summaryrefslogtreecommitdiff
path: root/src/crypto/fipsmodule/modes/asm/ghash-ssse3-x86.pl
blob: 0d9ce156eaaa4f8e213f135916fe964a8cc1afea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env perl
# Copyright (c) 2019, Google Inc.
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
# OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

# ghash-ssse3-x86.pl is a constant-time variant of the traditional 4-bit
# table-based GHASH implementation. It requires SSSE3 instructions.
#
# For background, the table-based strategy is a 4-bit windowed multiplication.
# It precomputes all 4-bit multiples of H (this is 16 128-bit rows), then loops
# over 4-bit windows of the input and indexes them up into the table. Visually,
# it multiplies as in the schoolbook multiplication diagram below, but with
# more terms. (Each term is 4 bits, so there are 32 terms in each row.) First
# it incorporates the terms labeled '1' by indexing the most significant term
# of X into the table. Then it shifts and repeats for '2' and so on.
#
#        hhhhhh
#  *     xxxxxx
#  ============
#        666666
#       555555
#      444444
#     333333
#    222222
#   111111
#
# This implementation changes the order. We treat the table as a 16×16 matrix
# and transpose it. The first row is then the first byte of each multiple of H,
# and so on. We then reorder terms as below. Observe that the terms labeled '1'
# and '2' are all lookups into the first row, etc. This maps well to the SSSE3
# pshufb instruction, using alternating terms of X in parallel as indices. This
# alternation is needed because pshufb maps 4 bits to 8 bits. Then we shift and
# repeat for each row.
#
#        hhhhhh
#  *     xxxxxx
#  ============
#        224466
#       113355
#      224466
#     113355
#    224466
#   113355
#
# Next we account for GCM's confusing bit order. The "first" bit is the least
# significant coefficient, but GCM treats the most sigificant bit within a byte
# as first. Bytes are little-endian, and bits are big-endian. We reverse the
# bytes in XMM registers for a consistent bit and byte ordering, but this means
# the least significant bit is the most significant coefficient and vice versa.
#
# For consistency, "low", "high", "left-shift", and "right-shift" refer to the
# bit ordering within the XMM register, rather than the reversed coefficient
# ordering. Low bits are less significant bits and more significant
# coefficients. Right-shifts move from MSB to the LSB and correspond to
# increasing the power of each coefficient.
#
# Note this bit reversal enters into the table's column indices. H*1 is stored
# in column 0b1000 and H*x^3 is stored in column 0b0001. It also means earlier
# table rows contain more significant coefficients, so we iterate forwards.

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../../perlasm");
require "x86asm.pl";

$output = pop;
open STDOUT, ">$output";

&asm_init($ARGV[0]);

my ($Xi, $Htable, $in, $len) = ("edi", "esi", "edx", "ecx");
&static_label("reverse_bytes");
&static_label("low4_mask");

my $call_counter = 0;
# process_rows emits assembly code to process $rows rows of the table. On
# input, $Htable stores the pointer to the next row. xmm0 and xmm1 store the
# low and high halves of the input. The result so far is passed in xmm2. xmm3
# must be zero. On output, $Htable is advanced to the next row and xmm2 is
# updated. xmm3 remains zero. It clobbers eax, xmm4, xmm5, and xmm6.
sub process_rows {
	my ($rows) = @_;
	$call_counter++;

	# Shifting whole XMM registers by bits is complex. psrldq shifts by
	# bytes, and psrlq shifts the two 64-bit halves separately. Each row
	# produces 8 bits of carry, and the reduction needs an additional 7-bit
	# shift. This must fit in 64 bits so reduction can use psrlq. This
	# allows up to 7 rows at a time.
	die "Carry register would overflow 64 bits." if ($rows*8 + 7 > 64);

	&mov("eax", $rows);
&set_label("loop_row_$call_counter");
	&movdqa("xmm4", &QWP(0, $Htable));
	&lea($Htable, &DWP(16, $Htable));

	# Right-shift xmm2 and xmm3 by 8 bytes.
	&movdqa("xmm6", "xmm2");
	&palignr("xmm6", "xmm3", 1);
	&movdqa("xmm3", "xmm6");
	&psrldq("xmm2", 1);

	# Load the next table row and index the low and high bits of the input.
	# Note the low (respectively, high) half corresponds to more
	# (respectively, less) significant coefficients.
	&movdqa("xmm5", "xmm4");
	&pshufb("xmm4", "xmm0");
	&pshufb("xmm5", "xmm1");

	# Add the high half (xmm5) without shifting.
	&pxor("xmm2", "xmm5");

	# Add the low half (xmm4). This must be right-shifted by 4 bits. First,
	# add into the carry register (xmm3).
	&movdqa("xmm5", "xmm4");
	&psllq("xmm5", 60);
	&movdqa("xmm6", "xmm5");
	&pslldq("xmm6", 8);
	&pxor("xmm3", "xmm6");

	# Next, add into xmm2.
	&psrldq("xmm5", 8);
	&pxor("xmm2", "xmm5");
	&psrlq("xmm4", 4);
	&pxor("xmm2", "xmm4");

	&sub("eax", 1);
	&jnz(&label("loop_row_$call_counter"));

	# Reduce the carry register. The reduction polynomial is 1 + x + x^2 +
	# x^7, so we shift and XOR four times.
	&pxor("xmm2", "xmm3");	# x^0 = 0
	&psrlq("xmm3", 1);
	&pxor("xmm2", "xmm3");	# x^1 = x
	&psrlq("xmm3", 1);
	&pxor("xmm2", "xmm3");	# x^(1+1) = x^2
	&psrlq("xmm3", 5);
	&pxor("xmm2", "xmm3");	# x^(1+1+5) = x^7
	&pxor("xmm3", "xmm3");
____
}

# gcm_gmult_ssse3 multiplies |Xi| by |Htable| and writes the result to |Xi|.
# |Xi| is represented in GHASH's serialized byte representation. |Htable| is
# formatted as described above.
# void gcm_gmult_ssse3(uint64_t Xi[2], const u128 Htable[16]);
&function_begin("gcm_gmult_ssse3");
	&mov($Xi, &wparam(0));
	&mov($Htable, &wparam(1));

	&movdqu("xmm0", &QWP(0, $Xi));
	&call(&label("pic_point"));
&set_label("pic_point");
	&blindpop("eax");
	&movdqa("xmm7", &QWP(&label("reverse_bytes")."-".&label("pic_point"), "eax"));
	&movdqa("xmm2", &QWP(&label("low4_mask")."-".&label("pic_point"), "eax"));

	# Reverse input bytes to deserialize.
	&pshufb("xmm0", "xmm7");

	# Split each byte into low (xmm0) and high (xmm1) halves.
	&movdqa("xmm1", "xmm2");
	&pandn("xmm1", "xmm0");
	&psrld("xmm1", 4);
	&pand("xmm0", "xmm2");

	# Maintain the result in xmm2 (the value) and xmm3 (carry bits). Note
	# that, due to bit reversal, xmm3 contains bits that fall off when
	# right-shifting, not left-shifting.
	&pxor("xmm2", "xmm2");
	&pxor("xmm3", "xmm3");

	# We must reduce at least once every 7 rows, so divide into three
	# chunks.
	&process_rows(5);
	&process_rows(5);
	&process_rows(6);

	# Store the result. Reverse bytes to serialize.
	&pshufb("xmm2", "xmm7");
	&movdqu(&QWP(0, $Xi), "xmm2");

	# Zero any registers which contain secrets.
	&pxor("xmm0", "xmm0");
	&pxor("xmm1", "xmm1");
	&pxor("xmm2", "xmm2");
	&pxor("xmm3", "xmm3");
	&pxor("xmm4", "xmm4");
	&pxor("xmm5", "xmm5");
	&pxor("xmm6", "xmm6");
&function_end("gcm_gmult_ssse3");

# gcm_ghash_ssse3 incorporates |len| bytes from |in| to |Xi|, using |Htable| as
# the key. It writes the result back to |Xi|. |Xi| is represented in GHASH's
# serialized byte representation. |Htable| is formatted as described above.
# void gcm_ghash_ssse3(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in,
#                      size_t len);
&function_begin("gcm_ghash_ssse3");
	&mov($Xi, &wparam(0));
	&mov($Htable, &wparam(1));
	&mov($in, &wparam(2));
	&mov($len, &wparam(3));

	&movdqu("xmm0", &QWP(0, $Xi));
	&call(&label("pic_point"));
&set_label("pic_point");
	&blindpop("ebx");
	&movdqa("xmm7", &QWP(&label("reverse_bytes")."-".&label("pic_point"), "ebx"));

	# This function only processes whole blocks.
	&and($len, -16);

	# Reverse input bytes to deserialize. We maintain the running
	# total in xmm0.
	&pshufb("xmm0", "xmm7");

	# Iterate over each block. On entry to each iteration, xmm3 is zero.
	&pxor("xmm3", "xmm3");
&set_label("loop_ghash");
	&movdqa("xmm2", &QWP(&label("low4_mask")."-".&label("pic_point"), "ebx"));

	# Incorporate the next block of input.
	&movdqu("xmm1", &QWP(0, $in));
	&pshufb("xmm1", "xmm7");	# Reverse bytes.
	&pxor("xmm0", "xmm1");

	# Split each byte into low (xmm0) and high (xmm1) halves.
	&movdqa("xmm1", "xmm2");
	&pandn("xmm1", "xmm0");
	&psrld("xmm1", 4);
	&pand("xmm0", "xmm2");

	# Maintain the result in xmm2 (the value) and xmm3 (carry bits). Note
	# that, due to bit reversal, xmm3 contains bits that fall off when
	# right-shifting, not left-shifting.
	&pxor("xmm2", "xmm2");
	# xmm3 is already zero at this point.

	# We must reduce at least once every 7 rows, so divide into three
	# chunks.
	&process_rows(5);
	&process_rows(5);
	&process_rows(6);

	&movdqa("xmm0", "xmm2");

	# Rewind $Htable for the next iteration.
	&lea($Htable, &DWP(-256, $Htable));

	# Advance input and continue.
	&lea($in, &DWP(16, $in));
	&sub($len, 16);
	&jnz(&label("loop_ghash"));

	# Reverse bytes and store the result.
	&pshufb("xmm0", "xmm7");
	&movdqu(&QWP(0, $Xi), "xmm0");

	# Zero any registers which contain secrets.
	&pxor("xmm0", "xmm0");
	&pxor("xmm1", "xmm1");
	&pxor("xmm2", "xmm2");
	&pxor("xmm3", "xmm3");
	&pxor("xmm4", "xmm4");
	&pxor("xmm5", "xmm5");
	&pxor("xmm6", "xmm6");
&function_end("gcm_ghash_ssse3");

# reverse_bytes is a permutation which, if applied with pshufb, reverses the
# bytes in an XMM register.
&set_label("reverse_bytes", 16);
&data_byte(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
# low4_mask is an XMM mask which selects the low four bits of each byte.
&set_label("low4_mask", 16);
&data_word(0x0f0f0f0f, 0x0f0f0f0f, 0x0f0f0f0f, 0x0f0f0f0f);

&asm_finish();

close STDOUT;