summaryrefslogtreecommitdiff
path: root/src/ssl/test/runner/sike/curve.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/ssl/test/runner/sike/curve.go')
-rw-r--r--src/ssl/test/runner/sike/curve.go422
1 files changed, 422 insertions, 0 deletions
diff --git a/src/ssl/test/runner/sike/curve.go b/src/ssl/test/runner/sike/curve.go
new file mode 100644
index 00000000..81725462
--- /dev/null
+++ b/src/ssl/test/runner/sike/curve.go
@@ -0,0 +1,422 @@
+// Copyright (c) 2019, Cloudflare Inc.
+//
+// Permission to use, copy, modify, and/or distribute this software for any
+// purpose with or without fee is hereby granted, provided that the above
+// copyright notice and this permission notice appear in all copies.
+//
+// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
+// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+
+package sike
+
+// Interface for working with isogenies.
+type isogeny interface {
+ // Given a torsion point on a curve computes isogenous curve.
+ // Returns curve coefficients (A:C), so that E_(A/C) = E_(A/C)/<P>,
+ // where P is a provided projective point. Sets also isogeny constants
+ // that are needed for isogeny evaluation.
+ GenerateCurve(*ProjectivePoint) CurveCoefficientsEquiv
+ // Evaluates isogeny at caller provided point. Requires isogeny curve constants
+ // to be earlier computed by GenerateCurve.
+ EvaluatePoint(*ProjectivePoint) ProjectivePoint
+}
+
+// Stores isogeny 3 curve constants
+type isogeny3 struct {
+ K1 Fp2
+ K2 Fp2
+}
+
+// Stores isogeny 4 curve constants
+type isogeny4 struct {
+ isogeny3
+ K3 Fp2
+}
+
+// Constructs isogeny3 objects
+func NewIsogeny3() isogeny {
+ return &isogeny3{}
+}
+
+// Constructs isogeny4 objects
+func NewIsogeny4() isogeny {
+ return &isogeny4{}
+}
+
+// Helper function for RightToLeftLadder(). Returns A+2C / 4.
+func calcAplus2Over4(cparams *ProjectiveCurveParameters) (ret Fp2) {
+ var tmp Fp2
+
+ // 2C
+ add(&tmp, &cparams.C, &cparams.C)
+ // A+2C
+ add(&ret, &cparams.A, &tmp)
+ // 1/4C
+ add(&tmp, &tmp, &tmp)
+ inv(&tmp, &tmp)
+ // A+2C/4C
+ mul(&ret, &ret, &tmp)
+ return
+}
+
+// Converts values in x.A and x.B to Montgomery domain
+// x.A = x.A * R mod p
+// x.B = x.B * R mod p
+// Performs v = v*R^2*R^(-1) mod p, for both x.A and x.B
+func toMontDomain(x *Fp2) {
+ var aRR FpX2
+
+ // convert to montgomery domain
+ fpMul(&aRR, &x.A, &R2) // = a*R*R
+ fpMontRdc(&x.A, &aRR) // = a*R mod p
+ fpMul(&aRR, &x.B, &R2)
+ fpMontRdc(&x.B, &aRR)
+}
+
+// Converts values in x.A and x.B from Montgomery domain
+// a = x.A mod p
+// b = x.B mod p
+//
+// After returning from the call x is not modified.
+func fromMontDomain(x *Fp2, out *Fp2) {
+ var aR FpX2
+
+ // convert from montgomery domain
+ copy(aR[:], x.A[:])
+ fpMontRdc(&out.A, &aR) // = a mod p in [0, 2p)
+ fpRdcP(&out.A) // = a mod p in [0, p)
+ for i := range aR {
+ aR[i] = 0
+ }
+ copy(aR[:], x.B[:])
+ fpMontRdc(&out.B, &aR)
+ fpRdcP(&out.B)
+}
+
+// Computes j-invariant for a curve y2=x3+A/Cx+x with A,C in F_(p^2). Result
+// is returned in 'j'. Implementation corresponds to Algorithm 9 from SIKE.
+func Jinvariant(cparams *ProjectiveCurveParameters, j *Fp2) {
+ var t0, t1 Fp2
+
+ sqr(j, &cparams.A) // j = A^2
+ sqr(&t1, &cparams.C) // t1 = C^2
+ add(&t0, &t1, &t1) // t0 = t1 + t1
+ sub(&t0, j, &t0) // t0 = j - t0
+ sub(&t0, &t0, &t1) // t0 = t0 - t1
+ sub(j, &t0, &t1) // t0 = t0 - t1
+ sqr(&t1, &t1) // t1 = t1^2
+ mul(j, j, &t1) // j = j * t1
+ add(&t0, &t0, &t0) // t0 = t0 + t0
+ add(&t0, &t0, &t0) // t0 = t0 + t0
+ sqr(&t1, &t0) // t1 = t0^2
+ mul(&t0, &t0, &t1) // t0 = t0 * t1
+ add(&t0, &t0, &t0) // t0 = t0 + t0
+ add(&t0, &t0, &t0) // t0 = t0 + t0
+ inv(j, j) // j = 1/j
+ mul(j, &t0, j) // j = t0 * j
+}
+
+// Given affine points x(P), x(Q) and x(Q-P) in a extension field F_{p^2}, function
+// recorvers projective coordinate A of a curve. This is Algorithm 10 from SIKE.
+func RecoverCoordinateA(curve *ProjectiveCurveParameters, xp, xq, xr *Fp2) {
+ var t0, t1 Fp2
+
+ add(&t1, xp, xq) // t1 = Xp + Xq
+ mul(&t0, xp, xq) // t0 = Xp * Xq
+ mul(&curve.A, xr, &t1) // A = X(q-p) * t1
+ add(&curve.A, &curve.A, &t0) // A = A + t0
+ mul(&t0, &t0, xr) // t0 = t0 * X(q-p)
+ sub(&curve.A, &curve.A, &Params.OneFp2) // A = A - 1
+ add(&t0, &t0, &t0) // t0 = t0 + t0
+ add(&t1, &t1, xr) // t1 = t1 + X(q-p)
+ add(&t0, &t0, &t0) // t0 = t0 + t0
+ sqr(&curve.A, &curve.A) // A = A^2
+ inv(&t0, &t0) // t0 = 1/t0
+ mul(&curve.A, &curve.A, &t0) // A = A * t0
+ sub(&curve.A, &curve.A, &t1) // A = A - t1
+}
+
+// Computes equivalence (A:C) ~ (A+2C : A-2C)
+func CalcCurveParamsEquiv3(cparams *ProjectiveCurveParameters) CurveCoefficientsEquiv {
+ var coef CurveCoefficientsEquiv
+ var c2 Fp2
+
+ add(&c2, &cparams.C, &cparams.C)
+ // A24p = A+2*C
+ add(&coef.A, &cparams.A, &c2)
+ // A24m = A-2*C
+ sub(&coef.C, &cparams.A, &c2)
+ return coef
+}
+
+// Computes equivalence (A:C) ~ (A+2C : 4C)
+func CalcCurveParamsEquiv4(cparams *ProjectiveCurveParameters) CurveCoefficientsEquiv {
+ var coefEq CurveCoefficientsEquiv
+
+ add(&coefEq.C, &cparams.C, &cparams.C)
+ // A24p = A+2C
+ add(&coefEq.A, &cparams.A, &coefEq.C)
+ // C24 = 4*C
+ add(&coefEq.C, &coefEq.C, &coefEq.C)
+ return coefEq
+}
+
+// Recovers (A:C) curve parameters from projectively equivalent (A+2C:A-2C).
+func RecoverCurveCoefficients3(cparams *ProjectiveCurveParameters, coefEq *CurveCoefficientsEquiv) {
+ add(&cparams.A, &coefEq.A, &coefEq.C)
+ // cparams.A = 2*(A+2C+A-2C) = 4A
+ add(&cparams.A, &cparams.A, &cparams.A)
+ // cparams.C = (A+2C-A+2C) = 4C
+ sub(&cparams.C, &coefEq.A, &coefEq.C)
+ return
+}
+
+// Recovers (A:C) curve parameters from projectively equivalent (A+2C:4C).
+func RecoverCurveCoefficients4(cparams *ProjectiveCurveParameters, coefEq *CurveCoefficientsEquiv) {
+ // cparams.C = (4C)*1/2=2C
+ mul(&cparams.C, &coefEq.C, &Params.HalfFp2)
+ // cparams.A = A+2C - 2C = A
+ sub(&cparams.A, &coefEq.A, &cparams.C)
+ // cparams.C = 2C * 1/2 = C
+ mul(&cparams.C, &cparams.C, &Params.HalfFp2)
+ return
+}
+
+// Combined coordinate doubling and differential addition. Takes projective points
+// P,Q,Q-P and (A+2C)/4C curve E coefficient. Returns 2*P and P+Q calculated on E.
+// Function is used only by RightToLeftLadder. Corresponds to Algorithm 5 of SIKE
+func xDbladd(P, Q, QmP *ProjectivePoint, a24 *Fp2) (dblP, PaQ ProjectivePoint) {
+ var t0, t1, t2 Fp2
+ xQmP, zQmP := &QmP.X, &QmP.Z
+ xPaQ, zPaQ := &PaQ.X, &PaQ.Z
+ x2P, z2P := &dblP.X, &dblP.Z
+ xP, zP := &P.X, &P.Z
+ xQ, zQ := &Q.X, &Q.Z
+
+ add(&t0, xP, zP) // t0 = Xp+Zp
+ sub(&t1, xP, zP) // t1 = Xp-Zp
+ sqr(x2P, &t0) // 2P.X = t0^2
+ sub(&t2, xQ, zQ) // t2 = Xq-Zq
+ add(xPaQ, xQ, zQ) // Xp+q = Xq+Zq
+ mul(&t0, &t0, &t2) // t0 = t0 * t2
+ mul(z2P, &t1, &t1) // 2P.Z = t1 * t1
+ mul(&t1, &t1, xPaQ) // t1 = t1 * Xp+q
+ sub(&t2, x2P, z2P) // t2 = 2P.X - 2P.Z
+ mul(x2P, x2P, z2P) // 2P.X = 2P.X * 2P.Z
+ mul(xPaQ, a24, &t2) // Xp+q = A24 * t2
+ sub(zPaQ, &t0, &t1) // Zp+q = t0 - t1
+ add(z2P, xPaQ, z2P) // 2P.Z = Xp+q + 2P.Z
+ add(xPaQ, &t0, &t1) // Xp+q = t0 + t1
+ mul(z2P, z2P, &t2) // 2P.Z = 2P.Z * t2
+ sqr(zPaQ, zPaQ) // Zp+q = Zp+q ^ 2
+ sqr(xPaQ, xPaQ) // Xp+q = Xp+q ^ 2
+ mul(zPaQ, xQmP, zPaQ) // Zp+q = Xq-p * Zp+q
+ mul(xPaQ, zQmP, xPaQ) // Xp+q = Zq-p * Xp+q
+ return
+}
+
+// Given the curve parameters, xP = x(P), computes xP = x([2^k]P)
+// Safe to overlap xP, x2P.
+func Pow2k(xP *ProjectivePoint, params *CurveCoefficientsEquiv, k uint32) {
+ var t0, t1 Fp2
+
+ x, z := &xP.X, &xP.Z
+ for i := uint32(0); i < k; i++ {
+ sub(&t0, x, z) // t0 = Xp - Zp
+ add(&t1, x, z) // t1 = Xp + Zp
+ sqr(&t0, &t0) // t0 = t0 ^ 2
+ sqr(&t1, &t1) // t1 = t1 ^ 2
+ mul(z, &params.C, &t0) // Z2p = C24 * t0
+ mul(x, z, &t1) // X2p = Z2p * t1
+ sub(&t1, &t1, &t0) // t1 = t1 - t0
+ mul(&t0, &params.A, &t1) // t0 = A24+ * t1
+ add(z, z, &t0) // Z2p = Z2p + t0
+ mul(z, z, &t1) // Zp = Z2p * t1
+ }
+}
+
+// Given the curve parameters, xP = x(P), and k >= 0, compute xP = x([3^k]P).
+//
+// Safe to overlap xP, xR.
+func Pow3k(xP *ProjectivePoint, params *CurveCoefficientsEquiv, k uint32) {
+ var t0, t1, t2, t3, t4, t5, t6 Fp2
+
+ x, z := &xP.X, &xP.Z
+ for i := uint32(0); i < k; i++ {
+ sub(&t0, x, z) // t0 = Xp - Zp
+ sqr(&t2, &t0) // t2 = t0^2
+ add(&t1, x, z) // t1 = Xp + Zp
+ sqr(&t3, &t1) // t3 = t1^2
+ add(&t4, &t1, &t0) // t4 = t1 + t0
+ sub(&t0, &t1, &t0) // t0 = t1 - t0
+ sqr(&t1, &t4) // t1 = t4^2
+ sub(&t1, &t1, &t3) // t1 = t1 - t3
+ sub(&t1, &t1, &t2) // t1 = t1 - t2
+ mul(&t5, &t3, &params.A) // t5 = t3 * A24+
+ mul(&t3, &t3, &t5) // t3 = t5 * t3
+ mul(&t6, &t2, &params.C) // t6 = t2 * A24-
+ mul(&t2, &t2, &t6) // t2 = t2 * t6
+ sub(&t3, &t2, &t3) // t3 = t2 - t3
+ sub(&t2, &t5, &t6) // t2 = t5 - t6
+ mul(&t1, &t2, &t1) // t1 = t2 * t1
+ add(&t2, &t3, &t1) // t2 = t3 + t1
+ sqr(&t2, &t2) // t2 = t2^2
+ mul(x, &t2, &t4) // X3p = t2 * t4
+ sub(&t1, &t3, &t1) // t1 = t3 - t1
+ sqr(&t1, &t1) // t1 = t1^2
+ mul(z, &t1, &t0) // Z3p = t1 * t0
+ }
+}
+
+// Set (y1, y2, y3) = (1/x1, 1/x2, 1/x3).
+//
+// All xi, yi must be distinct.
+func Fp2Batch3Inv(x1, x2, x3, y1, y2, y3 *Fp2) {
+ var x1x2, t Fp2
+
+ mul(&x1x2, x1, x2) // x1*x2
+ mul(&t, &x1x2, x3) // 1/(x1*x2*x3)
+ inv(&t, &t)
+ mul(y1, &t, x2) // 1/x1
+ mul(y1, y1, x3)
+ mul(y2, &t, x1) // 1/x2
+ mul(y2, y2, x3)
+ mul(y3, &t, &x1x2) // 1/x3
+}
+
+// ScalarMul3Pt is a right-to-left point multiplication that given the
+// x-coordinate of P, Q and P-Q calculates the x-coordinate of R=Q+[scalar]P.
+// nbits must be smaller or equal to len(scalar).
+func ScalarMul3Pt(cparams *ProjectiveCurveParameters, P, Q, PmQ *ProjectivePoint, nbits uint, scalar []uint8) ProjectivePoint {
+ var R0, R2, R1 ProjectivePoint
+ aPlus2Over4 := calcAplus2Over4(cparams)
+ R1 = *P
+ R2 = *PmQ
+ R0 = *Q
+
+ // Iterate over the bits of the scalar, bottom to top
+ prevBit := uint8(0)
+ for i := uint(0); i < nbits; i++ {
+ bit := (scalar[i>>3] >> (i & 7) & 1)
+ swap := prevBit ^ bit
+ prevBit = bit
+ condSwap(&R1.X, &R1.Z, &R2.X, &R2.Z, swap)
+ R0, R2 = xDbladd(&R0, &R2, &R1, &aPlus2Over4)
+ }
+ condSwap(&R1.X, &R1.Z, &R2.X, &R2.Z, prevBit)
+ return R1
+}
+
+// Given a three-torsion point p = x(PB) on the curve E_(A:C), construct the
+// three-isogeny phi : E_(A:C) -> E_(A:C)/<P_3> = E_(A':C').
+//
+// Input: (XP_3: ZP_3), where P_3 has exact order 3 on E_A/C
+// Output: * Curve coordinates (A' + 2C', A' - 2C') corresponding to E_A'/C' = A_E/C/<P3>
+// * isogeny phi with constants in F_p^2
+func (phi *isogeny3) GenerateCurve(p *ProjectivePoint) CurveCoefficientsEquiv {
+ var t0, t1, t2, t3, t4 Fp2
+ var coefEq CurveCoefficientsEquiv
+ var K1, K2 = &phi.K1, &phi.K2
+
+ sub(K1, &p.X, &p.Z) // K1 = XP3 - ZP3
+ sqr(&t0, K1) // t0 = K1^2
+ add(K2, &p.X, &p.Z) // K2 = XP3 + ZP3
+ sqr(&t1, K2) // t1 = K2^2
+ add(&t2, &t0, &t1) // t2 = t0 + t1
+ add(&t3, K1, K2) // t3 = K1 + K2
+ sqr(&t3, &t3) // t3 = t3^2
+ sub(&t3, &t3, &t2) // t3 = t3 - t2
+ add(&t2, &t1, &t3) // t2 = t1 + t3
+ add(&t3, &t3, &t0) // t3 = t3 + t0
+ add(&t4, &t3, &t0) // t4 = t3 + t0
+ add(&t4, &t4, &t4) // t4 = t4 + t4
+ add(&t4, &t1, &t4) // t4 = t1 + t4
+ mul(&coefEq.C, &t2, &t4) // A24m = t2 * t4
+ add(&t4, &t1, &t2) // t4 = t1 + t2
+ add(&t4, &t4, &t4) // t4 = t4 + t4
+ add(&t4, &t0, &t4) // t4 = t0 + t4
+ mul(&t4, &t3, &t4) // t4 = t3 * t4
+ sub(&t0, &t4, &coefEq.C) // t0 = t4 - A24m
+ add(&coefEq.A, &coefEq.C, &t0) // A24p = A24m + t0
+ return coefEq
+}
+
+// Given a 3-isogeny phi and a point pB = x(PB), compute x(QB), the x-coordinate
+// of the image QB = phi(PB) of PB under phi : E_(A:C) -> E_(A':C').
+//
+// The output xQ = x(Q) is then a point on the curve E_(A':C'); the curve
+// parameters are returned by the GenerateCurve function used to construct phi.
+func (phi *isogeny3) EvaluatePoint(p *ProjectivePoint) ProjectivePoint {
+ var t0, t1, t2 Fp2
+ var q ProjectivePoint
+ var K1, K2 = &phi.K1, &phi.K2
+ var px, pz = &p.X, &p.Z
+
+ add(&t0, px, pz) // t0 = XQ + ZQ
+ sub(&t1, px, pz) // t1 = XQ - ZQ
+ mul(&t0, K1, &t0) // t2 = K1 * t0
+ mul(&t1, K2, &t1) // t1 = K2 * t1
+ add(&t2, &t0, &t1) // t2 = t0 + t1
+ sub(&t0, &t1, &t0) // t0 = t1 - t0
+ sqr(&t2, &t2) // t2 = t2 ^ 2
+ sqr(&t0, &t0) // t0 = t0 ^ 2
+ mul(&q.X, px, &t2) // XQ'= XQ * t2
+ mul(&q.Z, pz, &t0) // ZQ'= ZQ * t0
+ return q
+}
+
+// Given a four-torsion point p = x(PB) on the curve E_(A:C), construct the
+// four-isogeny phi : E_(A:C) -> E_(A:C)/<P_4> = E_(A':C').
+//
+// Input: (XP_4: ZP_4), where P_4 has exact order 4 on E_A/C
+// Output: * Curve coordinates (A' + 2C', 4C') corresponding to E_A'/C' = A_E/C/<P4>
+// * isogeny phi with constants in F_p^2
+func (phi *isogeny4) GenerateCurve(p *ProjectivePoint) CurveCoefficientsEquiv {
+ var coefEq CurveCoefficientsEquiv
+ var xp4, zp4 = &p.X, &p.Z
+ var K1, K2, K3 = &phi.K1, &phi.K2, &phi.K3
+
+ sub(K2, xp4, zp4)
+ add(K3, xp4, zp4)
+ sqr(K1, zp4)
+ add(K1, K1, K1)
+ sqr(&coefEq.C, K1)
+ add(K1, K1, K1)
+ sqr(&coefEq.A, xp4)
+ add(&coefEq.A, &coefEq.A, &coefEq.A)
+ sqr(&coefEq.A, &coefEq.A)
+ return coefEq
+}
+
+// Given a 4-isogeny phi and a point xP = x(P), compute x(Q), the x-coordinate
+// of the image Q = phi(P) of P under phi : E_(A:C) -> E_(A':C').
+//
+// Input: isogeny returned by GenerateCurve and point q=(Qx,Qz) from E0_A/C
+// Output: Corresponding point q from E1_A'/C', where E1 is 4-isogenous to E0
+func (phi *isogeny4) EvaluatePoint(p *ProjectivePoint) ProjectivePoint {
+ var t0, t1 Fp2
+ var q = *p
+ var xq, zq = &q.X, &q.Z
+ var K1, K2, K3 = &phi.K1, &phi.K2, &phi.K3
+
+ add(&t0, xq, zq)
+ sub(&t1, xq, zq)
+ mul(xq, &t0, K2)
+ mul(zq, &t1, K3)
+ mul(&t0, &t0, &t1)
+ mul(&t0, &t0, K1)
+ add(&t1, xq, zq)
+ sub(zq, xq, zq)
+ sqr(&t1, &t1)
+ sqr(zq, zq)
+ add(xq, &t0, &t1)
+ sub(&t0, zq, &t0)
+ mul(xq, xq, &t1)
+ mul(zq, zq, &t0)
+ return q
+}