summaryrefslogtreecommitdiff
path: root/src/third_party/fiat/p256.c
blob: ebc5de6f98b1dfd25eba2ae45a136e808ccd99da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
// The MIT License (MIT)
//
// Copyright (c) 2015-2016 the fiat-crypto authors (see the AUTHORS file).
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

// The field arithmetic code is generated by Fiat
// (https://github.com/mit-plv/fiat-crypto), which is MIT licensed.
//
// An implementation of the NIST P-256 elliptic curve point multiplication.
// 256-bit Montgomery form, generated using fiat-crypto, for 64 and 32-bit.
// Field operations with inputs in [0,p) return outputs in [0,p).

#include <openssl/base.h>

#include <openssl/bn.h>
#include <openssl/ec.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/type_check.h>

#include <assert.h>
#include <string.h>

#include "../../crypto/fipsmodule/delocate.h"
#include "../../crypto/fipsmodule/ec/internal.h"
#include "../../crypto/internal.h"


// MSVC does not implement uint128_t, and crashes with intrinsics
#if defined(BORINGSSL_HAS_UINT128)
#define BORINGSSL_NISTP256_64BIT 1
#include "p256_64.h"
#else
#include "p256_32.h"
#endif


// utility functions, handwritten

#define NBYTES 32

#if defined(BORINGSSL_NISTP256_64BIT)

#define NLIMBS 4
typedef uint64_t limb_t;
typedef uint64_t fe[NLIMBS];
#else // 64BIT; else 32BIT

#define NLIMBS 8
typedef uint32_t limb_t;
typedef uint32_t fe[NLIMBS];

#endif // 64BIT

#define fe_add fiat_p256_add
#define fe_sub fiat_p256_sub
#define fe_opp fiat_p256_opp

#define fe_mul fiat_p256_mul
#define fe_sqr fiat_p256_square

#define fe_tobytes fiat_p256_to_bytes
#define fe_frombytes fiat_p256_from_bytes

static limb_t fe_nz(const limb_t in1[NLIMBS]) {
  limb_t ret;
  fiat_p256_nonzero(&ret, in1);
  return ret;
}

static void fe_copy(limb_t out[NLIMBS], const limb_t in1[NLIMBS]) {
  for (int i = 0; i < NLIMBS; i++) {
    out[i] = in1[i];
  }
}

static void fe_cmovznz(limb_t out[NLIMBS], limb_t t, const limb_t z[NLIMBS],
                       const limb_t nz[NLIMBS]) {
  fiat_p256_selectznz(out, !!t, z, nz);
}

static void fe_from_montgomery(fe x) {
  fiat_p256_from_montgomery(x, x);
}

static void fe_from_generic(fe out, const EC_FELEM *in) {
  fe_frombytes(out, in->bytes);
}

static void fe_to_generic(EC_FELEM *out, const fe in) {
  // This works because 256 is a multiple of 64, so there are no excess bytes to
  // zero when rounding up to |BN_ULONG|s.
  OPENSSL_STATIC_ASSERT(
      256 / 8 == sizeof(BN_ULONG) * ((256 + BN_BITS2 - 1) / BN_BITS2),
      "fe_tobytes leaves bytes uninitialized");
  fe_tobytes(out->bytes, in);
}

// fe_inv calculates |out| = |in|^{-1}
//
// Based on Fermat's Little Theorem:
//   a^p = a (mod p)
//   a^{p-1} = 1 (mod p)
//   a^{p-2} = a^{-1} (mod p)
static void fe_inv(fe out, const fe in) {
  fe ftmp, ftmp2;
  // each e_I will hold |in|^{2^I - 1}
  fe e2, e4, e8, e16, e32, e64;

  fe_sqr(ftmp, in);  // 2^1
  fe_mul(ftmp, in, ftmp);  // 2^2 - 2^0
  fe_copy(e2, ftmp);
  fe_sqr(ftmp, ftmp);  // 2^3 - 2^1
  fe_sqr(ftmp, ftmp);  // 2^4 - 2^2
  fe_mul(ftmp, ftmp, e2);  // 2^4 - 2^0
  fe_copy(e4, ftmp);
  fe_sqr(ftmp, ftmp);  // 2^5 - 2^1
  fe_sqr(ftmp, ftmp);  // 2^6 - 2^2
  fe_sqr(ftmp, ftmp);  // 2^7 - 2^3
  fe_sqr(ftmp, ftmp);  // 2^8 - 2^4
  fe_mul(ftmp, ftmp, e4);  // 2^8 - 2^0
  fe_copy(e8, ftmp);
  for (size_t i = 0; i < 8; i++) {
    fe_sqr(ftmp, ftmp);
  }  // 2^16 - 2^8
  fe_mul(ftmp, ftmp, e8);  // 2^16 - 2^0
  fe_copy(e16, ftmp);
  for (size_t i = 0; i < 16; i++) {
    fe_sqr(ftmp, ftmp);
  }  // 2^32 - 2^16
  fe_mul(ftmp, ftmp, e16);  // 2^32 - 2^0
  fe_copy(e32, ftmp);
  for (size_t i = 0; i < 32; i++) {
    fe_sqr(ftmp, ftmp);
  }  // 2^64 - 2^32
  fe_copy(e64, ftmp);
  fe_mul(ftmp, ftmp, in);  // 2^64 - 2^32 + 2^0
  for (size_t i = 0; i < 192; i++) {
    fe_sqr(ftmp, ftmp);
  }  // 2^256 - 2^224 + 2^192

  fe_mul(ftmp2, e64, e32);  // 2^64 - 2^0
  for (size_t i = 0; i < 16; i++) {
    fe_sqr(ftmp2, ftmp2);
  }  // 2^80 - 2^16
  fe_mul(ftmp2, ftmp2, e16);  // 2^80 - 2^0
  for (size_t i = 0; i < 8; i++) {
    fe_sqr(ftmp2, ftmp2);
  }  // 2^88 - 2^8
  fe_mul(ftmp2, ftmp2, e8);  // 2^88 - 2^0
  for (size_t i = 0; i < 4; i++) {
    fe_sqr(ftmp2, ftmp2);
  }  // 2^92 - 2^4
  fe_mul(ftmp2, ftmp2, e4);  // 2^92 - 2^0
  fe_sqr(ftmp2, ftmp2);  // 2^93 - 2^1
  fe_sqr(ftmp2, ftmp2);  // 2^94 - 2^2
  fe_mul(ftmp2, ftmp2, e2);  // 2^94 - 2^0
  fe_sqr(ftmp2, ftmp2);  // 2^95 - 2^1
  fe_sqr(ftmp2, ftmp2);  // 2^96 - 2^2
  fe_mul(ftmp2, ftmp2, in);  // 2^96 - 3

  fe_mul(out, ftmp2, ftmp);  // 2^256 - 2^224 + 2^192 + 2^96 - 3
}

// Group operations
// ----------------
//
// Building on top of the field operations we have the operations on the
// elliptic curve group itself. Points on the curve are represented in Jacobian
// coordinates.
//
// Both operations were transcribed to Coq and proven to correspond to naive
// implementations using Affine coordinates, for all suitable fields.  In the
// Coq proofs, issues of constant-time execution and memory layout (aliasing)
// conventions were not considered. Specification of affine coordinates:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Spec/WeierstrassCurve.v#L28>
// As a sanity check, a proof that these points form a commutative group:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/AffineProofs.v#L33>

// point_double calculates 2*(x_in, y_in, z_in)
//
// The method is taken from:
//   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
//
// Coq transcription and correctness proof:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
//
// Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
// while x_out == y_in is not (maybe this works, but it's not tested).
static void point_double(fe x_out, fe y_out, fe z_out,
                         const fe x_in, const fe y_in, const fe z_in) {
  fe delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
  // delta = z^2
  fe_sqr(delta, z_in);
  // gamma = y^2
  fe_sqr(gamma, y_in);
  // beta = x*gamma
  fe_mul(beta, x_in, gamma);

  // alpha = 3*(x-delta)*(x+delta)
  fe_sub(ftmp, x_in, delta);
  fe_add(ftmp2, x_in, delta);

  fe_add(tmptmp, ftmp2, ftmp2);
  fe_add(ftmp2, ftmp2, tmptmp);
  fe_mul(alpha, ftmp, ftmp2);

  // x' = alpha^2 - 8*beta
  fe_sqr(x_out, alpha);
  fe_add(fourbeta, beta, beta);
  fe_add(fourbeta, fourbeta, fourbeta);
  fe_add(tmptmp, fourbeta, fourbeta);
  fe_sub(x_out, x_out, tmptmp);

  // z' = (y + z)^2 - gamma - delta
  fe_add(delta, gamma, delta);
  fe_add(ftmp, y_in, z_in);
  fe_sqr(z_out, ftmp);
  fe_sub(z_out, z_out, delta);

  // y' = alpha*(4*beta - x') - 8*gamma^2
  fe_sub(y_out, fourbeta, x_out);
  fe_add(gamma, gamma, gamma);
  fe_sqr(gamma, gamma);
  fe_mul(y_out, alpha, y_out);
  fe_add(gamma, gamma, gamma);
  fe_sub(y_out, y_out, gamma);
}

// point_add calcuates (x1, y1, z1) + (x2, y2, z2)
//
// The method is taken from:
//   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
// adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
//
// Coq transcription and correctness proof:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L135>
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L205>
//
// This function includes a branch for checking whether the two input points
// are equal, (while not equal to the point at infinity). This case never
// happens during single point multiplication, so there is no timing leak for
// ECDH or ECDSA signing.
static void point_add(fe x3, fe y3, fe z3, const fe x1,
                      const fe y1, const fe z1, const int mixed,
                      const fe x2, const fe y2, const fe z2) {
  fe x_out, y_out, z_out;
  limb_t z1nz = fe_nz(z1);
  limb_t z2nz = fe_nz(z2);

  // z1z1 = z1z1 = z1**2
  fe z1z1; fe_sqr(z1z1, z1);

  fe u1, s1, two_z1z2;
  if (!mixed) {
    // z2z2 = z2**2
    fe z2z2; fe_sqr(z2z2, z2);

    // u1 = x1*z2z2
    fe_mul(u1, x1, z2z2);

    // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
    fe_add(two_z1z2, z1, z2);
    fe_sqr(two_z1z2, two_z1z2);
    fe_sub(two_z1z2, two_z1z2, z1z1);
    fe_sub(two_z1z2, two_z1z2, z2z2);

    // s1 = y1 * z2**3
    fe_mul(s1, z2, z2z2);
    fe_mul(s1, s1, y1);
  } else {
    // We'll assume z2 = 1 (special case z2 = 0 is handled later).

    // u1 = x1*z2z2
    fe_copy(u1, x1);
    // two_z1z2 = 2z1z2
    fe_add(two_z1z2, z1, z1);
    // s1 = y1 * z2**3
    fe_copy(s1, y1);
  }

  // u2 = x2*z1z1
  fe u2; fe_mul(u2, x2, z1z1);

  // h = u2 - u1
  fe h; fe_sub(h, u2, u1);

  limb_t xneq = fe_nz(h);

  // z_out = two_z1z2 * h
  fe_mul(z_out, h, two_z1z2);

  // z1z1z1 = z1 * z1z1
  fe z1z1z1; fe_mul(z1z1z1, z1, z1z1);

  // s2 = y2 * z1**3
  fe s2; fe_mul(s2, y2, z1z1z1);

  // r = (s2 - s1)*2
  fe r;
  fe_sub(r, s2, s1);
  fe_add(r, r, r);

  limb_t yneq = fe_nz(r);

  if (!xneq && !yneq && z1nz && z2nz) {
    point_double(x3, y3, z3, x1, y1, z1);
    return;
  }

  // I = (2h)**2
  fe i;
  fe_add(i, h, h);
  fe_sqr(i, i);

  // J = h * I
  fe j; fe_mul(j, h, i);

  // V = U1 * I
  fe v; fe_mul(v, u1, i);

  // x_out = r**2 - J - 2V
  fe_sqr(x_out, r);
  fe_sub(x_out, x_out, j);
  fe_sub(x_out, x_out, v);
  fe_sub(x_out, x_out, v);

  // y_out = r(V-x_out) - 2 * s1 * J
  fe_sub(y_out, v, x_out);
  fe_mul(y_out, y_out, r);
  fe s1j;
  fe_mul(s1j, s1, j);
  fe_sub(y_out, y_out, s1j);
  fe_sub(y_out, y_out, s1j);

  fe_cmovznz(x_out, z1nz, x2, x_out);
  fe_cmovznz(x3, z2nz, x1, x_out);
  fe_cmovznz(y_out, z1nz, y2, y_out);
  fe_cmovznz(y3, z2nz, y1, y_out);
  fe_cmovznz(z_out, z1nz, z2, z_out);
  fe_cmovznz(z3, z2nz, z1, z_out);
}

// Base point pre computation
// --------------------------
//
// Two different sorts of precomputed tables are used in the following code.
// Each contain various points on the curve, where each point is three field
// elements (x, y, z).
//
// For the base point table, z is usually 1 (0 for the point at infinity).
// This table has 2 * 16 elements, starting with the following:
// index | bits    | point
// ------+---------+------------------------------
//     0 | 0 0 0 0 | 0G
//     1 | 0 0 0 1 | 1G
//     2 | 0 0 1 0 | 2^64G
//     3 | 0 0 1 1 | (2^64 + 1)G
//     4 | 0 1 0 0 | 2^128G
//     5 | 0 1 0 1 | (2^128 + 1)G
//     6 | 0 1 1 0 | (2^128 + 2^64)G
//     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
//     8 | 1 0 0 0 | 2^192G
//     9 | 1 0 0 1 | (2^192 + 1)G
//    10 | 1 0 1 0 | (2^192 + 2^64)G
//    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
//    12 | 1 1 0 0 | (2^192 + 2^128)G
//    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
//    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
//    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
// followed by a copy of this with each element multiplied by 2^32.
//
// The reason for this is so that we can clock bits into four different
// locations when doing simple scalar multiplies against the base point,
// and then another four locations using the second 16 elements.
//
// Tables for other points have table[i] = iG for i in 0 .. 16.

// g_pre_comp is the table of precomputed base points
#if defined(BORINGSSL_NISTP256_64BIT)
static const fe g_pre_comp[2][16][3] = {
    {{{0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}},
     {{0x79e730d418a9143c, 0x75ba95fc5fedb601, 0x79fb732b77622510,
       0x18905f76a53755c6},
      {0xddf25357ce95560a, 0x8b4ab8e4ba19e45c, 0xd2e88688dd21f325,
       0x8571ff1825885d85},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x4f922fc516a0d2bb, 0xd5cc16c1a623499, 0x9241cf3a57c62c8b,
       0x2f5e6961fd1b667f},
      {0x5c15c70bf5a01797, 0x3d20b44d60956192, 0x4911b37071fdb52,
       0xf648f9168d6f0f7b},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x9e566847e137bbbc, 0xe434469e8a6a0bec, 0xb1c4276179d73463,
       0x5abe0285133d0015},
      {0x92aa837cc04c7dab, 0x573d9f4c43260c07, 0xc93156278e6cc37,
       0x94bb725b6b6f7383},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x62a8c244bfe20925, 0x91c19ac38fdce867, 0x5a96a5d5dd387063,
       0x61d587d421d324f6},
      {0xe87673a2a37173ea, 0x2384800853778b65, 0x10f8441e05bab43e,
       0xfa11fe124621efbe},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x1c891f2b2cb19ffd, 0x1ba8d5bb1923c23, 0xb6d03d678ac5ca8e,
       0x586eb04c1f13bedc},
      {0xc35c6e527e8ed09, 0x1e81a33c1819ede2, 0x278fd6c056c652fa,
       0x19d5ac0870864f11},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x62577734d2b533d5, 0x673b8af6a1bdddc0, 0x577e7c9aa79ec293,
       0xbb6de651c3b266b1},
      {0xe7e9303ab65259b3, 0xd6a0afd3d03a7480, 0xc5ac83d19b3cfc27,
       0x60b4619a5d18b99b},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xbd6a38e11ae5aa1c, 0xb8b7652b49e73658, 0xb130014ee5f87ed,
       0x9d0f27b2aeebffcd},
      {0xca9246317a730a55, 0x9c955b2fddbbc83a, 0x7c1dfe0ac019a71,
       0x244a566d356ec48d},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x56f8410ef4f8b16a, 0x97241afec47b266a, 0xa406b8e6d9c87c1,
       0x803f3e02cd42ab1b},
      {0x7f0309a804dbec69, 0xa83b85f73bbad05f, 0xc6097273ad8e197f,
       0xc097440e5067adc1},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x846a56f2c379ab34, 0xa8ee068b841df8d1, 0x20314459176c68ef,
       0xf1af32d5915f1f30},
      {0x99c375315d75bd50, 0x837cffbaf72f67bc, 0x613a41848d7723f,
       0x23d0f130e2d41c8b},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xed93e225d5be5a2b, 0x6fe799835934f3c6, 0x4314092622626ffc,
       0x50bbb4d97990216a},
      {0x378191c6e57ec63e, 0x65422c40181dcdb2, 0x41a8099b0236e0f6,
       0x2b10011801fe49c3},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xfc68b5c59b391593, 0xc385f5a2598270fc, 0x7144f3aad19adcbb,
       0xdd55899983fbae0c},
      {0x93b88b8e74b82ff4, 0xd2e03c4071e734c9, 0x9a7a9eaf43c0322a,
       0xe6e4c551149d6041},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x5fe14bfe80ec21fe, 0xf6ce116ac255be82, 0x98bc5a072f4a5d67,
       0xfad27148db7e63af},
      {0x90c0b6ac29ab05b3, 0x37a9a83c4e251ae6, 0xa7dc875c2aade7d,
       0x77387de39f0e1a84},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x1e9ecc49a56c0dd7, 0xa5cffcd846086c74, 0x8f7a1408f505aece,
       0xb37b85c0bef0c47e},
      {0x3596b6e4cc0e6a8f, 0xfd6d4bbf6b388f23, 0xaba453fac39cef4e,
       0x9c135ac8f9f628d5},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xa1c729495c8f8be, 0x2961c4803bf362bf, 0x9e418403df63d4ac,
       0xc109f9cb91ece900},
      {0xc2d095d058945705, 0xb9083d96ddeb85c0, 0x84692b8d7a40449b,
       0x9bc3344f2eee1ee1},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xd5ae35642913074, 0x55491b2748a542b1, 0x469ca665b310732a,
       0x29591d525f1a4cc1},
      {0xe76f5b6bb84f983f, 0xbe7eef419f5f84e1, 0x1200d49680baa189,
       0x6376551f18ef332c},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}}},
    {{{0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}},
     {{0x202886024147519a, 0xd0981eac26b372f0, 0xa9d4a7caa785ebc8,
       0xd953c50ddbdf58e9},
      {0x9d6361ccfd590f8f, 0x72e9626b44e6c917, 0x7fd9611022eb64cf,
       0x863ebb7e9eb288f3},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x4fe7ee31b0e63d34, 0xf4600572a9e54fab, 0xc0493334d5e7b5a4,
       0x8589fb9206d54831},
      {0xaa70f5cc6583553a, 0x879094ae25649e5, 0xcc90450710044652,
       0xebb0696d02541c4f},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xabbaa0c03b89da99, 0xa6f2d79eb8284022, 0x27847862b81c05e8,
       0x337a4b5905e54d63},
      {0x3c67500d21f7794a, 0x207005b77d6d7f61, 0xa5a378104cfd6e8,
       0xd65e0d5f4c2fbd6},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xd433e50f6d3549cf, 0x6f33696ffacd665e, 0x695bfdacce11fcb4,
       0x810ee252af7c9860},
      {0x65450fe17159bb2c, 0xf7dfbebe758b357b, 0x2b057e74d69fea72,
       0xd485717a92731745},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xce1f69bbe83f7669, 0x9f8ae8272877d6b, 0x9548ae543244278d,
       0x207755dee3c2c19c},
      {0x87bd61d96fef1945, 0x18813cefb12d28c3, 0x9fbcd1d672df64aa,
       0x48dc5ee57154b00d},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xef0f469ef49a3154, 0x3e85a5956e2b2e9a, 0x45aaec1eaa924a9c,
       0xaa12dfc8a09e4719},
      {0x26f272274df69f1d, 0xe0e4c82ca2ff5e73, 0xb9d8ce73b7a9dd44,
       0x6c036e73e48ca901},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xe1e421e1a47153f0, 0xb86c3b79920418c9, 0x93bdce87705d7672,
       0xf25ae793cab79a77},
      {0x1f3194a36d869d0c, 0x9d55c8824986c264, 0x49fb5ea3096e945e,
       0x39b8e65313db0a3e},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xe3417bc035d0b34a, 0x440b386b8327c0a7, 0x8fb7262dac0362d1,
       0x2c41114ce0cdf943},
      {0x2ba5cef1ad95a0b1, 0xc09b37a867d54362, 0x26d6cdd201e486c9,
       0x20477abf42ff9297},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xf121b41bc0a67d2, 0x62d4760a444d248a, 0xe044f1d659b4737,
       0x8fde365250bb4a8},
      {0xaceec3da848bf287, 0xc2a62182d3369d6e, 0x3582dfdc92449482,
       0x2f7e2fd2565d6cd7},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xa0122b5178a876b, 0x51ff96ff085104b4, 0x50b31ab14f29f76,
       0x84abb28b5f87d4e6},
      {0xd5ed439f8270790a, 0x2d6cb59d85e3f46b, 0x75f55c1b6c1e2212,
       0xe5436f6717655640},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xc2965ecc9aeb596d, 0x1ea03e7023c92b4, 0x4704b4b62e013961,
       0xca8fd3f905ea367},
      {0x92523a42551b2b61, 0x1eb7a89c390fcd06, 0xe7f1d2be0392a63e,
       0x96dca2644ddb0c33},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x231c210e15339848, 0xe87a28e870778c8d, 0x9d1de6616956e170,
       0x4ac3c9382bb09c0b},
      {0x19be05516998987d, 0x8b2376c4ae09f4d6, 0x1de0b7651a3f933d,
       0x380d94c7e39705f4},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x3685954b8c31c31d, 0x68533d005bf21a0c, 0xbd7626e75c79ec9,
       0xca17754742c69d54},
      {0xcc6edafff6d2dbb2, 0xfd0d8cbd174a9d18, 0x875e8793aa4578e8,
       0xa976a7139cab2ce6},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xce37ab11b43ea1db, 0xa7ff1a95259d292, 0x851b02218f84f186,
       0xa7222beadefaad13},
      {0xa2ac78ec2b0a9144, 0x5a024051f2fa59c5, 0x91d1eca56147ce38,
       0xbe94d523bc2ac690},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x2d8daefd79ec1a0f, 0x3bbcd6fdceb39c97, 0xf5575ffc58f61a95,
       0xdbd986c4adf7b420},
      {0x81aa881415f39eb7, 0x6ee2fcf5b98d976c, 0x5465475dcf2f717d,
       0x8e24d3c46860bbd0},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}}}};
#else
static const fe g_pre_comp[2][16][3] = {
    {{{0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
      {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
      {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0}},
     {{0x18a9143c,0x79e730d4, 0x5fedb601,0x75ba95fc, 0x77622510,0x79fb732b,
       0xa53755c6,0x18905f76},
      {0xce95560a,0xddf25357, 0xba19e45c,0x8b4ab8e4, 0xdd21f325,0xd2e88688,
       0x25885d85,0x8571ff18},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x16a0d2bb,0x4f922fc5, 0x1a623499,0xd5cc16c, 0x57c62c8b,0x9241cf3a,
       0xfd1b667f,0x2f5e6961},
      {0xf5a01797,0x5c15c70b, 0x60956192,0x3d20b44d, 0x71fdb52,0x4911b37,
       0x8d6f0f7b,0xf648f916},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xe137bbbc,0x9e566847, 0x8a6a0bec,0xe434469e, 0x79d73463,0xb1c42761,
       0x133d0015,0x5abe0285},
      {0xc04c7dab,0x92aa837c, 0x43260c07,0x573d9f4c, 0x78e6cc37,0xc931562,
       0x6b6f7383,0x94bb725b},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xbfe20925,0x62a8c244, 0x8fdce867,0x91c19ac3, 0xdd387063,0x5a96a5d5,
       0x21d324f6,0x61d587d4},
      {0xa37173ea,0xe87673a2, 0x53778b65,0x23848008, 0x5bab43e,0x10f8441e,
       0x4621efbe,0xfa11fe12},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x2cb19ffd,0x1c891f2b, 0xb1923c23,0x1ba8d5b, 0x8ac5ca8e,0xb6d03d67,
       0x1f13bedc,0x586eb04c},
      {0x27e8ed09,0xc35c6e5, 0x1819ede2,0x1e81a33c, 0x56c652fa,0x278fd6c0,
       0x70864f11,0x19d5ac08},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xd2b533d5,0x62577734, 0xa1bdddc0,0x673b8af6, 0xa79ec293,0x577e7c9a,
       0xc3b266b1,0xbb6de651},
      {0xb65259b3,0xe7e9303a, 0xd03a7480,0xd6a0afd3, 0x9b3cfc27,0xc5ac83d1,
       0x5d18b99b,0x60b4619a},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x1ae5aa1c,0xbd6a38e1, 0x49e73658,0xb8b7652b, 0xee5f87ed,0xb130014,
       0xaeebffcd,0x9d0f27b2},
      {0x7a730a55,0xca924631, 0xddbbc83a,0x9c955b2f, 0xac019a71,0x7c1dfe0,
       0x356ec48d,0x244a566d},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xf4f8b16a,0x56f8410e, 0xc47b266a,0x97241afe, 0x6d9c87c1,0xa406b8e,
       0xcd42ab1b,0x803f3e02},
      {0x4dbec69,0x7f0309a8, 0x3bbad05f,0xa83b85f7, 0xad8e197f,0xc6097273,
       0x5067adc1,0xc097440e},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xc379ab34,0x846a56f2, 0x841df8d1,0xa8ee068b, 0x176c68ef,0x20314459,
       0x915f1f30,0xf1af32d5},
      {0x5d75bd50,0x99c37531, 0xf72f67bc,0x837cffba, 0x48d7723f,0x613a418,
       0xe2d41c8b,0x23d0f130},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xd5be5a2b,0xed93e225, 0x5934f3c6,0x6fe79983, 0x22626ffc,0x43140926,
       0x7990216a,0x50bbb4d9},
      {0xe57ec63e,0x378191c6, 0x181dcdb2,0x65422c40, 0x236e0f6,0x41a8099b,
       0x1fe49c3,0x2b100118},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x9b391593,0xfc68b5c5, 0x598270fc,0xc385f5a2, 0xd19adcbb,0x7144f3aa,
       0x83fbae0c,0xdd558999},
      {0x74b82ff4,0x93b88b8e, 0x71e734c9,0xd2e03c40, 0x43c0322a,0x9a7a9eaf,
       0x149d6041,0xe6e4c551},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x80ec21fe,0x5fe14bfe, 0xc255be82,0xf6ce116a, 0x2f4a5d67,0x98bc5a07,
       0xdb7e63af,0xfad27148},
      {0x29ab05b3,0x90c0b6ac, 0x4e251ae6,0x37a9a83c, 0xc2aade7d,0xa7dc875,
       0x9f0e1a84,0x77387de3},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xa56c0dd7,0x1e9ecc49, 0x46086c74,0xa5cffcd8, 0xf505aece,0x8f7a1408,
       0xbef0c47e,0xb37b85c0},
      {0xcc0e6a8f,0x3596b6e4, 0x6b388f23,0xfd6d4bbf, 0xc39cef4e,0xaba453fa,
       0xf9f628d5,0x9c135ac8},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x95c8f8be,0xa1c7294, 0x3bf362bf,0x2961c480, 0xdf63d4ac,0x9e418403,
       0x91ece900,0xc109f9cb},
      {0x58945705,0xc2d095d0, 0xddeb85c0,0xb9083d96, 0x7a40449b,0x84692b8d,
       0x2eee1ee1,0x9bc3344f},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x42913074,0xd5ae356, 0x48a542b1,0x55491b27, 0xb310732a,0x469ca665,
       0x5f1a4cc1,0x29591d52},
      {0xb84f983f,0xe76f5b6b, 0x9f5f84e1,0xbe7eef41, 0x80baa189,0x1200d496,
       0x18ef332c,0x6376551f},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}}},
    {{{0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
      {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
      {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0}},
     {{0x4147519a,0x20288602, 0x26b372f0,0xd0981eac, 0xa785ebc8,0xa9d4a7ca,
       0xdbdf58e9,0xd953c50d},
      {0xfd590f8f,0x9d6361cc, 0x44e6c917,0x72e9626b, 0x22eb64cf,0x7fd96110,
       0x9eb288f3,0x863ebb7e},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xb0e63d34,0x4fe7ee31, 0xa9e54fab,0xf4600572, 0xd5e7b5a4,0xc0493334,
       0x6d54831,0x8589fb92},
      {0x6583553a,0xaa70f5cc, 0xe25649e5,0x879094a, 0x10044652,0xcc904507,
       0x2541c4f,0xebb0696d},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x3b89da99,0xabbaa0c0, 0xb8284022,0xa6f2d79e, 0xb81c05e8,0x27847862,
       0x5e54d63,0x337a4b59},
      {0x21f7794a,0x3c67500d, 0x7d6d7f61,0x207005b7, 0x4cfd6e8,0xa5a3781,
       0xf4c2fbd6,0xd65e0d5},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x6d3549cf,0xd433e50f, 0xfacd665e,0x6f33696f, 0xce11fcb4,0x695bfdac,
       0xaf7c9860,0x810ee252},
      {0x7159bb2c,0x65450fe1, 0x758b357b,0xf7dfbebe, 0xd69fea72,0x2b057e74,
       0x92731745,0xd485717a},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xe83f7669,0xce1f69bb, 0x72877d6b,0x9f8ae82, 0x3244278d,0x9548ae54,
       0xe3c2c19c,0x207755de},
      {0x6fef1945,0x87bd61d9, 0xb12d28c3,0x18813cef, 0x72df64aa,0x9fbcd1d6,
       0x7154b00d,0x48dc5ee5},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xf49a3154,0xef0f469e, 0x6e2b2e9a,0x3e85a595, 0xaa924a9c,0x45aaec1e,
       0xa09e4719,0xaa12dfc8},
      {0x4df69f1d,0x26f27227, 0xa2ff5e73,0xe0e4c82c, 0xb7a9dd44,0xb9d8ce73,
       0xe48ca901,0x6c036e73},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xa47153f0,0xe1e421e1, 0x920418c9,0xb86c3b79, 0x705d7672,0x93bdce87,
       0xcab79a77,0xf25ae793},
      {0x6d869d0c,0x1f3194a3, 0x4986c264,0x9d55c882, 0x96e945e,0x49fb5ea3,
       0x13db0a3e,0x39b8e653},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x35d0b34a,0xe3417bc0, 0x8327c0a7,0x440b386b, 0xac0362d1,0x8fb7262d,
       0xe0cdf943,0x2c41114c},
      {0xad95a0b1,0x2ba5cef1, 0x67d54362,0xc09b37a8, 0x1e486c9,0x26d6cdd2,
       0x42ff9297,0x20477abf},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xbc0a67d2,0xf121b41, 0x444d248a,0x62d4760a, 0x659b4737,0xe044f1d,
       0x250bb4a8,0x8fde365},
      {0x848bf287,0xaceec3da, 0xd3369d6e,0xc2a62182, 0x92449482,0x3582dfdc,
       0x565d6cd7,0x2f7e2fd2},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x178a876b,0xa0122b5, 0x85104b4,0x51ff96ff, 0x14f29f76,0x50b31ab,
       0x5f87d4e6,0x84abb28b},
      {0x8270790a,0xd5ed439f, 0x85e3f46b,0x2d6cb59d, 0x6c1e2212,0x75f55c1b,
       0x17655640,0xe5436f67},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x9aeb596d,0xc2965ecc, 0x23c92b4,0x1ea03e7, 0x2e013961,0x4704b4b6,
       0x905ea367,0xca8fd3f},
      {0x551b2b61,0x92523a42, 0x390fcd06,0x1eb7a89c, 0x392a63e,0xe7f1d2be,
       0x4ddb0c33,0x96dca264},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x15339848,0x231c210e, 0x70778c8d,0xe87a28e8, 0x6956e170,0x9d1de661,
       0x2bb09c0b,0x4ac3c938},
      {0x6998987d,0x19be0551, 0xae09f4d6,0x8b2376c4, 0x1a3f933d,0x1de0b765,
       0xe39705f4,0x380d94c7},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x8c31c31d,0x3685954b, 0x5bf21a0c,0x68533d00, 0x75c79ec9,0xbd7626e,
       0x42c69d54,0xca177547},
      {0xf6d2dbb2,0xcc6edaff, 0x174a9d18,0xfd0d8cbd, 0xaa4578e8,0x875e8793,
       0x9cab2ce6,0xa976a713},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xb43ea1db,0xce37ab11, 0x5259d292,0xa7ff1a9, 0x8f84f186,0x851b0221,
       0xdefaad13,0xa7222bea},
      {0x2b0a9144,0xa2ac78ec, 0xf2fa59c5,0x5a024051, 0x6147ce38,0x91d1eca5,
       0xbc2ac690,0xbe94d523},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x79ec1a0f,0x2d8daefd, 0xceb39c97,0x3bbcd6fd, 0x58f61a95,0xf5575ffc,
       0xadf7b420,0xdbd986c4},
      {0x15f39eb7,0x81aa8814, 0xb98d976c,0x6ee2fcf5, 0xcf2f717d,0x5465475d,
       0x6860bbd0,0x8e24d3c4},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}}}};
#endif

// select_point selects the |idx|th point from a precomputation table and
// copies it to out.
static void select_point(const limb_t idx, size_t size,
                         const fe pre_comp[/*size*/][3],
                         fe out[3]) {
  OPENSSL_memset(out, 0, sizeof(fe) * 3);
  for (size_t i = 0; i < size; i++) {
    limb_t mismatch = i ^ idx;
    fe_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
    fe_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
    fe_cmovznz(out[2], mismatch, pre_comp[i][2], out[2]);
  }
}

// get_bit returns the |i|th bit in |in|
static char get_bit(const uint8_t *in, int i) {
  if (i < 0 || i >= 256) {
    return 0;
  }
  return (in[i >> 3] >> (i & 7)) & 1;
}

// Interleaved point multiplication using precomputed point multiples: The
// small point multiples 0*P, 1*P, ..., 17*P are in p_pre_comp, the scalar
// in p_scalar, if non-NULL. If g_scalar is non-NULL, we also add this multiple
// of the generator, using certain (large) precomputed multiples in g_pre_comp.
// Output point (X, Y, Z) is stored in x_out, y_out, z_out.
static void batch_mul(fe x_out, fe y_out, fe z_out,
                      const uint8_t *p_scalar, const uint8_t *g_scalar,
                      const fe p_pre_comp[17][3]) {
  // set nq to the point at infinity
  fe nq[3] = {{0},{0},{0}}, ftmp, tmp[3];
  uint64_t bits;
  uint8_t sign, digit;

  // Loop over both scalars msb-to-lsb, interleaving additions of multiples
  // of the generator (two in each of the last 32 rounds) and additions of p
  // (every 5th round).

  int skip = 1;  // save two point operations in the first round
  size_t i = p_scalar != NULL ? 255 : 31;
  for (;;) {
    // double
    if (!skip) {
      point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
    }

    // add multiples of the generator
    if (g_scalar != NULL && i <= 31) {
      // first, look 32 bits upwards
      bits = get_bit(g_scalar, i + 224) << 3;
      bits |= get_bit(g_scalar, i + 160) << 2;
      bits |= get_bit(g_scalar, i + 96) << 1;
      bits |= get_bit(g_scalar, i + 32);
      // select the point to add, in constant time
      select_point(bits, 16, g_pre_comp[1], tmp);

      if (!skip) {
        point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
                  tmp[0], tmp[1], tmp[2]);
      } else {
        fe_copy(nq[0], tmp[0]);
        fe_copy(nq[1], tmp[1]);
        fe_copy(nq[2], tmp[2]);
        skip = 0;
      }

      // second, look at the current position
      bits = get_bit(g_scalar, i + 192) << 3;
      bits |= get_bit(g_scalar, i + 128) << 2;
      bits |= get_bit(g_scalar, i + 64) << 1;
      bits |= get_bit(g_scalar, i);
      // select the point to add, in constant time
      select_point(bits, 16, g_pre_comp[0], tmp);
      point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, tmp[0],
                tmp[1], tmp[2]);
    }

    // do other additions every 5 doublings
    if (p_scalar != NULL && i % 5 == 0) {
      bits = get_bit(p_scalar, i + 4) << 5;
      bits |= get_bit(p_scalar, i + 3) << 4;
      bits |= get_bit(p_scalar, i + 2) << 3;
      bits |= get_bit(p_scalar, i + 1) << 2;
      bits |= get_bit(p_scalar, i) << 1;
      bits |= get_bit(p_scalar, i - 1);
      ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);

      // select the point to add or subtract, in constant time.
      select_point(digit, 17, p_pre_comp, tmp);
      fe_opp(ftmp, tmp[1]);  // (X, -Y, Z) is the negative point.
      fe_cmovznz(tmp[1], sign, tmp[1], ftmp);

      if (!skip) {
        point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
                  tmp[0], tmp[1], tmp[2]);
      } else {
        fe_copy(nq[0], tmp[0]);
        fe_copy(nq[1], tmp[1]);
        fe_copy(nq[2], tmp[2]);
        skip = 0;
      }
    }

    if (i == 0) {
      break;
    }
    --i;
  }
  fe_copy(x_out, nq[0]);
  fe_copy(y_out, nq[1]);
  fe_copy(z_out, nq[2]);
}

// OPENSSL EC_METHOD FUNCTIONS

// Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
// (X/Z^2, Y/Z^3).
static int ec_GFp_nistp256_point_get_affine_coordinates(
    const EC_GROUP *group, const EC_RAW_POINT *point, EC_FELEM *x_out,
    EC_FELEM *y_out) {
  if (ec_GFp_simple_is_at_infinity(group, point)) {
    OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
    return 0;
  }

  fe z1, z2;
  fe_from_generic(z1, &point->Z);
  fe_inv(z2, z1);
  fe_sqr(z1, z2);

  // Instead of using |fe_from_montgomery| to convert the |x| coordinate and
  // then calling |fe_from_montgomery| again to convert the |y| coordinate
  // below, convert the common factor |z1| once now, saving one reduction.
  fe_from_montgomery(z1);

  if (x_out != NULL) {
    fe x;
    fe_from_generic(x, &point->X);
    fe_mul(x, x, z1);
    fe_to_generic(x_out, x);
  }

  if (y_out != NULL) {
    fe y;
    fe_from_generic(y, &point->Y);
    fe_mul(z1, z1, z2);
    fe_mul(y, y, z1);
    fe_to_generic(y_out, y);
  }

  return 1;
}

static void ec_GFp_nistp256_add(const EC_GROUP *group, EC_RAW_POINT *r,
                                const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
  fe x1, y1, z1, x2, y2, z2;
  fe_from_generic(x1, &a->X);
  fe_from_generic(y1, &a->Y);
  fe_from_generic(z1, &a->Z);
  fe_from_generic(x2, &b->X);
  fe_from_generic(y2, &b->Y);
  fe_from_generic(z2, &b->Z);
  point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2, z2);
  fe_to_generic(&r->X, x1);
  fe_to_generic(&r->Y, y1);
  fe_to_generic(&r->Z, z1);
}

static void ec_GFp_nistp256_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
                                const EC_RAW_POINT *a) {
  fe x, y, z;
  fe_from_generic(x, &a->X);
  fe_from_generic(y, &a->Y);
  fe_from_generic(z, &a->Z);
  point_double(x, y, z, x, y, z);
  fe_to_generic(&r->X, x);
  fe_to_generic(&r->Y, y);
  fe_to_generic(&r->Z, z);
}

static void ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_RAW_POINT *r,
                                       const EC_SCALAR *g_scalar,
                                       const EC_RAW_POINT *p,
                                       const EC_SCALAR *p_scalar) {
  fe p_pre_comp[17][3];
  fe x_out, y_out, z_out;

  if (p != NULL && p_scalar != NULL) {
    // We treat NULL scalars as 0, and NULL points as points at infinity, i.e.,
    // they contribute nothing to the linear combination.
    OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
    // Precompute multiples.
    fe_from_generic(p_pre_comp[1][0], &p->X);
    fe_from_generic(p_pre_comp[1][1], &p->Y);
    fe_from_generic(p_pre_comp[1][2], &p->Z);
    for (size_t j = 2; j <= 16; ++j) {
      if (j & 1) {
        point_add(p_pre_comp[j][0], p_pre_comp[j][1],
                  p_pre_comp[j][2], p_pre_comp[1][0],
                  p_pre_comp[1][1], p_pre_comp[1][2],
                  0,
                  p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
                  p_pre_comp[j - 1][2]);
      } else {
        point_double(p_pre_comp[j][0], p_pre_comp[j][1],
                     p_pre_comp[j][2], p_pre_comp[j / 2][0],
                     p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
      }
    }
  }

  batch_mul(x_out, y_out, z_out,
            (p != NULL && p_scalar != NULL) ? p_scalar->bytes : NULL,
            g_scalar != NULL ? g_scalar->bytes : NULL,
            (const fe (*) [3])p_pre_comp);

  fe_to_generic(&r->X, x_out);
  fe_to_generic(&r->Y, y_out);
  fe_to_generic(&r->Z, z_out);
}

static void ec_GFp_nistp256_point_mul_public(const EC_GROUP *group,
                                             EC_RAW_POINT *r,
                                             const EC_SCALAR *g_scalar,
                                             const EC_RAW_POINT *p,
                                             const EC_SCALAR *p_scalar) {
#define P256_WSIZE_PUBLIC 4
  // Precompute multiples of |p|. p_pre_comp[i] is (2*i+1) * |p|.
  fe p_pre_comp[1 << (P256_WSIZE_PUBLIC-1)][3];
  fe_from_generic(p_pre_comp[0][0], &p->X);
  fe_from_generic(p_pre_comp[0][1], &p->Y);
  fe_from_generic(p_pre_comp[0][2], &p->Z);
  fe p2[3];
  point_double(p2[0], p2[1], p2[2], p_pre_comp[0][0], p_pre_comp[0][1],
               p_pre_comp[0][2]);
  for (size_t i = 1; i < OPENSSL_ARRAY_SIZE(p_pre_comp); i++) {
    point_add(p_pre_comp[i][0], p_pre_comp[i][1], p_pre_comp[i][2],
              p_pre_comp[i - 1][0], p_pre_comp[i - 1][1], p_pre_comp[i - 1][2],
              0 /* not mixed */, p2[0], p2[1], p2[2]);
  }

  // Set up the coefficients for |p_scalar|.
  int8_t p_wNAF[257];
  ec_compute_wNAF(group, p_wNAF, p_scalar, 256, P256_WSIZE_PUBLIC);

  // Set |ret| to the point at infinity.
  int skip = 1;  // Save some point operations.
  fe ret[3] = {{0},{0},{0}};
  for (int i = 256; i >= 0; i--) {
    if (!skip) {
      point_double(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2]);
    }

    // For the |g_scalar|, we use the precomputed table without the
    // constant-time lookup.
    if (i <= 31) {
      // First, look 32 bits upwards.
      uint64_t bits = get_bit(g_scalar->bytes, i + 224) << 3;
      bits |= get_bit(g_scalar->bytes, i + 160) << 2;
      bits |= get_bit(g_scalar->bytes, i + 96) << 1;
      bits |= get_bit(g_scalar->bytes, i + 32);
      point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2], 1 /* mixed */,
                g_pre_comp[1][bits][0], g_pre_comp[1][bits][1],
                g_pre_comp[1][bits][2]);
      skip = 0;

      // Second, look at the current position.
      bits = get_bit(g_scalar->bytes, i + 192) << 3;
      bits |= get_bit(g_scalar->bytes, i + 128) << 2;
      bits |= get_bit(g_scalar->bytes, i + 64) << 1;
      bits |= get_bit(g_scalar->bytes, i);
      point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2], 1 /* mixed */,
                g_pre_comp[0][bits][0], g_pre_comp[0][bits][1],
                g_pre_comp[0][bits][2]);
    }

    int digit = p_wNAF[i];
    if (digit != 0) {
      assert(digit & 1);
      int idx = digit < 0 ? (-digit) >> 1 : digit >> 1;
      fe *y = &p_pre_comp[idx][1], tmp;
      if (digit < 0) {
        fe_opp(tmp, p_pre_comp[idx][1]);
        y = &tmp;
      }
      if (!skip) {
        point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
                  0 /* not mixed */, p_pre_comp[idx][0], *y, p_pre_comp[idx][2]);
      } else {
        fe_copy(ret[0], p_pre_comp[idx][0]);
        fe_copy(ret[1], *y);
        fe_copy(ret[2], p_pre_comp[idx][2]);
        skip = 0;
      }
    }
  }

  fe_to_generic(&r->X, ret[0]);
  fe_to_generic(&r->Y, ret[1]);
  fe_to_generic(&r->Z, ret[2]);
}

static int ec_GFp_nistp256_cmp_x_coordinate(const EC_GROUP *group,
                                            const EC_RAW_POINT *p,
                                            const EC_SCALAR *r) {
  if (ec_GFp_simple_is_at_infinity(group, p)) {
    return 0;
  }

  // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
  // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
  // not.
  fe Z2_mont;
  fe_from_generic(Z2_mont, &p->Z);
  fe_mul(Z2_mont, Z2_mont, Z2_mont);

  fe r_Z2;
  fe_frombytes(r_Z2, r->bytes);  // r < order < p, so this is valid.
  fe_mul(r_Z2, r_Z2, Z2_mont);

  fe X;
  fe_from_generic(X, &p->X);
  fe_from_montgomery(X);

  if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
    return 1;
  }

  // During signing the x coefficient is reduced modulo the group order.
  // Therefore there is a small possibility, less than 1/2^128, that group_order
  // < p.x < P. in that case we need not only to compare against |r| but also to
  // compare against r+group_order.
  assert(group->field.width == group->order.width);
  if (bn_less_than_words(r->words, group->field_minus_order.words,
                         group->field.width)) {
    // We can ignore the carry because: r + group_order < p < 2^256.
    EC_FELEM tmp;
    bn_add_words(tmp.words, r->words, group->order.d, group->order.width);
    fe_from_generic(r_Z2, &tmp);
    fe_mul(r_Z2, r_Z2, Z2_mont);
    if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
      return 1;
    }
  }

  return 0;
}

DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp256_method) {
  out->group_init = ec_GFp_mont_group_init;
  out->group_finish = ec_GFp_mont_group_finish;
  out->group_set_curve = ec_GFp_mont_group_set_curve;
  out->point_get_affine_coordinates =
    ec_GFp_nistp256_point_get_affine_coordinates;
  out->add = ec_GFp_nistp256_add;
  out->dbl = ec_GFp_nistp256_dbl;
  out->mul = ec_GFp_nistp256_points_mul;
  out->mul_public = ec_GFp_nistp256_point_mul_public;
  out->felem_mul = ec_GFp_mont_felem_mul;
  out->felem_sqr = ec_GFp_mont_felem_sqr;
  out->bignum_to_felem = ec_GFp_mont_bignum_to_felem;
  out->felem_to_bignum = ec_GFp_mont_felem_to_bignum;
  out->scalar_inv_montgomery = ec_simple_scalar_inv_montgomery;
  out->scalar_inv_montgomery_vartime = ec_GFp_simple_mont_inv_mod_ord_vartime;
  out->cmp_x_coordinate = ec_GFp_nistp256_cmp_x_coordinate;
}

#undef BORINGSSL_NISTP256_64BIT