summaryrefslogtreecommitdiff
path: root/src/crypto/fipsmodule/rand/ctrdrbg.c
blob: 83e7f5b614d2c6af660e349b85687bb4c83ba0f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/* Copyright (c) 2017, Google Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */

#include <openssl/rand.h>

#include <openssl/type_check.h>
#include <openssl/mem.h>

#include "internal.h"
#include "../cipher/internal.h"
#include "../service_indicator/internal.h"


// Section references in this file refer to SP 800-90Ar1:
// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

// See table 3.
static const uint64_t kMaxReseedCount = UINT64_C(1) << 48;

int CTR_DRBG_init(CTR_DRBG_STATE *drbg,
                  const uint8_t entropy[CTR_DRBG_ENTROPY_LEN],
                  const uint8_t *personalization, size_t personalization_len) {
  // Section 10.2.1.3.1
  if (personalization_len > CTR_DRBG_ENTROPY_LEN) {
    return 0;
  }

  uint8_t seed_material[CTR_DRBG_ENTROPY_LEN];
  OPENSSL_memcpy(seed_material, entropy, CTR_DRBG_ENTROPY_LEN);

  for (size_t i = 0; i < personalization_len; i++) {
    seed_material[i] ^= personalization[i];
  }

  // Section 10.2.1.2

  // kInitMask is the result of encrypting blocks with big-endian value 1, 2
  // and 3 with the all-zero AES-256 key.
  static const uint8_t kInitMask[CTR_DRBG_ENTROPY_LEN] = {
      0x53, 0x0f, 0x8a, 0xfb, 0xc7, 0x45, 0x36, 0xb9, 0xa9, 0x63, 0xb4, 0xf1,
      0xc4, 0xcb, 0x73, 0x8b, 0xce, 0xa7, 0x40, 0x3d, 0x4d, 0x60, 0x6b, 0x6e,
      0x07, 0x4e, 0xc5, 0xd3, 0xba, 0xf3, 0x9d, 0x18, 0x72, 0x60, 0x03, 0xca,
      0x37, 0xa6, 0x2a, 0x74, 0xd1, 0xa2, 0xf5, 0x8e, 0x75, 0x06, 0x35, 0x8e,
  };

  for (size_t i = 0; i < sizeof(kInitMask); i++) {
    seed_material[i] ^= kInitMask[i];
  }

  drbg->ctr = aes_ctr_set_key(&drbg->ks, NULL, &drbg->block, seed_material, 32);
  OPENSSL_memcpy(drbg->counter.bytes, seed_material + 32, 16);
  drbg->reseed_counter = 1;

  return 1;
}

OPENSSL_STATIC_ASSERT(CTR_DRBG_ENTROPY_LEN % AES_BLOCK_SIZE == 0,
                      "not a multiple of AES block size");

// ctr_inc adds |n| to the last four bytes of |drbg->counter|, treated as a
// big-endian number.
static void ctr32_add(CTR_DRBG_STATE *drbg, uint32_t n) {
  drbg->counter.words[3] =
      CRYPTO_bswap4(CRYPTO_bswap4(drbg->counter.words[3]) + n);
}

static int ctr_drbg_update(CTR_DRBG_STATE *drbg, const uint8_t *data,
                           size_t data_len) {
  // Per section 10.2.1.2, |data_len| must be |CTR_DRBG_ENTROPY_LEN|. Here, we
  // allow shorter inputs and right-pad them with zeros. This is equivalent to
  // the specified algorithm but saves a copy in |CTR_DRBG_generate|.
  if (data_len > CTR_DRBG_ENTROPY_LEN) {
    return 0;
  }

  uint8_t temp[CTR_DRBG_ENTROPY_LEN];
  for (size_t i = 0; i < CTR_DRBG_ENTROPY_LEN; i += AES_BLOCK_SIZE) {
    ctr32_add(drbg, 1);
    drbg->block(drbg->counter.bytes, temp + i, &drbg->ks);
  }

  for (size_t i = 0; i < data_len; i++) {
    temp[i] ^= data[i];
  }

  drbg->ctr = aes_ctr_set_key(&drbg->ks, NULL, &drbg->block, temp, 32);
  OPENSSL_memcpy(drbg->counter.bytes, temp + 32, 16);

  return 1;
}

int CTR_DRBG_reseed(CTR_DRBG_STATE *drbg,
                    const uint8_t entropy[CTR_DRBG_ENTROPY_LEN],
                    const uint8_t *additional_data,
                    size_t additional_data_len) {
  // Section 10.2.1.4
  uint8_t entropy_copy[CTR_DRBG_ENTROPY_LEN];

  if (additional_data_len > 0) {
    if (additional_data_len > CTR_DRBG_ENTROPY_LEN) {
      return 0;
    }

    OPENSSL_memcpy(entropy_copy, entropy, CTR_DRBG_ENTROPY_LEN);
    for (size_t i = 0; i < additional_data_len; i++) {
      entropy_copy[i] ^= additional_data[i];
    }

    entropy = entropy_copy;
  }

  if (!ctr_drbg_update(drbg, entropy, CTR_DRBG_ENTROPY_LEN)) {
    return 0;
  }

  drbg->reseed_counter = 1;

  return 1;
}

int CTR_DRBG_generate(CTR_DRBG_STATE *drbg, uint8_t *out, size_t out_len,
                      const uint8_t *additional_data,
                      size_t additional_data_len) {
  // See 9.3.1
  if (out_len > CTR_DRBG_MAX_GENERATE_LENGTH) {
    return 0;
  }

  // See 10.2.1.5.1
  if (drbg->reseed_counter > kMaxReseedCount) {
    return 0;
  }

  if (additional_data_len != 0 &&
      !ctr_drbg_update(drbg, additional_data, additional_data_len)) {
    return 0;
  }

  // kChunkSize is used to interact better with the cache. Since the AES-CTR
  // code assumes that it's encrypting rather than just writing keystream, the
  // buffer has to be zeroed first. Without chunking, large reads would zero
  // the whole buffer, flushing the L1 cache, and then do another pass (missing
  // the cache every time) to “encrypt” it. The code can avoid this by
  // chunking.
  static const size_t kChunkSize = 8 * 1024;

  while (out_len >= AES_BLOCK_SIZE) {
    size_t todo = kChunkSize;
    if (todo > out_len) {
      todo = out_len;
    }

    todo &= ~(AES_BLOCK_SIZE-1);
    const size_t num_blocks = todo / AES_BLOCK_SIZE;

    if (drbg->ctr) {
      OPENSSL_memset(out, 0, todo);
      ctr32_add(drbg, 1);
      drbg->ctr(out, out, num_blocks, &drbg->ks, drbg->counter.bytes);
      ctr32_add(drbg, num_blocks - 1);
    } else {
      for (size_t i = 0; i < todo; i += AES_BLOCK_SIZE) {
        ctr32_add(drbg, 1);
        drbg->block(drbg->counter.bytes, out + i, &drbg->ks);
      }
    }

    out += todo;
    out_len -= todo;
  }

  if (out_len > 0) {
    uint8_t block[AES_BLOCK_SIZE];
    ctr32_add(drbg, 1);
    drbg->block(drbg->counter.bytes, block, &drbg->ks);

    OPENSSL_memcpy(out, block, out_len);
  }

  // Right-padding |additional_data| in step 2.2 is handled implicitly by
  // |ctr_drbg_update|, to save a copy.
  if (!ctr_drbg_update(drbg, additional_data, additional_data_len)) {
    return 0;
  }

  drbg->reseed_counter++;
  FIPS_service_indicator_update_state();
  return 1;
}

void CTR_DRBG_clear(CTR_DRBG_STATE *drbg) {
  OPENSSL_cleanse(drbg, sizeof(CTR_DRBG_STATE));
}