summaryrefslogtreecommitdiff
path: root/src/crypto/internal.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/internal.h')
-rw-r--r--src/crypto/internal.h455
1 files changed, 245 insertions, 210 deletions
diff --git a/src/crypto/internal.h b/src/crypto/internal.h
index 28ec3eeb..87b69dab 100644
--- a/src/crypto/internal.h
+++ b/src/crypto/internal.h
@@ -113,6 +113,7 @@
#include <openssl/stack.h>
#include <openssl/thread.h>
+#include <assert.h>
#include <string.h>
#if defined(_MSC_VER)
@@ -145,7 +146,7 @@ extern "C" {
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
-/* OPENSSL_cpuid_setup initializes the platform-specific feature cache. */
+// OPENSSL_cpuid_setup initializes the platform-specific feature cache.
void OPENSSL_cpuid_setup(void);
#endif
@@ -157,42 +158,42 @@ typedef __uint128_t uint128_t;
#define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
-/* buffers_alias returns one if |a| and |b| alias and zero otherwise. */
+// buffers_alias returns one if |a| and |b| alias and zero otherwise.
static inline int buffers_alias(const uint8_t *a, size_t a_len,
const uint8_t *b, size_t b_len) {
- /* Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
- * objects are undefined whereas pointer to integer conversions are merely
- * implementation-defined. We assume the implementation defined it in a sane
- * way. */
+ // Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
+ // objects are undefined whereas pointer to integer conversions are merely
+ // implementation-defined. We assume the implementation defined it in a sane
+ // way.
uintptr_t a_u = (uintptr_t)a;
uintptr_t b_u = (uintptr_t)b;
return a_u + a_len > b_u && b_u + b_len > a_u;
}
-/* Constant-time utility functions.
- *
- * The following methods return a bitmask of all ones (0xff...f) for true and 0
- * for false. This is useful for choosing a value based on the result of a
- * conditional in constant time. For example,
- *
- * if (a < b) {
- * c = a;
- * } else {
- * c = b;
- * }
- *
- * can be written as
- *
- * crypto_word_t lt = constant_time_lt_w(a, b);
- * c = constant_time_select_w(lt, a, b); */
-
-/* crypto_word_t is the type that most constant-time functions use. Ideally we
- * would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
- * pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
- * bits. Since we want to be able to do constant-time operations on a
- * |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
- * word length. */
+// Constant-time utility functions.
+//
+// The following methods return a bitmask of all ones (0xff...f) for true and 0
+// for false. This is useful for choosing a value based on the result of a
+// conditional in constant time. For example,
+//
+// if (a < b) {
+// c = a;
+// } else {
+// c = b;
+// }
+//
+// can be written as
+//
+// crypto_word_t lt = constant_time_lt_w(a, b);
+// c = constant_time_select_w(lt, a, b);
+
+// crypto_word_t is the type that most constant-time functions use. Ideally we
+// would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
+// pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
+// bits. Since we want to be able to do constant-time operations on a
+// |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
+// word length.
#if defined(OPENSSL_64_BIT)
typedef uint64_t crypto_word_t;
#elif defined(OPENSSL_32_BIT)
@@ -210,139 +211,137 @@ typedef uint32_t crypto_word_t;
#define CONSTTIME_TRUE_8 ((uint8_t)0xff)
#define CONSTTIME_FALSE_8 ((uint8_t)0)
-/* constant_time_msb_w returns the given value with the MSB copied to all the
- * other bits. */
+// constant_time_msb_w returns the given value with the MSB copied to all the
+// other bits.
static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
return 0u - (a >> (sizeof(a) * 8 - 1));
}
-/* constant_time_lt_w returns 0xff..f if a < b and 0 otherwise. */
+// constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
crypto_word_t b) {
- /* Consider the two cases of the problem:
- * msb(a) == msb(b): a < b iff the MSB of a - b is set.
- * msb(a) != msb(b): a < b iff the MSB of b is set.
- *
- * If msb(a) == msb(b) then the following evaluates as:
- * msb(a^((a^b)|((a-b)^a))) ==
- * msb(a^((a-b) ^ a)) == (because msb(a^b) == 0)
- * msb(a^a^(a-b)) == (rearranging)
- * msb(a-b) (because ∀x. x^x == 0)
- *
- * Else, if msb(a) != msb(b) then the following evaluates as:
- * msb(a^((a^b)|((a-b)^a))) ==
- * msb(a^(𝟙 | ((a-b)^a))) == (because msb(a^b) == 1 and 𝟙
- * represents a value s.t. msb(𝟙) = 1)
- * msb(a^𝟙) == (because ORing with 1 results in 1)
- * msb(b)
- *
- *
- * Here is an SMT-LIB verification of this formula:
- *
- * (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
- * (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
- * )
- *
- * (declare-fun a () (_ BitVec 32))
- * (declare-fun b () (_ BitVec 32))
- *
- * (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
- * (check-sat)
- * (get-model)
- */
+ // Consider the two cases of the problem:
+ // msb(a) == msb(b): a < b iff the MSB of a - b is set.
+ // msb(a) != msb(b): a < b iff the MSB of b is set.
+ //
+ // If msb(a) == msb(b) then the following evaluates as:
+ // msb(a^((a^b)|((a-b)^a))) ==
+ // msb(a^((a-b) ^ a)) == (because msb(a^b) == 0)
+ // msb(a^a^(a-b)) == (rearranging)
+ // msb(a-b) (because ∀x. x^x == 0)
+ //
+ // Else, if msb(a) != msb(b) then the following evaluates as:
+ // msb(a^((a^b)|((a-b)^a))) ==
+ // msb(a^(𝟙 | ((a-b)^a))) == (because msb(a^b) == 1 and 𝟙
+ // represents a value s.t. msb(𝟙) = 1)
+ // msb(a^𝟙) == (because ORing with 1 results in 1)
+ // msb(b)
+ //
+ //
+ // Here is an SMT-LIB verification of this formula:
+ //
+ // (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
+ // (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
+ // )
+ //
+ // (declare-fun a () (_ BitVec 32))
+ // (declare-fun b () (_ BitVec 32))
+ //
+ // (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
+ // (check-sat)
+ // (get-model)
return constant_time_msb_w(a^((a^b)|((a-b)^a)));
}
-/* constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
- * mask. */
+// constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
+// mask.
static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
return (uint8_t)(constant_time_lt_w(a, b));
}
-/* constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise. */
+// constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
crypto_word_t b) {
return ~constant_time_lt_w(a, b);
}
-/* constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
- * mask. */
+// constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
+// mask.
static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
return (uint8_t)(constant_time_ge_w(a, b));
}
-/* constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise. */
+// constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
- /* Here is an SMT-LIB verification of this formula:
- *
- * (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
- * (bvand (bvnot a) (bvsub a #x00000001))
- * )
- *
- * (declare-fun a () (_ BitVec 32))
- *
- * (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
- * (check-sat)
- * (get-model)
- */
+ // Here is an SMT-LIB verification of this formula:
+ //
+ // (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
+ // (bvand (bvnot a) (bvsub a #x00000001))
+ // )
+ //
+ // (declare-fun a () (_ BitVec 32))
+ //
+ // (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
+ // (check-sat)
+ // (get-model)
return constant_time_msb_w(~a & (a - 1));
}
-/* constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
- * 8-bit mask. */
+// constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
+// 8-bit mask.
static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
return (uint8_t)(constant_time_is_zero_w(a));
}
-/* constant_time_eq_w returns 0xff..f if a == b and 0 otherwise. */
+// constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
crypto_word_t b) {
return constant_time_is_zero_w(a ^ b);
}
-/* constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
- * mask. */
+// constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
+// mask.
static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
return (uint8_t)(constant_time_eq_w(a, b));
}
-/* constant_time_eq_int acts like |constant_time_eq_w| but works on int
- * values. */
+// constant_time_eq_int acts like |constant_time_eq_w| but works on int
+// values.
static inline crypto_word_t constant_time_eq_int(int a, int b) {
return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
}
-/* constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
- * mask. */
+// constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
+// mask.
static inline uint8_t constant_time_eq_int_8(int a, int b) {
return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
}
-/* constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
- * 1s or all 0s (as returned by the methods above), the select methods return
- * either |a| (if |mask| is nonzero) or |b| (if |mask| is zero). */
+// constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
+// 1s or all 0s (as returned by the methods above), the select methods return
+// either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
crypto_word_t a,
crypto_word_t b) {
return (mask & a) | (~mask & b);
}
-/* constant_time_select_8 acts like |constant_time_select| but operates on
- * 8-bit values. */
+// constant_time_select_8 acts like |constant_time_select| but operates on
+// 8-bit values.
static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
uint8_t b) {
return (uint8_t)(constant_time_select_w(mask, a, b));
}
-/* constant_time_select_int acts like |constant_time_select| but operates on
- * ints. */
+// constant_time_select_int acts like |constant_time_select| but operates on
+// ints.
static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
(crypto_word_t)(b)));
}
-/* Thread-safe initialisation. */
+// Thread-safe initialisation.
#if defined(OPENSSL_NO_THREADS)
typedef uint32_t CRYPTO_once_t;
@@ -357,52 +356,52 @@ typedef pthread_once_t CRYPTO_once_t;
#error "Unknown threading library"
#endif
-/* CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
- * concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
- * then they will block until |init| completes, but |init| will have only been
- * called once.
- *
- * The |once| argument must be a |CRYPTO_once_t| that has been initialised with
- * the value |CRYPTO_ONCE_INIT|. */
+// CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
+// concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
+// then they will block until |init| completes, but |init| will have only been
+// called once.
+//
+// The |once| argument must be a |CRYPTO_once_t| that has been initialised with
+// the value |CRYPTO_ONCE_INIT|.
OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
-/* Reference counting. */
+// Reference counting.
-/* CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates. */
+// CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
#define CRYPTO_REFCOUNT_MAX 0xffffffff
-/* CRYPTO_refcount_inc atomically increments the value at |*count| unless the
- * value would overflow. It's safe for multiple threads to concurrently call
- * this or |CRYPTO_refcount_dec_and_test_zero| on the same
- * |CRYPTO_refcount_t|. */
+// CRYPTO_refcount_inc atomically increments the value at |*count| unless the
+// value would overflow. It's safe for multiple threads to concurrently call
+// this or |CRYPTO_refcount_dec_and_test_zero| on the same
+// |CRYPTO_refcount_t|.
OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
-/* CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
- * if it's zero, it crashes the address space.
- * if it's the maximum value, it returns zero.
- * otherwise, it atomically decrements it and returns one iff the resulting
- * value is zero.
- *
- * It's safe for multiple threads to concurrently call this or
- * |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|. */
+// CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
+// if it's zero, it crashes the address space.
+// if it's the maximum value, it returns zero.
+// otherwise, it atomically decrements it and returns one iff the resulting
+// value is zero.
+//
+// It's safe for multiple threads to concurrently call this or
+// |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
-/* Locks.
- *
- * Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
- * structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
- * a global lock. A global lock must be initialised to the value
- * |CRYPTO_STATIC_MUTEX_INIT|.
- *
- * |CRYPTO_MUTEX| can appear in public structures and so is defined in
- * thread.h as a structure large enough to fit the real type. The global lock is
- * a different type so it may be initialized with platform initializer macros.*/
+// Locks.
+//
+// Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
+// structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
+// a global lock. A global lock must be initialised to the value
+// |CRYPTO_STATIC_MUTEX_INIT|.
+//
+// |CRYPTO_MUTEX| can appear in public structures and so is defined in
+// thread.h as a structure large enough to fit the real type. The global lock is
+// a different type so it may be initialized with platform initializer macros.
#if defined(OPENSSL_NO_THREADS)
struct CRYPTO_STATIC_MUTEX {
- char padding; /* Empty structs have different sizes in C and C++. */
+ char padding; // Empty structs have different sizes in C and C++.
};
#define CRYPTO_STATIC_MUTEX_INIT { 0 }
#elif defined(OPENSSL_WINDOWS_THREADS)
@@ -419,54 +418,90 @@ struct CRYPTO_STATIC_MUTEX {
#error "Unknown threading library"
#endif
-/* CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
- * |CRYPTO_STATIC_MUTEX|. */
+// CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
+// |CRYPTO_STATIC_MUTEX|.
OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
-/* CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
- * read lock, but none may have a write lock. */
+// CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
+// read lock, but none may have a write lock.
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
-/* CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
- * of lock on it. */
+// CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
+// of lock on it.
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
-/* CRYPTO_MUTEX_unlock_read unlocks |lock| for reading. */
+// CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
-/* CRYPTO_MUTEX_unlock_write unlocks |lock| for writing. */
+// CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
-/* CRYPTO_MUTEX_cleanup releases all resources held by |lock|. */
+// CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
-/* CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
- * have a read lock, but none may have a write lock. The |lock| variable does
- * not need to be initialised by any function, but must have been statically
- * initialised with |CRYPTO_STATIC_MUTEX_INIT|. */
+// CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
+// have a read lock, but none may have a write lock. The |lock| variable does
+// not need to be initialised by any function, but must have been statically
+// initialised with |CRYPTO_STATIC_MUTEX_INIT|.
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
struct CRYPTO_STATIC_MUTEX *lock);
-/* CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
- * any type of lock on it. The |lock| variable does not need to be initialised
- * by any function, but must have been statically initialised with
- * |CRYPTO_STATIC_MUTEX_INIT|. */
+// CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
+// any type of lock on it. The |lock| variable does not need to be initialised
+// by any function, but must have been statically initialised with
+// |CRYPTO_STATIC_MUTEX_INIT|.
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
struct CRYPTO_STATIC_MUTEX *lock);
-/* CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading. */
+// CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading.
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
struct CRYPTO_STATIC_MUTEX *lock);
-/* CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing. */
+// CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing.
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
struct CRYPTO_STATIC_MUTEX *lock);
+#if defined(__cplusplus)
+extern "C++" {
+
+namespace bssl {
-/* Thread local storage. */
+namespace internal {
-/* thread_local_data_t enumerates the types of thread-local data that can be
- * stored. */
+// MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
+template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
+class MutexLockBase {
+ public:
+ explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
+ assert(mu_ != nullptr);
+ LockFunc(mu_);
+ }
+ ~MutexLockBase() { ReleaseFunc(mu_); }
+ MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
+ MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
+ delete;
+
+ private:
+ CRYPTO_MUTEX *const mu_;
+};
+
+} // namespace internal
+
+using MutexWriteLock =
+ internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
+using MutexReadLock =
+ internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;
+
+} // namespace bssl
+
+} // extern "C++"
+#endif // defined(__cplusplus)
+
+
+// Thread local storage.
+
+// thread_local_data_t enumerates the types of thread-local data that can be
+// stored.
typedef enum {
OPENSSL_THREAD_LOCAL_ERR = 0,
OPENSSL_THREAD_LOCAL_RAND,
@@ -474,47 +509,47 @@ typedef enum {
NUM_OPENSSL_THREAD_LOCALS,
} thread_local_data_t;
-/* thread_local_destructor_t is the type of a destructor function that will be
- * called when a thread exits and its thread-local storage needs to be freed. */
+// thread_local_destructor_t is the type of a destructor function that will be
+// called when a thread exits and its thread-local storage needs to be freed.
typedef void (*thread_local_destructor_t)(void *);
-/* CRYPTO_get_thread_local gets the pointer value that is stored for the
- * current thread for the given index, or NULL if none has been set. */
+// CRYPTO_get_thread_local gets the pointer value that is stored for the
+// current thread for the given index, or NULL if none has been set.
OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
-/* CRYPTO_set_thread_local sets a pointer value for the current thread at the
- * given index. This function should only be called once per thread for a given
- * |index|: rather than update the pointer value itself, update the data that
- * is pointed to.
- *
- * The destructor function will be called when a thread exits to free this
- * thread-local data. All calls to |CRYPTO_set_thread_local| with the same
- * |index| should have the same |destructor| argument. The destructor may be
- * called with a NULL argument if a thread that never set a thread-local
- * pointer for |index|, exits. The destructor may be called concurrently with
- * different arguments.
- *
- * This function returns one on success or zero on error. If it returns zero
- * then |destructor| has been called with |value| already. */
+// CRYPTO_set_thread_local sets a pointer value for the current thread at the
+// given index. This function should only be called once per thread for a given
+// |index|: rather than update the pointer value itself, update the data that
+// is pointed to.
+//
+// The destructor function will be called when a thread exits to free this
+// thread-local data. All calls to |CRYPTO_set_thread_local| with the same
+// |index| should have the same |destructor| argument. The destructor may be
+// called with a NULL argument if a thread that never set a thread-local
+// pointer for |index|, exits. The destructor may be called concurrently with
+// different arguments.
+//
+// This function returns one on success or zero on error. If it returns zero
+// then |destructor| has been called with |value| already.
OPENSSL_EXPORT int CRYPTO_set_thread_local(
thread_local_data_t index, void *value,
thread_local_destructor_t destructor);
-/* ex_data */
+// ex_data
typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
-/* CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
- * supports ex_data. It should defined as a static global within the module
- * which defines that type. */
+// CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
+// supports ex_data. It should defined as a static global within the module
+// which defines that type.
typedef struct {
struct CRYPTO_STATIC_MUTEX lock;
STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
- /* num_reserved is one if the ex_data index zero is reserved for legacy
- * |TYPE_get_app_data| functions. */
+ // num_reserved is one if the ex_data index zero is reserved for legacy
+ // |TYPE_get_app_data| functions.
uint8_t num_reserved;
} CRYPTO_EX_DATA_CLASS;
@@ -522,47 +557,47 @@ typedef struct {
#define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
{CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
-/* CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
- * it to |*out_index|. Each class of object should provide a wrapper function
- * that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
- * zero otherwise. */
+// CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
+// it to |*out_index|. Each class of object should provide a wrapper function
+// that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
+// zero otherwise.
OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
int *out_index, long argl,
void *argp,
CRYPTO_EX_free *free_func);
-/* CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
- * of object should provide a wrapper function. */
+// CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
+// of object should provide a wrapper function.
OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
-/* CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
- * if no such index exists. Each class of object should provide a wrapper
- * function. */
+// CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
+// if no such index exists. Each class of object should provide a wrapper
+// function.
OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
-/* CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|. */
+// CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
-/* CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
- * object of the given class. */
+// CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
+// object of the given class.
OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
void *obj, CRYPTO_EX_DATA *ad);
-/* Language bug workarounds.
- *
- * Most C standard library functions are undefined if passed NULL, even when the
- * corresponding length is zero. This gives them (and, in turn, all functions
- * which call them) surprising behavior on empty arrays. Some compilers will
- * miscompile code due to this rule. See also
- * https://www.imperialviolet.org/2016/06/26/nonnull.html
- *
- * These wrapper functions behave the same as the corresponding C standard
- * functions, but behave as expected when passed NULL if the length is zero.
- *
- * Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|. */
-
-/* C++ defines |memchr| as a const-correct overload. */
+// Language bug workarounds.
+//
+// Most C standard library functions are undefined if passed NULL, even when the
+// corresponding length is zero. This gives them (and, in turn, all functions
+// which call them) surprising behavior on empty arrays. Some compilers will
+// miscompile code due to this rule. See also
+// https://www.imperialviolet.org/2016/06/26/nonnull.html
+//
+// These wrapper functions behave the same as the corresponding C standard
+// functions, but behave as expected when passed NULL if the length is zero.
+//
+// Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.
+
+// C++ defines |memchr| as a const-correct overload.
#if defined(__cplusplus)
extern "C++" {
@@ -582,8 +617,8 @@ static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
return memchr(s, c, n);
}
-} /* extern "C++" */
-#else /* __cplusplus */
+} // extern "C++"
+#else // __cplusplus
static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
if (n == 0) {
@@ -593,7 +628,7 @@ static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
return memchr(s, c, n);
}
-#endif /* __cplusplus */
+#endif // __cplusplus
static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
if (n == 0) {
@@ -628,14 +663,14 @@ static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
}
#if defined(BORINGSSL_FIPS)
-/* BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
- * fails. It prevents any further cryptographic operations by the current
- * process. */
+// BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
+// fails. It prevents any further cryptographic operations by the current
+// process.
void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
#endif
#if defined(__cplusplus)
-} /* extern C */
+} // extern C
#endif
-#endif /* OPENSSL_HEADER_CRYPTO_INTERNAL_H */
+#endif // OPENSSL_HEADER_CRYPTO_INTERNAL_H