+ {0x74b82ff4,0x93b88b8e, 0x71e734c9,0xd2e03c40, 0x43c0322a,0x9a7a9eaf,
+ 0x149d6041,0xe6e4c551},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x80ec21fe,0x5fe14bfe, 0xc255be82,0xf6ce116a, 0x2f4a5d67,0x98bc5a07,
+ 0xdb7e63af,0xfad27148},
+ {0x29ab05b3,0x90c0b6ac, 0x4e251ae6,0x37a9a83c, 0xc2aade7d,0xa7dc875,
+ 0x9f0e1a84,0x77387de3},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0xa56c0dd7,0x1e9ecc49, 0x46086c74,0xa5cffcd8, 0xf505aece,0x8f7a1408,
+ 0xbef0c47e,0xb37b85c0},
+ {0xcc0e6a8f,0x3596b6e4, 0x6b388f23,0xfd6d4bbf, 0xc39cef4e,0xaba453fa,
+ 0xf9f628d5,0x9c135ac8},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x95c8f8be,0xa1c7294, 0x3bf362bf,0x2961c480, 0xdf63d4ac,0x9e418403,
+ 0x91ece900,0xc109f9cb},
+ {0x58945705,0xc2d095d0, 0xddeb85c0,0xb9083d96, 0x7a40449b,0x84692b8d,
+ 0x2eee1ee1,0x9bc3344f},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x42913074,0xd5ae356, 0x48a542b1,0x55491b27, 0xb310732a,0x469ca665,
+ 0x5f1a4cc1,0x29591d52},
+ {0xb84f983f,0xe76f5b6b, 0x9f5f84e1,0xbe7eef41, 0x80baa189,0x1200d496,
+ 0x18ef332c,0x6376551f},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}}},
+ {{{0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
+ {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
+ {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0}},
+ {{0x4147519a,0x20288602, 0x26b372f0,0xd0981eac, 0xa785ebc8,0xa9d4a7ca,
+ 0xdbdf58e9,0xd953c50d},
+ {0xfd590f8f,0x9d6361cc, 0x44e6c917,0x72e9626b, 0x22eb64cf,0x7fd96110,
+ 0x9eb288f3,0x863ebb7e},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0xb0e63d34,0x4fe7ee31, 0xa9e54fab,0xf4600572, 0xd5e7b5a4,0xc0493334,
+ 0x6d54831,0x8589fb92},
+ {0x6583553a,0xaa70f5cc, 0xe25649e5,0x879094a, 0x10044652,0xcc904507,
+ 0x2541c4f,0xebb0696d},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x3b89da99,0xabbaa0c0, 0xb8284022,0xa6f2d79e, 0xb81c05e8,0x27847862,
+ 0x5e54d63,0x337a4b59},
+ {0x21f7794a,0x3c67500d, 0x7d6d7f61,0x207005b7, 0x4cfd6e8,0xa5a3781,
+ 0xf4c2fbd6,0xd65e0d5},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x6d3549cf,0xd433e50f, 0xfacd665e,0x6f33696f, 0xce11fcb4,0x695bfdac,
+ 0xaf7c9860,0x810ee252},
+ {0x7159bb2c,0x65450fe1, 0x758b357b,0xf7dfbebe, 0xd69fea72,0x2b057e74,
+ 0x92731745,0xd485717a},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0xe83f7669,0xce1f69bb, 0x72877d6b,0x9f8ae82, 0x3244278d,0x9548ae54,
+ 0xe3c2c19c,0x207755de},
+ {0x6fef1945,0x87bd61d9, 0xb12d28c3,0x18813cef, 0x72df64aa,0x9fbcd1d6,
+ 0x7154b00d,0x48dc5ee5},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0xf49a3154,0xef0f469e, 0x6e2b2e9a,0x3e85a595, 0xaa924a9c,0x45aaec1e,
+ 0xa09e4719,0xaa12dfc8},
+ {0x4df69f1d,0x26f27227, 0xa2ff5e73,0xe0e4c82c, 0xb7a9dd44,0xb9d8ce73,
+ 0xe48ca901,0x6c036e73},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0xa47153f0,0xe1e421e1, 0x920418c9,0xb86c3b79, 0x705d7672,0x93bdce87,
+ 0xcab79a77,0xf25ae793},
+ {0x6d869d0c,0x1f3194a3, 0x4986c264,0x9d55c882, 0x96e945e,0x49fb5ea3,
+ 0x13db0a3e,0x39b8e653},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x35d0b34a,0xe3417bc0, 0x8327c0a7,0x440b386b, 0xac0362d1,0x8fb7262d,
+ 0xe0cdf943,0x2c41114c},
+ {0xad95a0b1,0x2ba5cef1, 0x67d54362,0xc09b37a8, 0x1e486c9,0x26d6cdd2,
+ 0x42ff9297,0x20477abf},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0xbc0a67d2,0xf121b41, 0x444d248a,0x62d4760a, 0x659b4737,0xe044f1d,
+ 0x250bb4a8,0x8fde365},
+ {0x848bf287,0xaceec3da, 0xd3369d6e,0xc2a62182, 0x92449482,0x3582dfdc,
+ 0x565d6cd7,0x2f7e2fd2},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x178a876b,0xa0122b5, 0x85104b4,0x51ff96ff, 0x14f29f76,0x50b31ab,
+ 0x5f87d4e6,0x84abb28b},
+ {0x8270790a,0xd5ed439f, 0x85e3f46b,0x2d6cb59d, 0x6c1e2212,0x75f55c1b,
+ 0x17655640,0xe5436f67},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x9aeb596d,0xc2965ecc, 0x23c92b4,0x1ea03e7, 0x2e013961,0x4704b4b6,
+ 0x905ea367,0xca8fd3f},
+ {0x551b2b61,0x92523a42, 0x390fcd06,0x1eb7a89c, 0x392a63e,0xe7f1d2be,
+ 0x4ddb0c33,0x96dca264},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x15339848,0x231c210e, 0x70778c8d,0xe87a28e8, 0x6956e170,0x9d1de661,
+ 0x2bb09c0b,0x4ac3c938},
+ {0x6998987d,0x19be0551, 0xae09f4d6,0x8b2376c4, 0x1a3f933d,0x1de0b765,
+ 0xe39705f4,0x380d94c7},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x8c31c31d,0x3685954b, 0x5bf21a0c,0x68533d00, 0x75c79ec9,0xbd7626e,
+ 0x42c69d54,0xca177547},
+ {0xf6d2dbb2,0xcc6edaff, 0x174a9d18,0xfd0d8cbd, 0xaa4578e8,0x875e8793,
+ 0x9cab2ce6,0xa976a713},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0xb43ea1db,0xce37ab11, 0x5259d292,0xa7ff1a9, 0x8f84f186,0x851b0221,
+ 0xdefaad13,0xa7222bea},
+ {0x2b0a9144,0xa2ac78ec, 0xf2fa59c5,0x5a024051, 0x6147ce38,0x91d1eca5,
+ 0xbc2ac690,0xbe94d523},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
+ {{0x79ec1a0f,0x2d8daefd, 0xceb39c97,0x3bbcd6fd, 0x58f61a95,0xf5575ffc,
+ 0xadf7b420,0xdbd986c4},
+ {0x15f39eb7,0x81aa8814, 0xb98d976c,0x6ee2fcf5, 0xcf2f717d,0x5465475d,
+ 0x6860bbd0,0x8e24d3c4},
+ {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}}}};
+#endif
+
+// select_point selects the |idx|th point from a precomputation table and
+// copies it to out.
+static void select_point(const limb_t idx, size_t size,
+ const fe pre_comp[/*size*/][3],
+ fe out[3]) {
+ OPENSSL_memset(out, 0, sizeof(fe) * 3);
+ for (size_t i = 0; i < size; i++) {
+ limb_t mismatch = i ^ idx;
+ fe_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
+ fe_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
+ fe_cmovznz(out[2], mismatch, pre_comp[i][2], out[2]);
+ }
+}
+
+// get_bit returns the |i|th bit in |in|
+static char get_bit(const uint8_t *in, int i) {
+ if (i < 0 || i >= 256) {
+ return 0;
+ }
+ return (in[i >> 3] >> (i & 7)) & 1;
+}
+
+// Interleaved point multiplication using precomputed point multiples: The
+// small point multiples 0*P, 1*P, ..., 17*P are in p_pre_comp, the scalar
+// in p_scalar, if non-NULL. If g_scalar is non-NULL, we also add this multiple
+// of the generator, using certain (large) precomputed multiples in g_pre_comp.
+// Output point (X, Y, Z) is stored in x_out, y_out, z_out.
+static void batch_mul(fe x_out, fe y_out, fe z_out,
+ const uint8_t *p_scalar, const uint8_t *g_scalar,
+ const fe p_pre_comp[17][3]) {
+ // set nq to the point at infinity
+ fe nq[3] = {{0},{0},{0}}, ftmp, tmp[3];
+ uint64_t bits;
+ uint8_t sign, digit;
+
+ // Loop over both scalars msb-to-lsb, interleaving additions of multiples
+ // of the generator (two in each of the last 32 rounds) and additions of p
+ // (every 5th round).
+
+ int skip = 1; // save two point operations in the first round
+ size_t i = p_scalar != NULL ? 255 : 31;
+ for (;;) {
+ // double
+ if (!skip) {
+ point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
+ }
+
+ // add multiples of the generator
+ if (g_scalar != NULL && i <= 31) {
+ // first, look 32 bits upwards
+ bits = get_bit(g_scalar, i + 224) << 3;
+ bits |= get_bit(g_scalar, i + 160) << 2;
+ bits |= get_bit(g_scalar, i + 96) << 1;
+ bits |= get_bit(g_scalar, i + 32);
+ // select the point to add, in constant time
+ select_point(bits, 16, g_pre_comp[1], tmp);
+
+ if (!skip) {
+ point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
+ tmp[0], tmp[1], tmp[2]);
+ } else {
+ fe_copy(nq[0], tmp[0]);
+ fe_copy(nq[1], tmp[1]);
+ fe_copy(nq[2], tmp[2]);
+ skip = 0;
+ }
+
+ // second, look at the current position
+ bits = get_bit(g_scalar, i + 192) << 3;
+ bits |= get_bit(g_scalar, i + 128) << 2;
+ bits |= get_bit(g_scalar, i + 64) << 1;
+ bits |= get_bit(g_scalar, i);
+ // select the point to add, in constant time
+ select_point(bits, 16, g_pre_comp[0], tmp);
+ point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, tmp[0],
+ tmp[1], tmp[2]);
+ }
+
+ // do other additions every 5 doublings
+ if (p_scalar != NULL && i % 5 == 0) {
+ bits = get_bit(p_scalar, i + 4) << 5;
+ bits |= get_bit(p_scalar, i + 3) << 4;
+ bits |= get_bit(p_scalar, i + 2) << 3;
+ bits |= get_bit(p_scalar, i + 1) << 2;
+ bits |= get_bit(p_scalar, i) << 1;
+ bits |= get_bit(p_scalar, i - 1);
+ ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
+
+ // select the point to add or subtract, in constant time.
+ select_point(digit, 17, p_pre_comp, tmp);
+ fe_opp(ftmp, tmp[1]); // (X, -Y, Z) is the negative point.
+ fe_cmovznz(tmp[1], sign, tmp[1], ftmp);
+
+ if (!skip) {
+ point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
+ tmp[0], tmp[1], tmp[2]);
+ } else {
+ fe_copy(nq[0], tmp[0]);
+ fe_copy(nq[1], tmp[1]);
+ fe_copy(nq[2], tmp[2]);
+ skip = 0;
+ }
+ }
+
+ if (i == 0) {
+ break;
+ }
+ --i;
+ }
+ fe_copy(x_out, nq[0]);
+ fe_copy(y_out, nq[1]);
+ fe_copy(z_out, nq[2]);
+}
+
+// OPENSSL EC_METHOD FUNCTIONS
+
+// Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
+// (X/Z^2, Y/Z^3).
+static int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
+ const EC_POINT *point,
+ BIGNUM *x_out,
+ BIGNUM *y_out,
+ BN_CTX *ctx) {
+ fe x, y, z1, z2;
+
+ if (EC_POINT_is_at_infinity(group, point)) {
+ OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
+ return 0;
+ }
+ if (!BN_to_fe(x, &point->X) ||
+ !BN_to_fe(y, &point->Y) ||
+ !BN_to_fe(z1, &point->Z)) {
+ return 0;
+ }
+
+ fe_inv(z2, z1);
+ fe_sqr(z1, z2);
+
+ if (x_out != NULL) {
+ fe_mul(x, x, z1);
+ fe_from_montgomery(x);
+ if (!fe_to_BN(x_out, x)) {
+ OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
+ return 0;
+ }
+ }
+
+ if (y_out != NULL) {
+ fe_mul(z1, z1, z2);
+ fe_mul(y, y, z1);
+ fe_from_montgomery(y);
+ if (!fe_to_BN(y_out, y)) {
+ OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
+ return 0;
+ }
+ }
+
+ return 1;
+}
+
+static int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
+ const EC_SCALAR *g_scalar,
+ const EC_POINT *p,
+ const EC_SCALAR *p_scalar,
+ BN_CTX *unused_ctx) {
+ fe p_pre_comp[17][3];
+ fe x_out, y_out, z_out;
+
+ if (p != NULL && p_scalar != NULL) {
+ // We treat NULL scalars as 0, and NULL points as points at infinity, i.e.,
+ // they contribute nothing to the linear combination.
+ OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
+ // Precompute multiples.
+ if (!BN_to_fe(p_pre_comp[1][0], &p->X) ||
+ !BN_to_fe(p_pre_comp[1][1], &p->Y) ||
+ !BN_to_fe(p_pre_comp[1][2], &p->Z)) {
+ return 0;
+ }
+ for (size_t j = 2; j <= 16; ++j) {
+ if (j & 1) {
+ point_add(p_pre_comp[j][0], p_pre_comp[j][1],
+ p_pre_comp[j][2], p_pre_comp[1][0],
+ p_pre_comp[1][1], p_pre_comp[1][2],
+ 0,
+ p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
+ p_pre_comp[j - 1][2]);
+ } else {
+ point_double(p_pre_comp[j][0], p_pre_comp[j][1],
+ p_pre_comp[j][2], p_pre_comp[j / 2][0],
+ p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
+ }
+ }
+ }
+
+ batch_mul(x_out, y_out, z_out,
+ (p != NULL && p_scalar != NULL) ? p_scalar->bytes : NULL,
+ g_scalar != NULL ? g_scalar->bytes : NULL,
+ (const fe (*) [3])p_pre_comp);
+
+ if (!fe_to_BN(&r->X, x_out) ||
+ !fe_to_BN(&r->Y, y_out) ||
+ !fe_to_BN(&r->Z, z_out)) {
+ OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
+ return 0;
+ }
+ return 1;
+}
+
+DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp256_method) {
+ out->group_init = ec_GFp_mont_group_init;
+ out->group_finish = ec_GFp_mont_group_finish;
+ out->group_set_curve = ec_GFp_mont_group_set_curve;
+ out->point_get_affine_coordinates =
+ ec_GFp_nistp256_point_get_affine_coordinates;
+ out->mul = ec_GFp_nistp256_points_mul;
+// The variable-time wNAF point multiplication uses fewer field operations than
+// the constant-time implementation here, but the 64-bit field arithmetic in
+// this file is much faster than the generic BIGNUM-based field arithmetic used
+// by wNAF. For 32-bit, the wNAF code is overall ~60% faster on non-precomputed
+// points, so we use it for public inputs.
+#if defined(BORINGSSL_NISTP256_64BIT)
+ out->mul_public = ec_GFp_nistp256_points_mul;
+#else
+ out->mul_public = ec_wNAF_mul;
+#endif
+ out->field_mul = ec_GFp_mont_field_mul;
+ out->field_sqr = ec_GFp_mont_field_sqr;
+ out->field_encode = ec_GFp_mont_field_encode;
+ out->field_decode = ec_GFp_mont_field_decode;
+};
+
+#undef BORINGSSL_NISTP256_64BIT
diff --git a/src/util/bot/UPDATING b/src/util/bot/UPDATING
index a9915ab8..7162f945 100644
--- a/src/util/bot/UPDATING
+++ b/src/util/bot/UPDATING
@@ -28,12 +28,12 @@ cmake-linux64.tar.gz: Download the latest CMake source tarball, found at
./bootstrap --prefix=$PWD/cmake-linux64 && make && make install
tar -czf cmake-linux64.tar.gz cmake-linux64/
- The current revision was built against cmake-3.5.0.tar.gz.
+ The current revision was built against cmake-3.10.0.tar.gz.
cmake-mac.tar.gz: Follow the same instructions as above on a Mac, but replace
cmake-linux64 with cmake-mac.
- The current revision was built against cmake-3.5.0.tar.gz.
+ The current revision was built against cmake-3.10.0.tar.gz.
cmake-win32.zip: Update to the latest prebuilt release of CMake, found at
https://cmake.org/download/. Use the file labeled "Windows ZIP". The
@@ -41,6 +41,10 @@ cmake-win32.zip: Update to the latest prebuilt release of CMake, found at
The current revision is cmake-3.5.0-win32-x86.zip.
+ TODO(davidben): The update to CMake 3.10 on Windows was rolled back due to a
+ CMake bug. Update to 3.10.1 when that is released.
+ https://github.com/Kitware/CMake/commit/f969f1a9ce1d0045b9d056fd08c4683c34c420fa
+
perl-win32.zip: Update to the latest 32-bit prebuilt "Portable" edition of
Strawberry Perl, found at http://strawberryperl.com/releases.html. The
download will be named strawberry-perl-VERSION-32bit-portable.zip.
diff --git a/src/util/bot/cmake-linux64.tar.gz.sha1 b/src/util/bot/cmake-linux64.tar.gz.sha1
index 404570f6..52e17f03 100644
--- a/src/util/bot/cmake-linux64.tar.gz.sha1
+++ b/src/util/bot/cmake-linux64.tar.gz.sha1
@@ -1 +1 @@
-6ea4ad07a4bab113ea74c45fafb14b8d0b0feab5 \ No newline at end of file
+e32e920dc95a0ac58fe78f666d2ce69222b23edb \ No newline at end of file
diff --git a/src/util/bot/cmake-mac.tar.gz.sha1 b/src/util/bot/cmake-mac.tar.gz.sha1
index 19c9b61f..cf905036 100644
--- a/src/util/bot/cmake-mac.tar.gz.sha1
+++ b/src/util/bot/cmake-mac.tar.gz.sha1
@@ -1 +1 @@
-f3166dab96234c9516ece56dc2851bf4c8e70fe8 \ No newline at end of file
+20ee0e2d2e11e2ea34caf78197e4784a4fc95181 \ No newline at end of file
diff --git a/src/util/generate_build_files.py b/src/util/generate_build_files.py
index 4b4a8991..a4af6667 100644
--- a/src/util/generate_build_files.py
+++ b/src/util/generate_build_files.py
@@ -594,6 +594,12 @@ def main(platforms):
tool_c_files = FindCFiles(os.path.join('src', 'tool'), NoTests)
tool_h_files = FindHeaderFiles(os.path.join('src', 'tool'), AllFiles)
+ # third_party/fiat/p256.c lives in third_party/fiat, but it is a FIPS
+ # fragment, not a normal source file.
+ p256 = os.path.join('src', 'third_party', 'fiat', 'p256.c')
+ fips_fragments.append(p256)
+ crypto_c_files.remove(p256)
+
# Generate err_data.c
with open('err_data.c', 'w+') as err_data:
subprocess.check_call(['go', 'run', 'err_data_generate.go'],