summaryrefslogtreecommitdiff
path: root/src/crypto/fipsmodule/ec/p256-x86_64.c
blob: dd8108d2fc3853ab4d0a6cc6b895a3f7279e655b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
/*
 * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 *
 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
 * (2) University of Haifa, Israel
 *
 * Reference:
 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
 *                          256 Bit Primes"
 */

#include <openssl/ec.h>

#include <assert.h>
#include <stdint.h>
#include <string.h>

#include <openssl/bn.h>
#include <openssl/cpu.h>
#include <openssl/crypto.h>
#include <openssl/err.h>

#include "../bn/internal.h"
#include "../delocate.h"
#include "../../internal.h"
#include "internal.h"
#include "p256-x86_64.h"


#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
    !defined(OPENSSL_SMALL)

typedef P256_POINT_AFFINE PRECOMP256_ROW[64];

// One converted into the Montgomery domain
static const BN_ULONG ONE[P256_LIMBS] = {
    TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
    TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
};

// Precomputed tables for the default generator
#include "p256-x86_64-table.h"

// Recode window to a signed digit, see util-64.c for details
static unsigned booth_recode_w5(unsigned in) {
  unsigned s, d;

  s = ~((in >> 5) - 1);
  d = (1 << 6) - in - 1;
  d = (d & s) | (in & ~s);
  d = (d >> 1) + (d & 1);

  return (d << 1) + (s & 1);
}

static unsigned booth_recode_w7(unsigned in) {
  unsigned s, d;

  s = ~((in >> 7) - 1);
  d = (1 << 8) - in - 1;
  d = (d & s) | (in & ~s);
  d = (d >> 1) + (d & 1);

  return (d << 1) + (s & 1);
}

// copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is
// if |move| is zero.
//
// WARNING: this breaks the usual convention of constant-time functions
// returning masks.
static void copy_conditional(BN_ULONG dst[P256_LIMBS],
                             const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
  BN_ULONG mask1 = ((BN_ULONG)0) - move;
  BN_ULONG mask2 = ~mask1;

  dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
  dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
  dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
  dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
  if (P256_LIMBS == 8) {
    dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
    dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
    dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
    dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
  }
}

// is_not_zero returns one iff in != 0 and zero otherwise.
//
// WARNING: this breaks the usual convention of constant-time functions
// returning masks.
//
// (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64)
//   (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f)
// )
//
// (declare-fun x () (_ BitVec 64))
//
// (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001)))
// (check-sat)
//
// (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000)))
// (check-sat)
//
static BN_ULONG is_not_zero(BN_ULONG in) {
  in |= (0 - in);
  in >>= BN_BITS2 - 1;
  return in;
}

// ecp_nistz256_mod_inverse_mont sets |r| to (|in| * 2^-256)^-1 * 2^256 mod p.
// That is, |r| is the modular inverse of |in| for input and output in the
// Montgomery domain.
static void ecp_nistz256_mod_inverse_mont(BN_ULONG r[P256_LIMBS],
                                          const BN_ULONG in[P256_LIMBS]) {
  /* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff
     ffffffff
     We use FLT and used poly-2 as exponent */
  BN_ULONG p2[P256_LIMBS];
  BN_ULONG p4[P256_LIMBS];
  BN_ULONG p8[P256_LIMBS];
  BN_ULONG p16[P256_LIMBS];
  BN_ULONG p32[P256_LIMBS];
  BN_ULONG res[P256_LIMBS];
  int i;

  ecp_nistz256_sqr_mont(res, in);
  ecp_nistz256_mul_mont(p2, res, in);  // 3*p

  ecp_nistz256_sqr_mont(res, p2);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_mul_mont(p4, res, p2);  // f*p

  ecp_nistz256_sqr_mont(res, p4);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_mul_mont(p8, res, p4);  // ff*p

  ecp_nistz256_sqr_mont(res, p8);
  for (i = 0; i < 7; i++) {
    ecp_nistz256_sqr_mont(res, res);
  }
  ecp_nistz256_mul_mont(p16, res, p8);  // ffff*p

  ecp_nistz256_sqr_mont(res, p16);
  for (i = 0; i < 15; i++) {
    ecp_nistz256_sqr_mont(res, res);
  }
  ecp_nistz256_mul_mont(p32, res, p16);  // ffffffff*p

  ecp_nistz256_sqr_mont(res, p32);
  for (i = 0; i < 31; i++) {
    ecp_nistz256_sqr_mont(res, res);
  }
  ecp_nistz256_mul_mont(res, res, in);

  for (i = 0; i < 32 * 4; i++) {
    ecp_nistz256_sqr_mont(res, res);
  }
  ecp_nistz256_mul_mont(res, res, p32);

  for (i = 0; i < 32; i++) {
    ecp_nistz256_sqr_mont(res, res);
  }
  ecp_nistz256_mul_mont(res, res, p32);

  for (i = 0; i < 16; i++) {
    ecp_nistz256_sqr_mont(res, res);
  }
  ecp_nistz256_mul_mont(res, res, p16);

  for (i = 0; i < 8; i++) {
    ecp_nistz256_sqr_mont(res, res);
  }
  ecp_nistz256_mul_mont(res, res, p8);

  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_mul_mont(res, res, p4);

  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_mul_mont(res, res, p2);

  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_mul_mont(r, res, in);
}

// r = p * p_scalar
static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
                                      const EC_RAW_POINT *p,
                                      const EC_SCALAR *p_scalar) {
  assert(p != NULL);
  assert(p_scalar != NULL);
  assert(group->field.width == P256_LIMBS);

  static const unsigned kWindowSize = 5;
  static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;

  // A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
  // add no more than 63 bytes of overhead. Thus, |table| should require
  // ~1599 ((96 * 16) + 63) bytes of stack space.
  alignas(64) P256_POINT table[16];
  uint8_t p_str[33];
  OPENSSL_memcpy(p_str, p_scalar->bytes, 32);
  p_str[32] = 0;

  // table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
  // not stored. All other values are actually stored with an offset of -1 in
  // table.
  P256_POINT *row = table;
  assert(group->field.width == P256_LIMBS);
  OPENSSL_memcpy(row[1 - 1].X, p->X.words, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(row[1 - 1].Y, p->Y.words, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(row[1 - 1].Z, p->Z.words, P256_LIMBS * sizeof(BN_ULONG));

  ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
  ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
  ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
  ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
  ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
  ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
  ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
  ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
  ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
  ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
  ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
  ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
  ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
  ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
  ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]);

  BN_ULONG tmp[P256_LIMBS];
  alignas(32) P256_POINT h;
  unsigned index = 255;
  unsigned wvalue = p_str[(index - 1) / 8];
  wvalue = (wvalue >> ((index - 1) % 8)) & kMask;

  ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1);

  while (index >= 5) {
    if (index != 255) {
      unsigned off = (index - 1) / 8;

      wvalue = p_str[off] | p_str[off + 1] << 8;
      wvalue = (wvalue >> ((index - 1) % 8)) & kMask;

      wvalue = booth_recode_w5(wvalue);

      ecp_nistz256_select_w5(&h, table, wvalue >> 1);

      ecp_nistz256_neg(tmp, h.Y);
      copy_conditional(h.Y, tmp, (wvalue & 1));

      ecp_nistz256_point_add(r, r, &h);
    }

    index -= kWindowSize;

    ecp_nistz256_point_double(r, r);
    ecp_nistz256_point_double(r, r);
    ecp_nistz256_point_double(r, r);
    ecp_nistz256_point_double(r, r);
    ecp_nistz256_point_double(r, r);
  }

  // Final window
  wvalue = p_str[0];
  wvalue = (wvalue << 1) & kMask;

  wvalue = booth_recode_w5(wvalue);

  ecp_nistz256_select_w5(&h, table, wvalue >> 1);

  ecp_nistz256_neg(tmp, h.Y);
  copy_conditional(h.Y, tmp, wvalue & 1);

  ecp_nistz256_point_add(r, r, &h);
}

typedef union {
  P256_POINT p;
  P256_POINT_AFFINE a;
} p256_point_union_t;

static unsigned calc_first_wvalue(unsigned *index, const uint8_t p_str[33]) {
  static const unsigned kWindowSize = 7;
  static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
  *index = kWindowSize;

  unsigned wvalue = (p_str[0] << 1) & kMask;
  return booth_recode_w7(wvalue);
}

static unsigned calc_wvalue(unsigned *index, const uint8_t p_str[33]) {
  static const unsigned kWindowSize = 7;
  static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;

  const unsigned off = (*index - 1) / 8;
  unsigned wvalue = p_str[off] | p_str[off + 1] << 8;
  wvalue = (wvalue >> ((*index - 1) % 8)) & kMask;
  *index += kWindowSize;

  return booth_recode_w7(wvalue);
}

static void mul_p_add_and_store(const EC_GROUP *group, EC_RAW_POINT *r,
                                const EC_SCALAR *g_scalar,
                                const EC_RAW_POINT *p_,
                                const EC_SCALAR *p_scalar,
                                p256_point_union_t *t, p256_point_union_t *p) {
  const int p_is_infinity = g_scalar == NULL;
  if (p_scalar != NULL) {
    P256_POINT *out = &t->p;
    if (p_is_infinity) {
      out = &p->p;
    }

    ecp_nistz256_windowed_mul(group, out, p_, p_scalar);
    if (!p_is_infinity) {
      ecp_nistz256_point_add(&p->p, &p->p, out);
    }
  }

  assert(group->field.width == P256_LIMBS);
  OPENSSL_memcpy(r->X.words, p->p.X, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(r->Y.words, p->p.Y, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(r->Z.words, p->p.Z, P256_LIMBS * sizeof(BN_ULONG));
}

static void ecp_nistz256_points_mul(const EC_GROUP *group, EC_RAW_POINT *r,
                                    const EC_SCALAR *g_scalar,
                                    const EC_RAW_POINT *p_,
                                    const EC_SCALAR *p_scalar) {
  assert((p_ != NULL) == (p_scalar != NULL));

  alignas(32) p256_point_union_t t, p;

  if (g_scalar != NULL) {
    uint8_t p_str[33];
    OPENSSL_memcpy(p_str, g_scalar->bytes, 32);
    p_str[32] = 0;

    // First window
    unsigned index = 0;
    unsigned wvalue = calc_first_wvalue(&index, p_str);

    ecp_nistz256_select_w7(&p.a, ecp_nistz256_precomputed[0], wvalue >> 1);

    ecp_nistz256_neg(p.p.Z, p.p.Y);
    copy_conditional(p.p.Y, p.p.Z, wvalue & 1);

    // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
    // is infinity and |ONE| otherwise. |p| was computed from the table, so it
    // is infinity iff |wvalue >> 1| is zero.
    OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
    copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1));

    for (int i = 1; i < 37; i++) {
      wvalue = calc_wvalue(&index, p_str);

      ecp_nistz256_select_w7(&t.a, ecp_nistz256_precomputed[i], wvalue >> 1);

      ecp_nistz256_neg(t.p.Z, t.a.Y);
      copy_conditional(t.a.Y, t.p.Z, wvalue & 1);

      // Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a|
      // are the same non-infinity point, so it is important that we compute the
      // |g_scalar| term before the |p_scalar| term.
      ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
    }
  }

  mul_p_add_and_store(group, r, g_scalar, p_, p_scalar, &t, &p);
}

static void ecp_nistz256_points_mul_public(const EC_GROUP *group,
                                           EC_RAW_POINT *r,
                                           const EC_SCALAR *g_scalar,
                                           const EC_RAW_POINT *p_,
                                           const EC_SCALAR *p_scalar) {
  assert(p_ != NULL && p_scalar != NULL && g_scalar != NULL);

  alignas(32) p256_point_union_t t, p;
  uint8_t p_str[33];
  OPENSSL_memcpy(p_str, g_scalar->bytes, 32);
  p_str[32] = 0;

  // First window
  unsigned index = 0;
  unsigned wvalue = calc_first_wvalue(&index, p_str);

  // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
  // is infinity and |ONE| otherwise. |p| was computed from the table, so it
  // is infinity iff |wvalue >> 1| is zero.
  if ((wvalue >> 1) != 0) {
    OPENSSL_memcpy(&p.a, &ecp_nistz256_precomputed[0][(wvalue >> 1) - 1],
                   sizeof(p.a));
    OPENSSL_memcpy(&p.p.Z, ONE, sizeof(p.p.Z));
  } else {
    OPENSSL_memset(&p.a, 0, sizeof(p.a));
    OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
  }

  if ((wvalue & 1) == 1) {
    ecp_nistz256_neg(p.p.Y, p.p.Y);
  }

  for (int i = 1; i < 37; i++) {
    wvalue = calc_wvalue(&index, p_str);

    if ((wvalue >> 1) == 0) {
      continue;
    }

    OPENSSL_memcpy(&t.a, &ecp_nistz256_precomputed[i][(wvalue >> 1) - 1],
                   sizeof(p.a));

    if ((wvalue & 1) == 1) {
      ecp_nistz256_neg(t.a.Y, t.a.Y);
    }

    // Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a|
    // are the same non-infinity point, so it is important that we compute the
    // |g_scalar| term before the |p_scalar| term.
    ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
  }

  mul_p_add_and_store(group, r, g_scalar, p_, p_scalar, &t, &p);
}

static int ecp_nistz256_get_affine(const EC_GROUP *group,
                                   const EC_RAW_POINT *point, EC_FELEM *x,
                                   EC_FELEM *y) {
  if (ec_GFp_simple_is_at_infinity(group, point)) {
    OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
    return 0;
  }

  BN_ULONG z_inv2[P256_LIMBS];
  BN_ULONG z_inv3[P256_LIMBS];
  assert(group->field.width == P256_LIMBS);
  ecp_nistz256_mod_inverse_mont(z_inv3, point->Z.words);
  ecp_nistz256_sqr_mont(z_inv2, z_inv3);

  // Instead of using |ecp_nistz256_from_mont| to convert the |x| coordinate
  // and then calling |ecp_nistz256_from_mont| again to convert the |y|
  // coordinate below, convert the common factor |z_inv2| once now, saving one
  // reduction.
  ecp_nistz256_from_mont(z_inv2, z_inv2);

  if (x != NULL) {
    ecp_nistz256_mul_mont(x->words, z_inv2, point->X.words);
  }

  if (y != NULL) {
    ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
    ecp_nistz256_mul_mont(y->words, z_inv3, point->Y.words);
  }

  return 1;
}

static void ecp_nistz256_add(const EC_GROUP *group, EC_RAW_POINT *r,
                             const EC_RAW_POINT *a_, const EC_RAW_POINT *b_) {
  P256_POINT a, b;
  OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(b.X, b_->X.words, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(b.Y, b_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(b.Z, b_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
  ecp_nistz256_point_add(&a, &a, &b);
  OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG));
}

static void ecp_nistz256_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
                             const EC_RAW_POINT *a_) {
  P256_POINT a;
  OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
  ecp_nistz256_point_double(&a, &a);
  OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG));
  OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG));
}

static void ecp_nistz256_inv_mod_ord(const EC_GROUP *group, EC_SCALAR *out,
                                     const EC_SCALAR *in) {
  // table[i] stores a power of |in| corresponding to the matching enum value.
  enum {
    // The following indices specify the power in binary.
    i_1 = 0,
    i_10,
    i_11,
    i_101,
    i_111,
    i_1010,
    i_1111,
    i_10101,
    i_101010,
    i_101111,
    // The following indices specify 2^N-1, or N ones in a row.
    i_x6,
    i_x8,
    i_x16,
    i_x32
  };
  BN_ULONG table[15][P256_LIMBS];

  // https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
  //
  // Even though this code path spares 12 squarings, 4.5%, and 13
  // multiplications, 25%, the overall sign operation is not that much faster,
  // not more that 2%. Most of the performance of this function comes from the
  // scalar operations.

  // Pre-calculate powers.
  OPENSSL_memcpy(table[i_1], in->words, P256_LIMBS * sizeof(BN_ULONG));

  ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);

  ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);

  ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);

  ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);

  ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);

  ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);

  ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
  ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);

  ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);

  ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);

  ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);

  ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
  ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);

  ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
  ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);

  ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
  ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);

  // Compute |in| raised to the order-2.
  ecp_nistz256_ord_sqr_mont(out->words, table[i_x32], 64);
  ecp_nistz256_ord_mul_mont(out->words, out->words, table[i_x32]);
  static const struct {
    uint8_t p, i;
  } kChain[27] = {{32, i_x32},    {6, i_101111}, {5, i_111},    {4, i_11},
                  {5, i_1111},    {5, i_10101},  {4, i_101},    {3, i_101},
                  {3, i_101},     {5, i_111},    {9, i_101111}, {6, i_1111},
                  {2, i_1},       {5, i_1},      {6, i_1111},   {5, i_111},
                  {4, i_111},     {5, i_111},    {5, i_101},    {3, i_11},
                  {10, i_101111}, {2, i_11},     {5, i_11},     {5, i_11},
                  {3, i_1},       {7, i_10101},  {6, i_1111}};
  for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kChain); i++) {
    ecp_nistz256_ord_sqr_mont(out->words, out->words, kChain[i].p);
    ecp_nistz256_ord_mul_mont(out->words, out->words, table[kChain[i].i]);
  }
}

static int ecp_nistz256_mont_inv_mod_ord_vartime(const EC_GROUP *group,
                                                 EC_SCALAR *out,
                                                 const EC_SCALAR *in) {
  if ((OPENSSL_ia32cap_get()[1] & (1 << 28)) == 0) {
    // No AVX support; fallback to generic code.
    return ec_GFp_simple_mont_inv_mod_ord_vartime(group, out, in);
  }

  assert(group->order.width == P256_LIMBS);
  if (!beeu_mod_inverse_vartime(out->words, in->words, group->order.d)) {
    return 0;
  }

  // The result should be returned in the Montgomery domain.
  ec_scalar_to_montgomery(group, out, out);
  return 1;
}

static int ecp_nistz256_cmp_x_coordinate(const EC_GROUP *group,
                                         const EC_RAW_POINT *p,
                                         const EC_SCALAR *r) {
  if (ec_GFp_simple_is_at_infinity(group, p)) {
    return 0;
  }

  assert(group->order.width == P256_LIMBS);
  assert(group->field.width == P256_LIMBS);

  // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
  // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
  // not.
  BN_ULONG r_Z2[P256_LIMBS], Z2_mont[P256_LIMBS], X[P256_LIMBS];
  ecp_nistz256_mul_mont(Z2_mont, p->Z.words, p->Z.words);
  ecp_nistz256_mul_mont(r_Z2, r->words, Z2_mont);
  ecp_nistz256_from_mont(X, p->X.words);

  if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
    return 1;
  }

  // During signing the x coefficient is reduced modulo the group order.
  // Therefore there is a small possibility, less than 1/2^128, that group_order
  // < p.x < P. in that case we need not only to compare against |r| but also to
  // compare against r+group_order.
  if (bn_less_than_words(r->words, group->field_minus_order.words,
                         P256_LIMBS)) {
    // We can ignore the carry because: r + group_order < p < 2^256.
    bn_add_words(r_Z2, r->words, group->order.d, P256_LIMBS);
    ecp_nistz256_mul_mont(r_Z2, r_Z2, Z2_mont);
    if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
      return 1;
    }
  }

  return 0;
}

DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) {
  out->group_init = ec_GFp_mont_group_init;
  out->group_finish = ec_GFp_mont_group_finish;
  out->group_set_curve = ec_GFp_mont_group_set_curve;
  out->point_get_affine_coordinates = ecp_nistz256_get_affine;
  out->add = ecp_nistz256_add;
  out->dbl = ecp_nistz256_dbl;
  out->mul = ecp_nistz256_points_mul;
  out->mul_public = ecp_nistz256_points_mul_public;
  out->felem_mul = ec_GFp_mont_felem_mul;
  out->felem_sqr = ec_GFp_mont_felem_sqr;
  out->bignum_to_felem = ec_GFp_mont_bignum_to_felem;
  out->felem_to_bignum = ec_GFp_mont_felem_to_bignum;
  out->scalar_inv_montgomery = ecp_nistz256_inv_mod_ord;
  out->scalar_inv_montgomery_vartime = ecp_nistz256_mont_inv_mod_ord_vartime;
  out->cmp_x_coordinate = ecp_nistz256_cmp_x_coordinate;
}

#endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
          !defined(OPENSSL_SMALL) */