summaryrefslogtreecommitdiff
path: root/src/ssl/test/bssl_shim.cc
blob: 261f6c6065c6881c44cc11f7f25fa3e46cd65c44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
/* Copyright (c) 2014, Google Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */

#include <openssl/base.h>

#if !defined(OPENSSL_WINDOWS)
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <signal.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <unistd.h>
#else
#include <io.h>
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <winsock2.h>
#include <ws2tcpip.h>
OPENSSL_MSVC_PRAGMA(warning(pop))

OPENSSL_MSVC_PRAGMA(comment(lib, "Ws2_32.lib"))
#endif

#include <assert.h>
#include <inttypes.h>
#include <string.h>
#include <time.h>

#include <openssl/aead.h>
#include <openssl/bio.h>
#include <openssl/buf.h>
#include <openssl/bytestring.h>
#include <openssl/cipher.h>
#include <openssl/crypto.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/nid.h>
#include <openssl/rand.h>
#include <openssl/ssl.h>
#include <openssl/x509.h>

#include <functional>
#include <memory>
#include <string>
#include <vector>

#include "../../crypto/internal.h"
#include "../internal.h"
#include "async_bio.h"
#include "handshake_util.h"
#include "packeted_bio.h"
#include "settings_writer.h"
#include "test_config.h"
#include "test_state.h"

#if defined(OPENSSL_LINUX) && !defined(OPENSSL_ANDROID)
#define HANDSHAKER_SUPPORTED
#endif


#if !defined(OPENSSL_WINDOWS)
static int closesocket(int sock) {
  return close(sock);
}

static void PrintSocketError(const char *func) {
  perror(func);
}
#else
static void PrintSocketError(const char *func) {
  fprintf(stderr, "%s: %d\n", func, WSAGetLastError());
}
#endif

static int Usage(const char *program) {
  fprintf(stderr, "Usage: %s [flags...]\n", program);
  return 1;
}

template<typename T>
struct Free {
  void operator()(T *buf) {
    free(buf);
  }
};

// Connect returns a new socket connected to localhost on |port| or -1 on
// error.
static int Connect(uint16_t port) {
  for (int af : { AF_INET6, AF_INET }) {
    int sock = socket(af, SOCK_STREAM, 0);
    if (sock == -1) {
      PrintSocketError("socket");
      return -1;
    }
    int nodelay = 1;
    if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY,
            reinterpret_cast<const char*>(&nodelay), sizeof(nodelay)) != 0) {
      PrintSocketError("setsockopt");
      closesocket(sock);
      return -1;
    }

    sockaddr_storage ss;
    OPENSSL_memset(&ss, 0, sizeof(ss));
    ss.ss_family = af;
    socklen_t len = 0;

    if (af == AF_INET6) {
      sockaddr_in6 *sin6 = (sockaddr_in6 *) &ss;
      len = sizeof(*sin6);
      sin6->sin6_port = htons(port);
      if (!inet_pton(AF_INET6, "::1", &sin6->sin6_addr)) {
        PrintSocketError("inet_pton");
        closesocket(sock);
        return -1;
      }
    } else if (af == AF_INET) {
      sockaddr_in *sin = (sockaddr_in *) &ss;
      len = sizeof(*sin);
      sin->sin_port = htons(port);
      if (!inet_pton(AF_INET, "127.0.0.1", &sin->sin_addr)) {
        PrintSocketError("inet_pton");
        closesocket(sock);
        return -1;
      }
    }

    if (connect(sock, reinterpret_cast<const sockaddr*>(&ss), len) == 0) {
      return sock;
    }
    closesocket(sock);
  }

  PrintSocketError("connect");
  return -1;
}

class SocketCloser {
 public:
  explicit SocketCloser(int sock) : sock_(sock) {}
  ~SocketCloser() {
    // Half-close and drain the socket before releasing it. This seems to be
    // necessary for graceful shutdown on Windows. It will also avoid write
    // failures in the test runner.
#if defined(OPENSSL_WINDOWS)
    shutdown(sock_, SD_SEND);
#else
    shutdown(sock_, SHUT_WR);
#endif
    while (true) {
      char buf[1024];
      if (recv(sock_, buf, sizeof(buf), 0) <= 0) {
        break;
      }
    }
    closesocket(sock_);
  }

 private:
  const int sock_;
};

// DoRead reads from |ssl|, resolving any asynchronous operations. It returns
// the result value of the final |SSL_read| call.
static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) {
  const TestConfig *config = GetTestConfig(ssl);
  TestState *test_state = GetTestState(ssl);
  int ret;
  do {
    if (config->async) {
      // The DTLS retransmit logic silently ignores write failures. So the test
      // may progress, allow writes through synchronously. |SSL_read| may
      // trigger a retransmit, so disconnect the write quota.
      AsyncBioEnforceWriteQuota(test_state->async_bio, false);
    }
    ret = CheckIdempotentError("SSL_peek/SSL_read", ssl, [&]() -> int {
      return config->peek_then_read ? SSL_peek(ssl, out, max_out)
                                    : SSL_read(ssl, out, max_out);
    });
    if (config->async) {
      AsyncBioEnforceWriteQuota(test_state->async_bio, true);
    }

    // Run the exporter after each read. This is to test that the exporter fails
    // during a renegotiation.
    if (config->use_exporter_between_reads) {
      uint8_t buf;
      if (!SSL_export_keying_material(ssl, &buf, 1, NULL, 0, NULL, 0, 0)) {
        fprintf(stderr, "failed to export keying material\n");
        return -1;
      }
    }
  } while (RetryAsync(ssl, ret));

  if (config->peek_then_read && ret > 0) {
    std::unique_ptr<uint8_t[]> buf(new uint8_t[static_cast<size_t>(ret)]);

    // SSL_peek should synchronously return the same data.
    int ret2 = SSL_peek(ssl, buf.get(), ret);
    if (ret2 != ret ||
        OPENSSL_memcmp(buf.get(), out, ret) != 0) {
      fprintf(stderr, "First and second SSL_peek did not match.\n");
      return -1;
    }

    // SSL_read should synchronously return the same data and consume it.
    ret2 = SSL_read(ssl, buf.get(), ret);
    if (ret2 != ret ||
        OPENSSL_memcmp(buf.get(), out, ret) != 0) {
      fprintf(stderr, "SSL_peek and SSL_read did not match.\n");
      return -1;
    }
  }

  return ret;
}

// WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous
// operations. It returns the result of the final |SSL_write| call.
static int WriteAll(SSL *ssl, const void *in_, size_t in_len) {
  const uint8_t *in = reinterpret_cast<const uint8_t *>(in_);
  int ret;
  do {
    ret = SSL_write(ssl, in, in_len);
    if (ret > 0) {
      in += ret;
      in_len -= ret;
    }
  } while (RetryAsync(ssl, ret) || (ret > 0 && in_len > 0));
  return ret;
}

// DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It
// returns the result of the final |SSL_shutdown| call.
static int DoShutdown(SSL *ssl) {
  int ret;
  do {
    ret = SSL_shutdown(ssl);
  } while (RetryAsync(ssl, ret));
  return ret;
}

// DoSendFatalAlert calls |SSL_send_fatal_alert|, resolving any asynchronous
// operations. It returns the result of the final |SSL_send_fatal_alert| call.
static int DoSendFatalAlert(SSL *ssl, uint8_t alert) {
  int ret;
  do {
    ret = SSL_send_fatal_alert(ssl, alert);
  } while (RetryAsync(ssl, ret));
  return ret;
}

static uint16_t GetProtocolVersion(const SSL *ssl) {
  uint16_t version = SSL_version(ssl);
  if (!SSL_is_dtls(ssl)) {
    return version;
  }
  return 0x0201 + ~version;
}

// CheckAuthProperties checks, after the initial handshake is completed or
// after a renegotiation, that authentication-related properties match |config|.
static bool CheckAuthProperties(SSL *ssl, bool is_resume,
                                const TestConfig *config) {
  if (!config->expect_ocsp_response.empty()) {
    const uint8_t *data;
    size_t len;
    SSL_get0_ocsp_response(ssl, &data, &len);
    if (config->expect_ocsp_response.size() != len ||
        OPENSSL_memcmp(config->expect_ocsp_response.data(), data, len) != 0) {
      fprintf(stderr, "OCSP response mismatch\n");
      return false;
    }
  }

  if (!config->expect_signed_cert_timestamps.empty()) {
    const uint8_t *data;
    size_t len;
    SSL_get0_signed_cert_timestamp_list(ssl, &data, &len);
    if (config->expect_signed_cert_timestamps.size() != len ||
        OPENSSL_memcmp(config->expect_signed_cert_timestamps.data(), data,
                       len) != 0) {
      fprintf(stderr, "SCT list mismatch\n");
      return false;
    }
  }

  if (config->expect_verify_result) {
    int expected_verify_result = config->verify_fail ?
      X509_V_ERR_APPLICATION_VERIFICATION :
      X509_V_OK;

    if (SSL_get_verify_result(ssl) != expected_verify_result) {
      fprintf(stderr, "Wrong certificate verification result\n");
      return false;
    }
  }

  if (!config->expect_peer_cert_file.empty()) {
    bssl::UniquePtr<X509> expect_leaf;
    bssl::UniquePtr<STACK_OF(X509)> expect_chain;
    if (!LoadCertificate(&expect_leaf, &expect_chain,
                         config->expect_peer_cert_file)) {
      return false;
    }

    // For historical reasons, clients report a chain with a leaf and servers
    // without.
    if (!config->is_server) {
      if (!sk_X509_insert(expect_chain.get(), expect_leaf.get(), 0)) {
        return false;
      }
      X509_up_ref(expect_leaf.get());  // sk_X509_insert takes ownership.
    }

    bssl::UniquePtr<X509> leaf(SSL_get_peer_certificate(ssl));
    STACK_OF(X509) *chain = SSL_get_peer_cert_chain(ssl);
    if (X509_cmp(leaf.get(), expect_leaf.get()) != 0) {
      fprintf(stderr, "Received a different leaf certificate than expected.\n");
      return false;
    }

    if (sk_X509_num(chain) != sk_X509_num(expect_chain.get())) {
      fprintf(stderr, "Received a chain of length %zu instead of %zu.\n",
              sk_X509_num(chain), sk_X509_num(expect_chain.get()));
      return false;
    }

    for (size_t i = 0; i < sk_X509_num(chain); i++) {
      if (X509_cmp(sk_X509_value(chain, i),
                   sk_X509_value(expect_chain.get(), i)) != 0) {
        fprintf(stderr, "Chain certificate %zu did not match.\n",
                i + 1);
        return false;
      }
    }
  }

  if (!!SSL_SESSION_has_peer_sha256(SSL_get_session(ssl)) !=
      config->expect_sha256_client_cert) {
    fprintf(stderr,
            "Unexpected SHA-256 client cert state: expected:%d is_resume:%d.\n",
            config->expect_sha256_client_cert, is_resume);
    return false;
  }

  if (config->expect_sha256_client_cert &&
      SSL_SESSION_get0_peer_certificates(SSL_get_session(ssl)) != nullptr) {
    fprintf(stderr, "Have both client cert and SHA-256 hash: is_resume:%d.\n",
            is_resume);
    return false;
  }

  const uint8_t *peer_sha256;
  size_t peer_sha256_len;
  SSL_SESSION_get0_peer_sha256(SSL_get_session(ssl), &peer_sha256,
                               &peer_sha256_len);
  if (SSL_SESSION_has_peer_sha256(SSL_get_session(ssl))) {
    if (peer_sha256_len != 32) {
      fprintf(stderr, "Peer SHA-256 hash had length %zu instead of 32\n",
              peer_sha256_len);
      return false;
    }
  } else {
    if (peer_sha256_len != 0) {
      fprintf(stderr, "Unexpected peer SHA-256 hash of length %zu\n",
              peer_sha256_len);
      return false;
    }
  }

  return true;
}

static const char *EarlyDataReasonToString(ssl_early_data_reason_t reason) {
  switch (reason) {
    case ssl_early_data_unknown:
      return "unknown";
    case ssl_early_data_disabled:
      return "disabled";
    case ssl_early_data_accepted:
      return "accepted";
    case ssl_early_data_protocol_version:
      return "protocol_version";
    case ssl_early_data_peer_declined:
      return "peer_declined";
    case ssl_early_data_no_session_offered:
      return "no_session_offered";
    case ssl_early_data_session_not_resumed:
      return "session_not_resumed";
    case ssl_early_data_unsupported_for_session:
      return "unsupported_for_session";
    case ssl_early_data_hello_retry_request:
      return "hello_retry_request";
    case ssl_early_data_alpn_mismatch:
      return "alpn_mismatch";
    case ssl_early_data_channel_id:
      return "channel_id";
    case ssl_early_data_token_binding:
      return "token_binding";
    case ssl_early_data_ticket_age_skew:
      return "ticket_age_skew";
  }

  abort();
}

// CheckHandshakeProperties checks, immediately after |ssl| completes its
// initial handshake (or False Starts), whether all the properties are
// consistent with the test configuration and invariants.
static bool CheckHandshakeProperties(SSL *ssl, bool is_resume,
                                     const TestConfig *config) {
  if (!CheckAuthProperties(ssl, is_resume, config)) {
    return false;
  }

  if (SSL_get_current_cipher(ssl) == nullptr) {
    fprintf(stderr, "null cipher after handshake\n");
    return false;
  }

  if (config->expect_version != 0 &&
      SSL_version(ssl) != config->expect_version) {
    fprintf(stderr, "want version %04x, got %04x\n", config->expect_version,
            SSL_version(ssl));
    return false;
  }

  bool expect_resume =
      is_resume && (!config->expect_session_miss || SSL_in_early_data(ssl));
  if (!!SSL_session_reused(ssl) != expect_resume) {
    fprintf(stderr, "session unexpectedly was%s reused\n",
            SSL_session_reused(ssl) ? "" : " not");
    return false;
  }

  bool expect_handshake_done =
      (is_resume || !config->false_start) && !SSL_in_early_data(ssl);
  if (expect_handshake_done != GetTestState(ssl)->handshake_done) {
    fprintf(stderr, "handshake was%s completed\n",
            GetTestState(ssl)->handshake_done ? "" : " not");
    return false;
  }

  if (expect_handshake_done && !config->is_server) {
    bool expect_new_session =
        !config->expect_no_session &&
        (!SSL_session_reused(ssl) || config->expect_ticket_renewal) &&
        // Session tickets are sent post-handshake in TLS 1.3.
        GetProtocolVersion(ssl) < TLS1_3_VERSION;
    if (expect_new_session != GetTestState(ssl)->got_new_session) {
      fprintf(stderr,
              "new session was%s cached, but we expected the opposite\n",
              GetTestState(ssl)->got_new_session ? "" : " not");
      return false;
    }
  }

  if (!is_resume) {
    if (config->expect_session_id && !GetTestState(ssl)->got_new_session) {
      fprintf(stderr, "session was not cached on the server.\n");
      return false;
    }
    if (config->expect_no_session_id && GetTestState(ssl)->got_new_session) {
      fprintf(stderr, "session was unexpectedly cached on the server.\n");
      return false;
    }
  }

  // early_callback_called is updated in the handshaker, so we don't see it
  // here.
  if (!config->handoff && config->is_server &&
      !GetTestState(ssl)->early_callback_called) {
    fprintf(stderr, "early callback not called\n");
    return false;
  }

  if (!config->expect_server_name.empty()) {
    const char *server_name =
        SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
    if (server_name == nullptr ||
        server_name != config->expect_server_name) {
      fprintf(stderr, "servername mismatch (got %s; want %s)\n",
              server_name, config->expect_server_name.c_str());
      return false;
    }
  }

  if (!config->expect_next_proto.empty()) {
    const uint8_t *next_proto;
    unsigned next_proto_len;
    SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len);
    if (next_proto_len != config->expect_next_proto.size() ||
        OPENSSL_memcmp(next_proto, config->expect_next_proto.data(),
                       next_proto_len) != 0) {
      fprintf(stderr, "negotiated next proto mismatch\n");
      return false;
    }
  }

  if (!config->is_server) {
    const uint8_t *alpn_proto;
    unsigned alpn_proto_len;
    SSL_get0_alpn_selected(ssl, &alpn_proto, &alpn_proto_len);
    if (alpn_proto_len != config->expect_alpn.size() ||
        OPENSSL_memcmp(alpn_proto, config->expect_alpn.data(),
                       alpn_proto_len) != 0) {
      fprintf(stderr, "negotiated alpn proto mismatch\n");
      return false;
    }
  }

  if (!config->expect_quic_transport_params.empty()) {
    const uint8_t *peer_params;
    size_t peer_params_len;
    SSL_get_peer_quic_transport_params(ssl, &peer_params, &peer_params_len);
    if (peer_params_len != config->expect_quic_transport_params.size() ||
        OPENSSL_memcmp(peer_params,
                       config->expect_quic_transport_params.data(),
                       peer_params_len) != 0) {
      fprintf(stderr, "QUIC transport params mismatch\n");
      return false;
    }
  }

  if (!config->expect_channel_id.empty()) {
    uint8_t channel_id[64];
    if (!SSL_get_tls_channel_id(ssl, channel_id, sizeof(channel_id))) {
      fprintf(stderr, "no channel id negotiated\n");
      return false;
    }
    if (config->expect_channel_id.size() != 64 ||
        OPENSSL_memcmp(config->expect_channel_id.data(), channel_id, 64) !=
            0) {
      fprintf(stderr, "channel id mismatch\n");
      return false;
    }
  }

  if (config->expect_token_binding_param != -1) {
    if (!SSL_is_token_binding_negotiated(ssl)) {
      fprintf(stderr, "no Token Binding negotiated\n");
      return false;
    }
    if (SSL_get_negotiated_token_binding_param(ssl) !=
        static_cast<uint8_t>(config->expect_token_binding_param)) {
      fprintf(stderr, "Token Binding param mismatch\n");
      return false;
    }
  }

  if (config->expect_extended_master_secret && !SSL_get_extms_support(ssl)) {
    fprintf(stderr, "No EMS for connection when expected\n");
    return false;
  }

  if (config->expect_secure_renegotiation &&
      !SSL_get_secure_renegotiation_support(ssl)) {
    fprintf(stderr, "No secure renegotiation for connection when expected\n");
    return false;
  }

  if (config->expect_no_secure_renegotiation &&
      SSL_get_secure_renegotiation_support(ssl)) {
    fprintf(stderr,
            "Secure renegotiation unexpectedly negotiated for connection\n");
    return false;
  }

  if (config->expect_peer_signature_algorithm != 0 &&
      config->expect_peer_signature_algorithm !=
          SSL_get_peer_signature_algorithm(ssl)) {
    fprintf(stderr, "Peer signature algorithm was %04x, wanted %04x.\n",
            SSL_get_peer_signature_algorithm(ssl),
            config->expect_peer_signature_algorithm);
    return false;
  }

  if (config->expect_curve_id != 0) {
    uint16_t curve_id = SSL_get_curve_id(ssl);
    if (static_cast<uint16_t>(config->expect_curve_id) != curve_id) {
      fprintf(stderr, "curve_id was %04x, wanted %04x\n", curve_id,
              static_cast<uint16_t>(config->expect_curve_id));
      return false;
    }
  }

  uint16_t cipher_id =
      static_cast<uint16_t>(SSL_CIPHER_get_id(SSL_get_current_cipher(ssl)));
  if (config->expect_cipher_aes != 0 &&
      EVP_has_aes_hardware() &&
      static_cast<uint16_t>(config->expect_cipher_aes) != cipher_id) {
    fprintf(stderr, "Cipher ID was %04x, wanted %04x (has AES hardware)\n",
            cipher_id, static_cast<uint16_t>(config->expect_cipher_aes));
    return false;
  }

  if (config->expect_cipher_no_aes != 0 &&
      !EVP_has_aes_hardware() &&
      static_cast<uint16_t>(config->expect_cipher_no_aes) != cipher_id) {
    fprintf(stderr, "Cipher ID was %04x, wanted %04x (no AES hardware)\n",
            cipher_id, static_cast<uint16_t>(config->expect_cipher_no_aes));
    return false;
  }

  // The early data status is only applicable after the handshake is confirmed.
  if (!SSL_in_early_data(ssl)) {
    if ((config->expect_accept_early_data && !SSL_early_data_accepted(ssl)) ||
        (config->expect_reject_early_data && SSL_early_data_accepted(ssl))) {
      fprintf(stderr,
              "Early data was%s accepted, but we expected the opposite\n",
              SSL_early_data_accepted(ssl) ? "" : " not");
      return false;
    }

    const char *early_data_reason =
        EarlyDataReasonToString(SSL_get_early_data_reason(ssl));
    if (!config->expect_early_data_reason.empty() &&
        config->expect_early_data_reason != early_data_reason) {
      fprintf(stderr, "Early data reason was \"%s\", expected \"%s\"\n",
              early_data_reason, config->expect_early_data_reason.c_str());
      return false;
    }
  }

  if (!config->psk.empty()) {
    if (SSL_get_peer_cert_chain(ssl) != nullptr) {
      fprintf(stderr, "Received peer certificate on a PSK cipher.\n");
      return false;
    }
  } else if (!config->is_server || config->require_any_client_certificate) {
    if (SSL_get_peer_cert_chain(ssl) == nullptr) {
      fprintf(stderr, "Received no peer certificate but expected one.\n");
      return false;
    }
  }

  if (is_resume && config->expect_ticket_age_skew != 0 &&
      SSL_get_ticket_age_skew(ssl) != config->expect_ticket_age_skew) {
    fprintf(stderr, "Ticket age skew was %" PRId32 ", wanted %d\n",
            SSL_get_ticket_age_skew(ssl), config->expect_ticket_age_skew);
    return false;
  }

  if (config->expect_tls13_downgrade != !!SSL_is_tls13_downgrade(ssl)) {
    fprintf(stderr, "Got %s downgrade signal, but wanted the opposite.\n",
            SSL_is_tls13_downgrade(ssl) ? "" : "no ");
    return false;
  }

  if (config->expect_delegated_credential_used !=
      !!SSL_delegated_credential_used(ssl)) {
    fprintf(stderr,
            "Got %s delegated credential usage, but wanted opposite. \n",
            SSL_delegated_credential_used(ssl) ? "" : "no");
    return false;
  }

  if (config->expect_pq_experiment_signal !=
      !!SSL_pq_experiment_signal_seen(ssl)) {
    fprintf(stderr, "Got %sPQ experiment signal, but wanted opposite. \n",
            SSL_pq_experiment_signal_seen(ssl) ? "" : "no ");
    return false;
  }

  return true;
}

static bool DoExchange(bssl::UniquePtr<SSL_SESSION> *out_session,
                       bssl::UniquePtr<SSL> *ssl_uniqueptr,
                       const TestConfig *config, bool is_resume, bool is_retry,
                       SettingsWriter *writer);

// DoConnection tests an SSL connection against the peer. On success, it returns
// true and sets |*out_session| to the negotiated SSL session. If the test is a
// resumption attempt, |is_resume| is true and |session| is the session from the
// previous exchange.
static bool DoConnection(bssl::UniquePtr<SSL_SESSION> *out_session,
                         SSL_CTX *ssl_ctx, const TestConfig *config,
                         const TestConfig *retry_config, bool is_resume,
                         SSL_SESSION *session, SettingsWriter *writer) {
  bssl::UniquePtr<SSL> ssl = config->NewSSL(
      ssl_ctx, session, is_resume, std::unique_ptr<TestState>(new TestState));
  if (!ssl) {
    return false;
  }
  if (config->is_server) {
    SSL_set_accept_state(ssl.get());
  } else {
    SSL_set_connect_state(ssl.get());
  }

  int sock = Connect(config->port);
  if (sock == -1) {
    return false;
  }
  SocketCloser closer(sock);

  bssl::UniquePtr<BIO> bio(BIO_new_socket(sock, BIO_NOCLOSE));
  if (!bio) {
    return false;
  }
  if (config->is_dtls) {
    bssl::UniquePtr<BIO> packeted = PacketedBioCreate(GetClock());
    if (!packeted) {
      return false;
    }
    GetTestState(ssl.get())->packeted_bio = packeted.get();
    BIO_push(packeted.get(), bio.release());
    bio = std::move(packeted);
  }
  if (config->async) {
    bssl::UniquePtr<BIO> async_scoped =
        config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate();
    if (!async_scoped) {
      return false;
    }
    BIO_push(async_scoped.get(), bio.release());
    GetTestState(ssl.get())->async_bio = async_scoped.get();
    bio = std::move(async_scoped);
  }
  SSL_set_bio(ssl.get(), bio.get(), bio.get());
  bio.release();  // SSL_set_bio takes ownership.

  bool ret = DoExchange(out_session, &ssl, config, is_resume, false, writer);
  if (!config->is_server && is_resume && config->expect_reject_early_data) {
    // We must have failed due to an early data rejection.
    if (ret) {
      fprintf(stderr, "0-RTT exchange unexpected succeeded.\n");
      return false;
    }
    if (SSL_get_error(ssl.get(), -1) != SSL_ERROR_EARLY_DATA_REJECTED) {
      fprintf(stderr,
              "SSL_get_error did not signal SSL_ERROR_EARLY_DATA_REJECTED.\n");
      return false;
    }

    // Before reseting, early state should still be available.
    if (!SSL_in_early_data(ssl.get()) ||
        !CheckHandshakeProperties(ssl.get(), is_resume, config)) {
      fprintf(stderr, "SSL_in_early_data returned false before reset.\n");
      return false;
    }

    // Client pre- and post-0-RTT reject states are considered logically
    // different connections with different test expections. Check that the test
    // did not mistakenly configure reason expectations on the wrong one.
    if (!config->expect_early_data_reason.empty()) {
      fprintf(stderr,
              "Test error: client reject -expect-early-data-reason flags "
              "should be configured with -on-retry, not -on-resume.\n");
      return false;
    }

    // Reset the connection and try again at 1-RTT.
    SSL_reset_early_data_reject(ssl.get());
    GetTestState(ssl.get())->cert_verified = false;

    // After reseting, the socket should report it is no longer in an early data
    // state.
    if (SSL_in_early_data(ssl.get())) {
      fprintf(stderr, "SSL_in_early_data returned true after reset.\n");
      return false;
    }

    if (!SetTestConfig(ssl.get(), retry_config)) {
      return false;
    }

    assert(!config->handoff);
    ret = DoExchange(out_session, &ssl, retry_config, is_resume, true, writer);
  }

  if (!ret) {
    return false;
  }

  if (!GetTestState(ssl.get())->msg_callback_ok) {
    return false;
  }

  if (!config->expect_msg_callback.empty() &&
      GetTestState(ssl.get())->msg_callback_text !=
          config->expect_msg_callback) {
    fprintf(stderr, "Bad message callback trace. Wanted:\n%s\nGot:\n%s\n",
            config->expect_msg_callback.c_str(),
            GetTestState(ssl.get())->msg_callback_text.c_str());
    return false;
  }

  return true;
}

static bool DoExchange(bssl::UniquePtr<SSL_SESSION> *out_session,
                       bssl::UniquePtr<SSL> *ssl_uniqueptr,
                       const TestConfig *config, bool is_resume, bool is_retry,
                       SettingsWriter *writer) {
  int ret;
  SSL *ssl = ssl_uniqueptr->get();
  SSL_CTX *session_ctx = SSL_get_SSL_CTX(ssl);

  if (!config->implicit_handshake) {
    if (config->handoff) {
#if defined(HANDSHAKER_SUPPORTED)
      if (!DoSplitHandshake(ssl_uniqueptr, writer, is_resume)) {
        return false;
      }
      ssl = ssl_uniqueptr->get();
#else
      fprintf(stderr, "The external handshaker can only be used on Linux\n");
      return false;
#endif
    }

    do {
      ret = CheckIdempotentError("SSL_do_handshake", ssl, [&]() -> int {
        return SSL_do_handshake(ssl);
      });
    } while (RetryAsync(ssl, ret));

    if (config->forbid_renegotiation_after_handshake) {
      SSL_set_renegotiate_mode(ssl, ssl_renegotiate_never);
    }

    if (ret != 1 || !CheckHandshakeProperties(ssl, is_resume, config)) {
      return false;
    }

    CopySessions(session_ctx, SSL_get_SSL_CTX(ssl));

    if (is_resume && !is_retry && !config->is_server &&
        config->expect_no_offer_early_data && SSL_in_early_data(ssl)) {
      fprintf(stderr, "Client unexpectedly offered early data.\n");
      return false;
    }

    if (config->handshake_twice) {
      do {
        ret = SSL_do_handshake(ssl);
      } while (RetryAsync(ssl, ret));
      if (ret != 1) {
        return false;
      }
    }

    // Skip the |config->async| logic as this should be a no-op.
    if (config->no_op_extra_handshake &&
        SSL_do_handshake(ssl) != 1) {
      fprintf(stderr, "Extra SSL_do_handshake was not a no-op.\n");
      return false;
    }

    // Reset the state to assert later that the callback isn't called in
    // renegotations.
    GetTestState(ssl)->got_new_session = false;
  }

  if (config->export_keying_material > 0) {
    std::vector<uint8_t> result(
        static_cast<size_t>(config->export_keying_material));
    if (!SSL_export_keying_material(
            ssl, result.data(), result.size(), config->export_label.data(),
            config->export_label.size(),
            reinterpret_cast<const uint8_t *>(config->export_context.data()),
            config->export_context.size(), config->use_export_context)) {
      fprintf(stderr, "failed to export keying material\n");
      return false;
    }
    if (WriteAll(ssl, result.data(), result.size()) < 0) {
      return false;
    }
  }

  if (config->export_traffic_secrets) {
    bssl::Span<const uint8_t> read_secret, write_secret;
    if (!SSL_get_traffic_secrets(ssl, &read_secret, &write_secret)) {
      fprintf(stderr, "failed to export traffic secrets\n");
      return false;
    }

    assert(read_secret.size() <= 0xffff);
    assert(write_secret.size() == read_secret.size());
    const uint16_t secret_len = read_secret.size();
    if (WriteAll(ssl, &secret_len, sizeof(secret_len)) < 0 ||
        WriteAll(ssl, read_secret.data(), read_secret.size()) < 0 ||
        WriteAll(ssl, write_secret.data(), write_secret.size()) < 0) {
      return false;
    }
  }

  if (config->tls_unique) {
    uint8_t tls_unique[16];
    size_t tls_unique_len;
    if (!SSL_get_tls_unique(ssl, tls_unique, &tls_unique_len,
                            sizeof(tls_unique))) {
      fprintf(stderr, "failed to get tls-unique\n");
      return false;
    }

    if (tls_unique_len != 12) {
      fprintf(stderr, "expected 12 bytes of tls-unique but got %u",
              static_cast<unsigned>(tls_unique_len));
      return false;
    }

    if (WriteAll(ssl, tls_unique, tls_unique_len) < 0) {
      return false;
    }
  }

  if (config->send_alert) {
    if (DoSendFatalAlert(ssl, SSL_AD_DECOMPRESSION_FAILURE) < 0) {
      return false;
    }
    return true;
  }

  if (config->write_different_record_sizes) {
    if (config->is_dtls) {
      fprintf(stderr, "write_different_record_sizes not supported for DTLS\n");
      return false;
    }
    // This mode writes a number of different record sizes in an attempt to
    // trip up the CBC record splitting code.
    static const size_t kBufLen = 32769;
    std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]);
    OPENSSL_memset(buf.get(), 0x42, kBufLen);
    static const size_t kRecordSizes[] = {
        0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769};
    for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kRecordSizes); i++) {
      const size_t len = kRecordSizes[i];
      if (len > kBufLen) {
        fprintf(stderr, "Bad kRecordSizes value.\n");
        return false;
      }
      if (WriteAll(ssl, buf.get(), len) < 0) {
        return false;
      }
    }
  } else {
    static const char kInitialWrite[] = "hello";
    bool pending_initial_write = false;
    if (config->read_with_unfinished_write) {
      if (!config->async) {
        fprintf(stderr, "-read-with-unfinished-write requires -async.\n");
        return false;
      }

      // Let only one byte of the record through.
      AsyncBioAllowWrite(GetTestState(ssl)->async_bio, 1);
      int write_ret =
          SSL_write(ssl, kInitialWrite, strlen(kInitialWrite));
      if (SSL_get_error(ssl, write_ret) != SSL_ERROR_WANT_WRITE) {
        fprintf(stderr, "Failed to leave unfinished write.\n");
        return false;
      }
      pending_initial_write = true;
    } else if (config->shim_writes_first) {
      if (WriteAll(ssl, kInitialWrite, strlen(kInitialWrite)) < 0) {
        return false;
      }
    }
    if (!config->shim_shuts_down) {
      for (;;) {
        // Read only 512 bytes at a time in TLS to ensure records may be
        // returned in multiple reads.
        size_t read_size = config->is_dtls ? 16384 : 512;
        if (config->read_size > 0) {
          read_size = config->read_size;
        }
        std::unique_ptr<uint8_t[]> buf(new uint8_t[read_size]);

        int n = DoRead(ssl, buf.get(), read_size);
        int err = SSL_get_error(ssl, n);
        if (err == SSL_ERROR_ZERO_RETURN ||
            (n == 0 && err == SSL_ERROR_SYSCALL)) {
          if (n != 0) {
            fprintf(stderr, "Invalid SSL_get_error output\n");
            return false;
          }
          // Stop on either clean or unclean shutdown.
          break;
        } else if (err != SSL_ERROR_NONE) {
          if (n > 0) {
            fprintf(stderr, "Invalid SSL_get_error output\n");
            return false;
          }
          return false;
        }
        // Successfully read data.
        if (n <= 0) {
          fprintf(stderr, "Invalid SSL_get_error output\n");
          return false;
        }

        if (!config->is_server && is_resume && !is_retry &&
            config->expect_reject_early_data) {
          fprintf(stderr,
                  "Unexpectedly received data instead of 0-RTT reject.\n");
          return false;
        }

        // After a successful read, with or without False Start, the handshake
        // must be complete unless we are doing early data.
        if (!GetTestState(ssl)->handshake_done &&
            !SSL_early_data_accepted(ssl)) {
          fprintf(stderr, "handshake was not completed after SSL_read\n");
          return false;
        }

        // Clear the initial write, if unfinished.
        if (pending_initial_write) {
          if (WriteAll(ssl, kInitialWrite, strlen(kInitialWrite)) < 0) {
            return false;
          }
          pending_initial_write = false;
        }

        if (config->key_update &&
            !SSL_key_update(ssl, SSL_KEY_UPDATE_NOT_REQUESTED)) {
          fprintf(stderr, "SSL_key_update failed.\n");
          return false;
        }

        for (int i = 0; i < n; i++) {
          buf[i] ^= 0xff;
        }
        if (WriteAll(ssl, buf.get(), n) < 0) {
          return false;
        }
      }
    }
  }

  if (!config->is_server && !config->false_start &&
      !config->implicit_handshake &&
      // Session tickets are sent post-handshake in TLS 1.3.
      GetProtocolVersion(ssl) < TLS1_3_VERSION &&
      GetTestState(ssl)->got_new_session) {
    fprintf(stderr, "new session was established after the handshake\n");
    return false;
  }

  if (GetProtocolVersion(ssl) >= TLS1_3_VERSION && !config->is_server) {
    bool expect_new_session =
        !config->expect_no_session && !config->shim_shuts_down;
    if (expect_new_session != GetTestState(ssl)->got_new_session) {
      fprintf(stderr,
              "new session was%s cached, but we expected the opposite\n",
              GetTestState(ssl)->got_new_session ? "" : " not");
      return false;
    }

    if (expect_new_session) {
      bool got_early_data =
          GetTestState(ssl)->new_session->ticket_max_early_data != 0;
      if (config->expect_ticket_supports_early_data != got_early_data) {
        fprintf(stderr,
                "new session did%s support early data, but we expected the "
                "opposite\n",
                got_early_data ? "" : " not");
        return false;
      }
    }
  }

  if (out_session) {
    *out_session = std::move(GetTestState(ssl)->new_session);
  }

  ret = DoShutdown(ssl);

  if (config->shim_shuts_down && config->check_close_notify) {
    // We initiate shutdown, so |SSL_shutdown| will return in two stages. First
    // it returns zero when our close_notify is sent, then one when the peer's
    // is received.
    if (ret != 0) {
      fprintf(stderr, "Unexpected SSL_shutdown result: %d != 0\n", ret);
      return false;
    }
    ret = DoShutdown(ssl);
  }

  if (ret != 1) {
    fprintf(stderr, "Unexpected SSL_shutdown result: %d != 1\n", ret);
    return false;
  }

  if (SSL_total_renegotiations(ssl) > 0) {
    if (!SSL_get_session(ssl)->not_resumable) {
      fprintf(stderr,
              "Renegotiations should never produce resumable sessions.\n");
      return false;
    }

    if (SSL_session_reused(ssl)) {
      fprintf(stderr, "Renegotiations should never resume sessions.\n");
      return false;
    }

    // Re-check authentication properties after a renegotiation. The reported
    // values should remain unchanged even if the server sent different SCT
    // lists.
    if (!CheckAuthProperties(ssl, is_resume, config)) {
      return false;
    }
  }

  if (SSL_total_renegotiations(ssl) != config->expect_total_renegotiations) {
    fprintf(stderr, "Expected %d renegotiations, got %d\n",
            config->expect_total_renegotiations, SSL_total_renegotiations(ssl));
    return false;
  }

  return true;
}

class StderrDelimiter {
 public:
  ~StderrDelimiter() { fprintf(stderr, "--- DONE ---\n"); }
};

int main(int argc, char **argv) {
  // To distinguish ASan's output from ours, add a trailing message to stderr.
  // Anything following this line will be considered an error.
  StderrDelimiter delimiter;

#if defined(OPENSSL_WINDOWS)
  // Initialize Winsock.
  WORD wsa_version = MAKEWORD(2, 2);
  WSADATA wsa_data;
  int wsa_err = WSAStartup(wsa_version, &wsa_data);
  if (wsa_err != 0) {
    fprintf(stderr, "WSAStartup failed: %d\n", wsa_err);
    return 1;
  }
  if (wsa_data.wVersion != wsa_version) {
    fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion);
    return 1;
  }
#else
  signal(SIGPIPE, SIG_IGN);
#endif

  CRYPTO_library_init();

  TestConfig initial_config, resume_config, retry_config;
  if (!ParseConfig(argc - 1, argv + 1, &initial_config, &resume_config,
                   &retry_config)) {
    return Usage(argv[0]);
  }

  if (initial_config.is_handshaker_supported) {
#if defined(HANDSHAKER_SUPPORTED)
    printf("Yes\n");
#else
    printf("No\n");
#endif
    return 0;
  }

  bssl::UniquePtr<SSL_CTX> ssl_ctx;

  bssl::UniquePtr<SSL_SESSION> session;
  for (int i = 0; i < initial_config.resume_count + 1; i++) {
    bool is_resume = i > 0;
    TestConfig *config = is_resume ? &resume_config : &initial_config;
    ssl_ctx = config->SetupCtx(ssl_ctx.get());
    if (!ssl_ctx) {
      ERR_print_errors_fp(stderr);
      return 1;
    }

    if (is_resume && !initial_config.is_server && !session) {
      fprintf(stderr, "No session to offer.\n");
      return 1;
    }

    bssl::UniquePtr<SSL_SESSION> offer_session = std::move(session);
    SettingsWriter writer;
    if (!writer.Init(i, config, offer_session.get())) {
      fprintf(stderr, "Error writing settings.\n");
      return 1;
    }
    bool ok = DoConnection(&session, ssl_ctx.get(), config, &retry_config,
                           is_resume, offer_session.get(), &writer);
    if (!writer.Commit()) {
      fprintf(stderr, "Error writing settings.\n");
      return 1;
    }
    if (!ok) {
      fprintf(stderr, "Connection %d failed.\n", i + 1);
      ERR_print_errors_fp(stderr);
      return 1;
    }

    if (config->resumption_delay != 0) {
      AdvanceClock(config->resumption_delay);
    }
  }

  return 0;
}