summaryrefslogtreecommitdiff
path: root/src/crypto/pkcs8/pkcs8_x509.c
blob: ace5f33b69abffde1a58f56222f4077edb609520 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
 * project 1999.
 */
/* ====================================================================
 * Copyright (c) 1999 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    licensing@OpenSSL.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com). */

#include <openssl/pkcs8.h>

#include <limits.h>

#include <openssl/asn1t.h>
#include <openssl/asn1.h>
#include <openssl/bio.h>
#include <openssl/buf.h>
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/digest.h>
#include <openssl/hmac.h>
#include <openssl/mem.h>
#include <openssl/x509.h>

#include "internal.h"
#include "../bytestring/internal.h"
#include "../digest_extra/internal.h"
#include "../internal.h"


// Minor tweak to operation: zero private key data
static int pkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
                   void *exarg) {
  // Since the structure must still be valid use ASN1_OP_FREE_PRE
  if (operation == ASN1_OP_FREE_PRE) {
    PKCS8_PRIV_KEY_INFO *key = (PKCS8_PRIV_KEY_INFO *)*pval;
    if (key->pkey && key->pkey->type == V_ASN1_OCTET_STRING &&
        key->pkey->value.octet_string) {
      OPENSSL_cleanse(key->pkey->value.octet_string->data,
                      key->pkey->value.octet_string->length);
    }
  }
  return 1;
}

ASN1_SEQUENCE_cb(PKCS8_PRIV_KEY_INFO, pkey_cb) = {
  ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER),
  ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR),
  ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_ANY),
  ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0)
} ASN1_SEQUENCE_END_cb(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO)

IMPLEMENT_ASN1_FUNCTIONS(PKCS8_PRIV_KEY_INFO)

EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) {
  uint8_t *der = NULL;
  int der_len = i2d_PKCS8_PRIV_KEY_INFO(p8, &der);
  if (der_len < 0) {
    return NULL;
  }

  CBS cbs;
  CBS_init(&cbs, der, (size_t)der_len);
  EVP_PKEY *ret = EVP_parse_private_key(&cbs);
  if (ret == NULL || CBS_len(&cbs) != 0) {
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
    EVP_PKEY_free(ret);
    OPENSSL_free(der);
    return NULL;
  }

  OPENSSL_free(der);
  return ret;
}

PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) {
  CBB cbb;
  uint8_t *der = NULL;
  size_t der_len;
  if (!CBB_init(&cbb, 0) ||
      !EVP_marshal_private_key(&cbb, pkey) ||
      !CBB_finish(&cbb, &der, &der_len) ||
      der_len > LONG_MAX) {
    CBB_cleanup(&cbb);
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR);
    goto err;
  }

  const uint8_t *p = der;
  PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, (long)der_len);
  if (p8 == NULL || p != der + der_len) {
    PKCS8_PRIV_KEY_INFO_free(p8);
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
    goto err;
  }

  OPENSSL_free(der);
  return p8;

err:
  OPENSSL_free(der);
  return NULL;
}

PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass,
                                   int pass_len_in) {
  size_t pass_len;
  if (pass_len_in == -1 && pass != NULL) {
    pass_len = strlen(pass);
  } else {
    pass_len = (size_t)pass_len_in;
  }

  PKCS8_PRIV_KEY_INFO *ret = NULL;
  EVP_PKEY *pkey = NULL;
  uint8_t *in = NULL;

  // Convert the legacy ASN.1 object to a byte string.
  int in_len = i2d_X509_SIG(pkcs8, &in);
  if (in_len < 0) {
    goto err;
  }

  CBS cbs;
  CBS_init(&cbs, in, in_len);
  pkey = PKCS8_parse_encrypted_private_key(&cbs, pass, pass_len);
  if (pkey == NULL || CBS_len(&cbs) != 0) {
    goto err;
  }

  ret = EVP_PKEY2PKCS8(pkey);

err:
  OPENSSL_free(in);
  EVP_PKEY_free(pkey);
  return ret;
}

X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass,
                        int pass_len_in, const uint8_t *salt, size_t salt_len,
                        int iterations, PKCS8_PRIV_KEY_INFO *p8inf) {
  size_t pass_len;
  if (pass_len_in == -1 && pass != NULL) {
    pass_len = strlen(pass);
  } else {
    pass_len = (size_t)pass_len_in;
  }

  // Parse out the private key.
  EVP_PKEY *pkey = EVP_PKCS82PKEY(p8inf);
  if (pkey == NULL) {
    return NULL;
  }

  X509_SIG *ret = NULL;
  uint8_t *der = NULL;
  size_t der_len;
  CBB cbb;
  if (!CBB_init(&cbb, 128) ||
      !PKCS8_marshal_encrypted_private_key(&cbb, pbe_nid, cipher, pass,
                                           pass_len, salt, salt_len, iterations,
                                           pkey) ||
      !CBB_finish(&cbb, &der, &der_len)) {
    CBB_cleanup(&cbb);
    goto err;
  }

  // Convert back to legacy ASN.1 objects.
  const uint8_t *ptr = der;
  ret = d2i_X509_SIG(NULL, &ptr, der_len);
  if (ret == NULL || ptr != der + der_len) {
    OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR);
    X509_SIG_free(ret);
    ret = NULL;
  }

err:
  OPENSSL_free(der);
  EVP_PKEY_free(pkey);
  return ret;
}

struct pkcs12_context {
  EVP_PKEY **out_key;
  STACK_OF(X509) *out_certs;
  const char *password;
  size_t password_len;
};

// PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12
// structure.
static int PKCS12_handle_sequence(
    CBS *sequence, struct pkcs12_context *ctx,
    int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) {
  uint8_t *der_bytes = NULL;
  size_t der_len;
  CBS in;
  int ret = 0;

  // Although a BER->DER conversion is done at the beginning of |PKCS12_parse|,
  // the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the
  // conversion cannot see through those wrappings. So each time we step
  // through one we need to convert to DER again.
  if (!CBS_asn1_ber_to_der(sequence, &der_bytes, &der_len)) {
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
    return 0;
  }

  if (der_bytes != NULL) {
    CBS_init(&in, der_bytes, der_len);
  } else {
    CBS_init(&in, CBS_data(sequence), CBS_len(sequence));
  }

  CBS child;
  if (!CBS_get_asn1(&in, &child, CBS_ASN1_SEQUENCE) ||
      CBS_len(&in) != 0) {
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
    goto err;
  }

  while (CBS_len(&child) > 0) {
    CBS element;
    if (!CBS_get_asn1(&child, &element, CBS_ASN1_SEQUENCE)) {
      OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
      goto err;
    }

    if (!handle_element(&element, ctx)) {
      goto err;
    }
  }

  ret = 1;

err:
  OPENSSL_free(der_bytes);
  return ret;
}

// 1.2.840.113549.1.12.10.1.2
static const uint8_t kPKCS8ShroudedKeyBag[] = {
    0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x02};

// 1.2.840.113549.1.12.10.1.3
static const uint8_t kCertBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
                                   0x01, 0x0c, 0x0a, 0x01, 0x03};

// 1.2.840.113549.1.9.22.1
static const uint8_t kX509Certificate[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
                                           0x0d, 0x01, 0x09, 0x16, 0x01};

// PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12
// structure.
static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) {
  CBS bag_id, wrapped_value;
  if (!CBS_get_asn1(safe_bag, &bag_id, CBS_ASN1_OBJECT) ||
      !CBS_get_asn1(safe_bag, &wrapped_value,
                        CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)
      /* Ignore the bagAttributes field. */) {
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
    return 0;
  }

  if (CBS_mem_equal(&bag_id, kPKCS8ShroudedKeyBag,
                    sizeof(kPKCS8ShroudedKeyBag))) {
    // See RFC 7292, section 4.2.2.
    if (*ctx->out_key) {
      OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12);
      return 0;
    }

    EVP_PKEY *pkey = PKCS8_parse_encrypted_private_key(
        &wrapped_value, ctx->password, ctx->password_len);
    if (pkey == NULL) {
      return 0;
    }

    if (CBS_len(&wrapped_value) != 0) {
      OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
      EVP_PKEY_free(pkey);
      return 0;
    }

    *ctx->out_key = pkey;
    return 1;
  }

  if (CBS_mem_equal(&bag_id, kCertBag, sizeof(kCertBag))) {
    // See RFC 7292, section 4.2.3.
    CBS cert_bag, cert_type, wrapped_cert, cert;
    if (!CBS_get_asn1(&wrapped_value, &cert_bag, CBS_ASN1_SEQUENCE) ||
        !CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) ||
        !CBS_get_asn1(&cert_bag, &wrapped_cert,
                      CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
        !CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) {
      OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
      return 0;
    }

    // Skip unknown certificate types.
    if (!CBS_mem_equal(&cert_type, kX509Certificate,
                       sizeof(kX509Certificate))) {
      return 1;
    }

    if (CBS_len(&cert) > LONG_MAX) {
      OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
      return 0;
    }

    const uint8_t *inp = CBS_data(&cert);
    X509 *x509 = d2i_X509(NULL, &inp, (long)CBS_len(&cert));
    if (!x509) {
      OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
      return 0;
    }

    if (inp != CBS_data(&cert) + CBS_len(&cert)) {
      OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
      X509_free(x509);
      return 0;
    }

    if (0 == sk_X509_push(ctx->out_certs, x509)) {
      X509_free(x509);
      return 0;
    }

    return 1;
  }

  // Unknown element type - ignore it.
  return 1;
}

// 1.2.840.113549.1.7.1
static const uint8_t kPKCS7Data[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
                                     0x0d, 0x01, 0x07, 0x01};

// 1.2.840.113549.1.7.6
static const uint8_t kPKCS7EncryptedData[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
                                              0x0d, 0x01, 0x07, 0x06};

// PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a
// PKCS#12 structure.
static int PKCS12_handle_content_info(CBS *content_info,
                                      struct pkcs12_context *ctx) {
  CBS content_type, wrapped_contents, contents;
  int ret = 0;
  uint8_t *storage = NULL;

  if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) ||
      !CBS_get_asn1(content_info, &wrapped_contents,
                        CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
      CBS_len(content_info) != 0) {
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
    goto err;
  }

  if (CBS_mem_equal(&content_type, kPKCS7EncryptedData,
                    sizeof(kPKCS7EncryptedData))) {
    // See https://tools.ietf.org/html/rfc2315#section-13.
    //
    // PKCS#7 encrypted data inside a PKCS#12 structure is generally an
    // encrypted certificate bag and it's generally encrypted with 40-bit
    // RC2-CBC.
    CBS version_bytes, eci, contents_type, ai, encrypted_contents;
    uint8_t *out;
    size_t out_len;

    if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) ||
        !CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) ||
        // EncryptedContentInfo, see
        // https://tools.ietf.org/html/rfc2315#section-10.1
        !CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) ||
        !CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) ||
        // AlgorithmIdentifier, see
        // https://tools.ietf.org/html/rfc5280#section-4.1.1.2
        !CBS_get_asn1(&eci, &ai, CBS_ASN1_SEQUENCE) ||
        !CBS_get_asn1_implicit_string(
            &eci, &encrypted_contents, &storage,
            CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) {
      OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
      goto err;
    }

    if (!CBS_mem_equal(&contents_type, kPKCS7Data, sizeof(kPKCS7Data))) {
      OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
      goto err;
    }

    if (!pkcs8_pbe_decrypt(&out, &out_len, &ai, ctx->password,
                           ctx->password_len, CBS_data(&encrypted_contents),
                           CBS_len(&encrypted_contents))) {
      goto err;
    }

    CBS safe_contents;
    CBS_init(&safe_contents, out, out_len);
    ret = PKCS12_handle_sequence(&safe_contents, ctx, PKCS12_handle_safe_bag);
    OPENSSL_free(out);
  } else if (CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) {
    CBS octet_string_contents;

    if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents,
                      CBS_ASN1_OCTETSTRING)) {
      OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
      goto err;
    }

    ret = PKCS12_handle_sequence(&octet_string_contents, ctx,
                                 PKCS12_handle_safe_bag);
  } else {
    // Unknown element type - ignore it.
    ret = 1;
  }

err:
  OPENSSL_free(storage);
  return ret;
}

int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs,
                             CBS *ber_in, const char *password) {
  uint8_t *der_bytes = NULL;
  size_t der_len;
  CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes;
  uint64_t version;
  int ret = 0;
  struct pkcs12_context ctx;
  const size_t original_out_certs_len = sk_X509_num(out_certs);

  // The input may be in BER format.
  if (!CBS_asn1_ber_to_der(ber_in, &der_bytes, &der_len)) {
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
    return 0;
  }
  if (der_bytes != NULL) {
    CBS_init(&in, der_bytes, der_len);
  } else {
    CBS_init(&in, CBS_data(ber_in), CBS_len(ber_in));
  }

  *out_key = NULL;
  OPENSSL_memset(&ctx, 0, sizeof(ctx));

  // See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section
  // four.
  if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) ||
      CBS_len(&in) != 0 ||
      !CBS_get_asn1_uint64(&pfx, &version)) {
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
    goto err;
  }

  if (version < 3) {
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION);
    goto err;
  }

  if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) {
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
    goto err;
  }

  if (CBS_len(&pfx) == 0) {
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC);
    goto err;
  }

  if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) {
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
    goto err;
  }

  // authsafe is a PKCS#7 ContentInfo. See
  // https://tools.ietf.org/html/rfc2315#section-7.
  if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) ||
      !CBS_get_asn1(&authsafe, &wrapped_authsafes,
                        CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) {
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
    goto err;
  }

  // The content type can either be data or signedData. The latter indicates
  // that it's signed by a public key, which isn't supported.
  if (!CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) {
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED);
    goto err;
  }

  if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) {
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
    goto err;
  }

  ctx.out_key = out_key;
  ctx.out_certs = out_certs;
  ctx.password = password;
  ctx.password_len = password != NULL ? strlen(password) : 0;

  // Verify the MAC.
  {
    CBS mac, salt, expected_mac;
    if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE)) {
      OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
      goto err;
    }

    const EVP_MD *md = EVP_parse_digest_algorithm(&mac);
    if (md == NULL) {
      goto err;
    }

    if (!CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) ||
        !CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) {
      OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
      goto err;
    }

    // The iteration count is optional and the default is one.
    uint64_t iterations = 1;
    if (CBS_len(&mac_data) > 0) {
      if (!CBS_get_asn1_uint64(&mac_data, &iterations) ||
          iterations > UINT_MAX) {
        OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
        goto err;
      }
    }

    uint8_t hmac_key[EVP_MAX_MD_SIZE];
    if (!pkcs12_key_gen(ctx.password, ctx.password_len, CBS_data(&salt),
                        CBS_len(&salt), PKCS12_MAC_ID, iterations,
                        EVP_MD_size(md), hmac_key, md)) {
      goto err;
    }

    uint8_t hmac[EVP_MAX_MD_SIZE];
    unsigned hmac_len;
    if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(&authsafes),
                     CBS_len(&authsafes), hmac, &hmac_len)) {
      goto err;
    }

    if (!CBS_mem_equal(&expected_mac, hmac, hmac_len)) {
      OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD);
      goto err;
    }
  }

  // authsafes contains a series of PKCS#7 ContentInfos.
  if (!PKCS12_handle_sequence(&authsafes, &ctx, PKCS12_handle_content_info)) {
    goto err;
  }

  ret = 1;

err:
  OPENSSL_free(der_bytes);
  if (!ret) {
    EVP_PKEY_free(*out_key);
    *out_key = NULL;
    while (sk_X509_num(out_certs) > original_out_certs_len) {
      X509 *x509 = sk_X509_pop(out_certs);
      X509_free(x509);
    }
  }

  return ret;
}

void PKCS12_PBE_add(void) {}

struct pkcs12_st {
  uint8_t *ber_bytes;
  size_t ber_len;
};

PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes,
                   size_t ber_len) {
  PKCS12 *p12;

  p12 = OPENSSL_malloc(sizeof(PKCS12));
  if (!p12) {
    return NULL;
  }

  p12->ber_bytes = OPENSSL_malloc(ber_len);
  if (!p12->ber_bytes) {
    OPENSSL_free(p12);
    return NULL;
  }

  OPENSSL_memcpy(p12->ber_bytes, *ber_bytes, ber_len);
  p12->ber_len = ber_len;
  *ber_bytes += ber_len;

  if (out_p12) {
    PKCS12_free(*out_p12);

    *out_p12 = p12;
  }

  return p12;
}

PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) {
  size_t used = 0;
  BUF_MEM *buf;
  const uint8_t *dummy;
  static const size_t kMaxSize = 256 * 1024;
  PKCS12 *ret = NULL;

  buf = BUF_MEM_new();
  if (buf == NULL) {
    return NULL;
  }
  if (BUF_MEM_grow(buf, 8192) == 0) {
    goto out;
  }

  for (;;) {
    int n = BIO_read(bio, &buf->data[used], buf->length - used);
    if (n < 0) {
      if (used == 0) {
        goto out;
      }
      // Workaround a bug in node.js. It uses a memory BIO for this in the wrong
      // mode.
      n = 0;
    }

    if (n == 0) {
      break;
    }
    used += n;

    if (used < buf->length) {
      continue;
    }

    if (buf->length > kMaxSize ||
        BUF_MEM_grow(buf, buf->length * 2) == 0) {
      goto out;
    }
  }

  dummy = (uint8_t*) buf->data;
  ret = d2i_PKCS12(out_p12, &dummy, used);

out:
  BUF_MEM_free(buf);
  return ret;
}

PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) {
  BIO *bio;
  PKCS12 *ret;

  bio = BIO_new_fp(fp, 0 /* don't take ownership */);
  if (!bio) {
    return NULL;
  }

  ret = d2i_PKCS12_bio(bio, out_p12);
  BIO_free(bio);
  return ret;
}

int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey,
                 X509 **out_cert, STACK_OF(X509) **out_ca_certs) {
  CBS ber_bytes;
  STACK_OF(X509) *ca_certs = NULL;
  char ca_certs_alloced = 0;

  if (out_ca_certs != NULL && *out_ca_certs != NULL) {
    ca_certs = *out_ca_certs;
  }

  if (!ca_certs) {
    ca_certs = sk_X509_new_null();
    if (ca_certs == NULL) {
      OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
      return 0;
    }
    ca_certs_alloced = 1;
  }

  CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len);
  if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) {
    if (ca_certs_alloced) {
      sk_X509_free(ca_certs);
    }
    return 0;
  }

  *out_cert = NULL;
  if (sk_X509_num(ca_certs) > 0) {
    *out_cert = sk_X509_shift(ca_certs);
  }

  if (out_ca_certs) {
    *out_ca_certs = ca_certs;
  } else {
    sk_X509_pop_free(ca_certs, X509_free);
  }

  return 1;
}

int PKCS12_verify_mac(const PKCS12 *p12, const char *password,
                      int password_len) {
  if (password == NULL) {
    if (password_len != 0) {
      return 0;
    }
  } else if (password_len != -1 &&
             (password[password_len] != 0 ||
              OPENSSL_memchr(password, 0, password_len) != NULL)) {
    return 0;
  }

  EVP_PKEY *pkey = NULL;
  X509 *cert = NULL;
  if (!PKCS12_parse(p12, password, &pkey, &cert, NULL)) {
    ERR_clear_error();
    return 0;
  }

  EVP_PKEY_free(pkey);
  X509_free(cert);

  return 1;
}

void PKCS12_free(PKCS12 *p12) {
  if (p12 == NULL) {
    return;
  }
  OPENSSL_free(p12->ber_bytes);
  OPENSSL_free(p12);
}