summaryrefslogtreecommitdiff
path: root/src/crypto/fipsmodule/ecdsa/ecdsa.c
blob: 010ee02354d57848e003d83e35da81c5aa08fbfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/* ====================================================================
 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@OpenSSL.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com). */

#include <openssl/ecdsa.h>

#include <assert.h>
#include <string.h>

#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/sha.h>
#include <openssl/type_check.h>

#include "../bn/internal.h"
#include "../ec/internal.h"
#include "../../internal.h"


// digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for
// ECDSA. Note this value is not fully reduced modulo the order, only the
// correct number of bits.
static void digest_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
                             const uint8_t *digest, size_t digest_len) {
  const BIGNUM *order = &group->order;
  size_t num_bits = BN_num_bits(order);
  // Need to truncate digest if it is too long: first truncate whole bytes.
  size_t num_bytes = (num_bits + 7) / 8;
  if (digest_len > num_bytes) {
    digest_len = num_bytes;
  }
  OPENSSL_memset(out, 0, sizeof(EC_SCALAR));
  for (size_t i = 0; i < digest_len; i++) {
    out->bytes[i] = digest[digest_len - 1 - i];
  }

  // If it is still too long, truncate remaining bits with a shift.
  if (8 * digest_len > num_bits) {
    bn_rshift_words(out->words, out->words, 8 - (num_bits & 0x7), order->width);
  }

  // |out| now has the same bit width as |order|, but this only bounds by
  // 2*|order|. Subtract the order if out of range.
  //
  // Montgomery multiplication accepts the looser bounds, so this isn't strictly
  // necessary, but it is a cleaner abstraction and has no performance impact.
  BN_ULONG tmp[EC_MAX_WORDS];
  bn_reduce_once_in_place(out->words, 0 /* no carry */, order->d, tmp,
                          order->width);
}

ECDSA_SIG *ECDSA_SIG_new(void) {
  ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG));
  if (sig == NULL) {
    return NULL;
  }
  sig->r = BN_new();
  sig->s = BN_new();
  if (sig->r == NULL || sig->s == NULL) {
    ECDSA_SIG_free(sig);
    return NULL;
  }
  return sig;
}

void ECDSA_SIG_free(ECDSA_SIG *sig) {
  if (sig == NULL) {
    return;
  }

  BN_free(sig->r);
  BN_free(sig->s);
  OPENSSL_free(sig);
}

void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r,
                    const BIGNUM **out_s) {
  if (out_r != NULL) {
    *out_r = sig->r;
  }
  if (out_s != NULL) {
    *out_s = sig->s;
  }
}

int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
  if (r == NULL || s == NULL) {
    return 0;
  }
  BN_free(sig->r);
  BN_free(sig->s);
  sig->r = r;
  sig->s = s;
  return 1;
}

int ECDSA_do_verify(const uint8_t *digest, size_t digest_len,
                    const ECDSA_SIG *sig, const EC_KEY *eckey) {
  const EC_GROUP *group = EC_KEY_get0_group(eckey);
  const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey);
  if (group == NULL || pub_key == NULL || sig == NULL) {
    OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS);
    return 0;
  }

  EC_SCALAR r, s, u1, u2, s_inv_mont, m;
  if (BN_is_zero(sig->r) ||
      !ec_bignum_to_scalar(group, &r, sig->r) ||
      BN_is_zero(sig->s) ||
      !ec_bignum_to_scalar(group, &s, sig->s)) {
    OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
    return 0;
  }

  // s_inv_mont = s^-1 in the Montgomery domain. This is
  ec_scalar_inv_montgomery_vartime(group, &s_inv_mont, &s);

  // u1 = m * s^-1 mod order
  // u2 = r * s^-1 mod order
  //
  // |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and
  // |u2| will be taken out of Montgomery form, as desired.
  digest_to_scalar(group, &m, digest, digest_len);
  ec_scalar_mul_montgomery(group, &u1, &m, &s_inv_mont);
  ec_scalar_mul_montgomery(group, &u2, &r, &s_inv_mont);

  EC_RAW_POINT point;
  if (!ec_point_mul_scalar_public(group, &point, &u1, &pub_key->raw, &u2)) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
    return 0;
  }

  if (!ec_cmp_x_coordinate(group, &point, &r)) {
    OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
    return 0;
  }

  return 1;
}

static int ecdsa_sign_setup(const EC_KEY *eckey, EC_SCALAR *out_kinv_mont,
                            EC_SCALAR *out_r, const uint8_t *digest,
                            size_t digest_len, const EC_SCALAR *priv_key) {
  // Check that the size of the group order is FIPS compliant (FIPS 186-4
  // B.5.2).
  const EC_GROUP *group = EC_KEY_get0_group(eckey);
  const BIGNUM *order = EC_GROUP_get0_order(group);
  if (BN_num_bits(order) < 160) {
    OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER);
    return 0;
  }

  int ret = 0;
  EC_SCALAR k;
  EC_RAW_POINT tmp_point;
  do {
    // Include the private key and message digest in the k generation.
    if (eckey->fixed_k != NULL) {
      if (!ec_bignum_to_scalar(group, &k, eckey->fixed_k)) {
        goto err;
      }
    } else {
      // Pass a SHA512 hash of the private key and digest as additional data
      // into the RBG. This is a hardening measure against entropy failure.
      OPENSSL_STATIC_ASSERT(SHA512_DIGEST_LENGTH >= 32,
                            "additional_data is too large for SHA-512");
      SHA512_CTX sha;
      uint8_t additional_data[SHA512_DIGEST_LENGTH];
      SHA512_Init(&sha);
      SHA512_Update(&sha, priv_key->words, order->width * sizeof(BN_ULONG));
      SHA512_Update(&sha, digest, digest_len);
      SHA512_Final(additional_data, &sha);
      if (!ec_random_nonzero_scalar(group, &k, additional_data)) {
        goto err;
      }
    }

    // Compute k^-1 in the Montgomery domain. This is |ec_scalar_to_montgomery|
    // followed by |ec_scalar_inv_montgomery|, but |ec_scalar_inv_montgomery|
    // followed by |ec_scalar_from_montgomery| is equivalent and slightly more
    // efficient.
    ec_scalar_inv_montgomery(group, out_kinv_mont, &k);
    ec_scalar_from_montgomery(group, out_kinv_mont, out_kinv_mont);

    // Compute r, the x-coordinate of generator * k.
    if (!ec_point_mul_scalar(group, &tmp_point, &k, NULL, NULL) ||
        !ec_get_x_coordinate_as_scalar(group, out_r, &tmp_point)) {
      goto err;
    }
  } while (ec_scalar_is_zero(group, out_r));

  ret = 1;

err:
  OPENSSL_cleanse(&k, sizeof(k));
  return ret;
}

ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len,
                         const EC_KEY *eckey) {
  if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
    OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
    return NULL;
  }

  const EC_GROUP *group = EC_KEY_get0_group(eckey);
  if (group == NULL || eckey->priv_key == NULL) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
    return NULL;
  }
  const BIGNUM *order = EC_GROUP_get0_order(group);
  const EC_SCALAR *priv_key = &eckey->priv_key->scalar;

  int ok = 0;
  ECDSA_SIG *ret = ECDSA_SIG_new();
  EC_SCALAR kinv_mont, r_mont, s, m, tmp;
  if (ret == NULL) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
    return NULL;
  }

  digest_to_scalar(group, &m, digest, digest_len);
  for (;;) {
    if (!ecdsa_sign_setup(eckey, &kinv_mont, &r_mont, digest, digest_len,
                          priv_key) ||
        !bn_set_words(ret->r, r_mont.words, order->width)) {
      goto err;
    }

    // Compute priv_key * r (mod order). Note if only one parameter is in the
    // Montgomery domain, |ec_scalar_mod_mul_montgomery| will compute the answer
    // in the normal domain.
    ec_scalar_to_montgomery(group, &r_mont, &r_mont);
    ec_scalar_mul_montgomery(group, &s, priv_key, &r_mont);

    // Compute tmp = m + priv_key * r.
    ec_scalar_add(group, &tmp, &m, &s);

    // Finally, multiply s by k^-1. That was retained in Montgomery form, so the
    // same technique as the previous multiplication works.
    ec_scalar_mul_montgomery(group, &s, &tmp, &kinv_mont);
    if (!bn_set_words(ret->s, s.words, order->width)) {
      goto err;
    }
    if (!BN_is_zero(ret->s)) {
      // s != 0 => we have a valid signature
      break;
    }
  }

  ok = 1;

err:
  if (!ok) {
    ECDSA_SIG_free(ret);
    ret = NULL;
  }
  OPENSSL_cleanse(&kinv_mont, sizeof(kinv_mont));
  OPENSSL_cleanse(&r_mont, sizeof(r_mont));
  OPENSSL_cleanse(&s, sizeof(s));
  OPENSSL_cleanse(&tmp, sizeof(tmp));
  OPENSSL_cleanse(&m, sizeof(m));
  return ret;
}