/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include "internal.h" int BN_lshift(BIGNUM *r, const BIGNUM *a, int n) { int i, nw, lb, rb; BN_ULONG *t, *f; BN_ULONG l; if (n < 0) { OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); return 0; } r->neg = a->neg; nw = n / BN_BITS2; if (!bn_wexpand(r, a->width + nw + 1)) { return 0; } lb = n % BN_BITS2; rb = BN_BITS2 - lb; f = a->d; t = r->d; t[a->width + nw] = 0; if (lb == 0) { for (i = a->width - 1; i >= 0; i--) { t[nw + i] = f[i]; } } else { for (i = a->width - 1; i >= 0; i--) { l = f[i]; t[nw + i + 1] |= l >> rb; t[nw + i] = l << lb; } } OPENSSL_memset(t, 0, nw * sizeof(t[0])); r->width = a->width + nw + 1; bn_set_minimal_width(r); return 1; } int BN_lshift1(BIGNUM *r, const BIGNUM *a) { BN_ULONG *ap, *rp, t, c; int i; if (r != a) { r->neg = a->neg; if (!bn_wexpand(r, a->width + 1)) { return 0; } r->width = a->width; } else { if (!bn_wexpand(r, a->width + 1)) { return 0; } } ap = a->d; rp = r->d; c = 0; for (i = 0; i < a->width; i++) { t = *(ap++); *(rp++) = (t << 1) | c; c = t >> (BN_BITS2 - 1); } if (c) { *rp = 1; r->width++; } return 1; } void bn_rshift_words(BN_ULONG *r, const BN_ULONG *a, unsigned shift, size_t num) { unsigned shift_bits = shift % BN_BITS2; size_t shift_words = shift / BN_BITS2; if (shift_words >= num) { OPENSSL_memset(r, 0, num * sizeof(BN_ULONG)); return; } if (shift_bits == 0) { OPENSSL_memmove(r, a + shift_words, (num - shift_words) * sizeof(BN_ULONG)); } else { for (size_t i = shift_words; i < num - 1; i++) { r[i - shift_words] = (a[i] >> shift_bits) | (a[i + 1] << (BN_BITS2 - shift_bits)); } r[num - 1 - shift_words] = a[num - 1] >> shift_bits; } OPENSSL_memset(r + num - shift_words, 0, shift_words * sizeof(BN_ULONG)); } int BN_rshift(BIGNUM *r, const BIGNUM *a, int n) { if (n < 0) { OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); return 0; } if (!bn_wexpand(r, a->width)) { return 0; } bn_rshift_words(r->d, a->d, n, a->width); r->neg = a->neg; r->width = a->width; bn_set_minimal_width(r); return 1; } int bn_rshift_secret_shift(BIGNUM *r, const BIGNUM *a, unsigned n, BN_CTX *ctx) { int ret = 0; BN_CTX_start(ctx); BIGNUM *tmp = BN_CTX_get(ctx); if (tmp == NULL || !BN_copy(r, a) || !bn_wexpand(tmp, r->width)) { goto err; } // Shift conditionally by powers of two. unsigned max_bits = BN_BITS2 * r->width; for (unsigned i = 0; (max_bits >> i) != 0; i++) { BN_ULONG mask = (n >> i) & 1; mask = 0 - mask; bn_rshift_words(tmp->d, r->d, 1u << i, r->width); bn_select_words(r->d, mask, tmp->d /* apply shift */, r->d /* ignore shift */, r->width); } ret = 1; err: BN_CTX_end(ctx); return ret; } void bn_rshift1_words(BN_ULONG *r, const BN_ULONG *a, size_t num) { if (num == 0) { return; } for (size_t i = 0; i < num - 1; i++) { r[i] = (a[i] >> 1) | (a[i + 1] << (BN_BITS2 - 1)); } r[num - 1] = a[num - 1] >> 1; } int BN_rshift1(BIGNUM *r, const BIGNUM *a) { if (!bn_wexpand(r, a->width)) { return 0; } bn_rshift1_words(r->d, a->d, a->width); r->width = a->width; r->neg = a->neg; bn_set_minimal_width(r); return 1; } int BN_set_bit(BIGNUM *a, int n) { if (n < 0) { return 0; } int i = n / BN_BITS2; int j = n % BN_BITS2; if (a->width <= i) { if (!bn_wexpand(a, i + 1)) { return 0; } for (int k = a->width; k < i + 1; k++) { a->d[k] = 0; } a->width = i + 1; } a->d[i] |= (((BN_ULONG)1) << j); return 1; } int BN_clear_bit(BIGNUM *a, int n) { int i, j; if (n < 0) { return 0; } i = n / BN_BITS2; j = n % BN_BITS2; if (a->width <= i) { return 0; } a->d[i] &= (~(((BN_ULONG)1) << j)); bn_set_minimal_width(a); return 1; } int bn_is_bit_set_words(const BN_ULONG *a, size_t num, unsigned bit) { unsigned i = bit / BN_BITS2; unsigned j = bit % BN_BITS2; if (i >= num) { return 0; } return (a[i] >> j) & 1; } int BN_is_bit_set(const BIGNUM *a, int n) { if (n < 0) { return 0; } return bn_is_bit_set_words(a->d, a->width, n); } int BN_mask_bits(BIGNUM *a, int n) { if (n < 0) { return 0; } int w = n / BN_BITS2; int b = n % BN_BITS2; if (w >= a->width) { return 1; } if (b == 0) { a->width = w; } else { a->width = w + 1; a->d[w] &= ~(BN_MASK2 << b); } bn_set_minimal_width(a); return 1; } static int bn_count_low_zero_bits_word(BN_ULONG l) { OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t), "crypto_word_t is too small"); OPENSSL_STATIC_ASSERT(sizeof(int) <= sizeof(crypto_word_t), "crypto_word_t is too small"); OPENSSL_STATIC_ASSERT(BN_BITS2 == sizeof(BN_ULONG) * 8, "BN_ULONG has padding bits"); // C has very bizarre rules for types smaller than an int. OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) >= sizeof(int), "BN_ULONG gets promoted to int"); crypto_word_t mask; int bits = 0; #if BN_BITS2 > 32 // Check if the lower half of |x| are all zero. mask = constant_time_is_zero_w(l << (BN_BITS2 - 32)); // If the lower half is all zeros, it is included in the bit count and we // count the upper half. Otherwise, we count the lower half. bits += 32 & mask; l = constant_time_select_w(mask, l >> 32, l); #endif // The remaining blocks are analogous iterations at lower powers of two. mask = constant_time_is_zero_w(l << (BN_BITS2 - 16)); bits += 16 & mask; l = constant_time_select_w(mask, l >> 16, l); mask = constant_time_is_zero_w(l << (BN_BITS2 - 8)); bits += 8 & mask; l = constant_time_select_w(mask, l >> 8, l); mask = constant_time_is_zero_w(l << (BN_BITS2 - 4)); bits += 4 & mask; l = constant_time_select_w(mask, l >> 4, l); mask = constant_time_is_zero_w(l << (BN_BITS2 - 2)); bits += 2 & mask; l = constant_time_select_w(mask, l >> 2, l); mask = constant_time_is_zero_w(l << (BN_BITS2 - 1)); bits += 1 & mask; return bits; } int BN_count_low_zero_bits(const BIGNUM *bn) { OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t), "crypto_word_t is too small"); OPENSSL_STATIC_ASSERT(sizeof(int) <= sizeof(crypto_word_t), "crypto_word_t is too small"); int ret = 0; crypto_word_t saw_nonzero = 0; for (int i = 0; i < bn->width; i++) { crypto_word_t nonzero = ~constant_time_is_zero_w(bn->d[i]); crypto_word_t first_nonzero = ~saw_nonzero & nonzero; saw_nonzero |= nonzero; int bits = bn_count_low_zero_bits_word(bn->d[i]); ret |= first_nonzero & (i * BN_BITS2 + bits); } // If got to the end of |bn| and saw no non-zero words, |bn| is zero. |ret| // will then remain zero. return ret; }