summaryrefslogtreecommitdiff
path: root/src/third_party/fiat/p256.c
blob: 2fe2f867d66f302e554a875ec18f681bf35b04aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
// The MIT License (MIT)
//
// Copyright (c) 2015-2016 the fiat-crypto authors (see the AUTHORS file).
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

// The field arithmetic code is generated by Fiat
// (https://github.com/mit-plv/fiat-crypto), which is MIT licensed.
//
// An implementation of the NIST P-256 elliptic curve point multiplication.
// 256-bit Montgomery form, generated using fiat-crypto, for 64 and 32-bit.
// Field operations with inputs in [0,p) return outputs in [0,p).

#include <openssl/base.h>

#include <openssl/bn.h>
#include <openssl/ec.h>
#include <openssl/err.h>
#include <openssl/mem.h>

#include <string.h>

#include "../../crypto/fipsmodule/delocate.h"
#include "../../crypto/fipsmodule/ec/internal.h"
#include "../../crypto/internal.h"


// MSVC does not implement uint128_t, and crashes with intrinsics
#if defined(BORINGSSL_HAS_UINT128)
#define BORINGSSL_NISTP256_64BIT 1
#endif

// "intrinsics"

#if defined(BORINGSSL_NISTP256_64BIT)

static uint64_t mulx_u64(uint64_t a, uint64_t b, uint64_t *high) {
  uint128_t x = (uint128_t)a * b;
  *high = (uint64_t) (x >> 64);
  return (uint64_t) x;
}

static uint64_t addcarryx_u64(uint8_t c, uint64_t a, uint64_t b, uint64_t *low) {
  uint128_t x = (uint128_t)a + b + c;
  *low = (uint64_t) x;
  return (uint64_t) (x>>64);
}

static uint64_t subborrow_u64(uint8_t c, uint64_t a, uint64_t b, uint64_t *low) {
  uint128_t t = ((uint128_t) b + c);
  uint128_t x = a-t;
  *low = (uint64_t) x;
  return (uint8_t) (x>>127);
}

static uint64_t cmovznz_u64(uint64_t t, uint64_t z, uint64_t nz) {
  t = -!!t; // all set if nonzero, 0 if 0
  return (t&nz) | ((~t)&z);
}

#else

static uint32_t mulx_u32(uint32_t a, uint32_t b, uint32_t *high) {
  uint64_t x = (uint64_t)a * b;
  *high = (uint32_t) (x >> 32);
  return (uint32_t) x;
}

static uint32_t addcarryx_u32(uint8_t c, uint32_t a, uint32_t b, uint32_t *low) {
  uint64_t x = (uint64_t)a + b + c;
  *low = (uint32_t) x;
  return (uint32_t) (x>>32);
}

static uint32_t subborrow_u32(uint8_t c, uint32_t a, uint32_t b, uint32_t *low) {
  uint64_t t = ((uint64_t) b + c);
  uint64_t x = a-t;
  *low = (uint32_t) x;
  return (uint8_t) (x>>63);
}

static uint32_t cmovznz_u32(uint32_t t, uint32_t z, uint32_t nz) {
  t = -!!t; // all set if nonzero, 0 if 0
  return (t&nz) | ((~t)&z);
}

#endif

// fiat-crypto generated code

#if defined(BORINGSSL_NISTP256_64BIT)

static void fe_add(uint64_t out[4], const uint64_t in1[4], const uint64_t in2[4]) {
  { const uint64_t x8 = in1[3];
  { const uint64_t x9 = in1[2];
  { const uint64_t x7 = in1[1];
  { const uint64_t x5 = in1[0];
  { const uint64_t x14 = in2[3];
  { const uint64_t x15 = in2[2];
  { const uint64_t x13 = in2[1];
  { const uint64_t x11 = in2[0];
  { uint64_t x17; uint8_t x18 = addcarryx_u64(0x0, x5, x11, &x17);
  { uint64_t x20; uint8_t x21 = addcarryx_u64(x18, x7, x13, &x20);
  { uint64_t x23; uint8_t x24 = addcarryx_u64(x21, x9, x15, &x23);
  { uint64_t x26; uint8_t x27 = addcarryx_u64(x24, x8, x14, &x26);
  { uint64_t x29; uint8_t x30 = subborrow_u64(0x0, x17, 0xffffffffffffffffL, &x29);
  { uint64_t x32; uint8_t x33 = subborrow_u64(x30, x20, 0xffffffff, &x32);
  { uint64_t x35; uint8_t x36 = subborrow_u64(x33, x23, 0x0, &x35);
  { uint64_t x38; uint8_t x39 = subborrow_u64(x36, x26, 0xffffffff00000001L, &x38);
  { uint64_t _1; uint8_t x42 = subborrow_u64(x39, x27, 0x0, &_1);
  { uint64_t x43 = cmovznz_u64(x42, x38, x26);
  { uint64_t x44 = cmovznz_u64(x42, x35, x23);
  { uint64_t x45 = cmovznz_u64(x42, x32, x20);
  { uint64_t x46 = cmovznz_u64(x42, x29, x17);
  out[0] = x46;
  out[1] = x45;
  out[2] = x44;
  out[3] = x43;
  }}}}}}}}}}}}}}}}}}}}}
}

// fe_op sets out = -in
static void fe_opp(uint64_t out[4], const uint64_t in1[4]) {
  const uint64_t x5 = in1[3];
  const uint64_t x6 = in1[2];
  const uint64_t x4 = in1[1];
  const uint64_t x2 = in1[0];
  uint64_t x8; uint8_t x9 = subborrow_u64(0x0, 0x0, x2, &x8);
  uint64_t x11; uint8_t x12 = subborrow_u64(x9, 0x0, x4, &x11);
  uint64_t x14; uint8_t x15 = subborrow_u64(x12, 0x0, x6, &x14);
  uint64_t x17; uint8_t x18 = subborrow_u64(x15, 0x0, x5, &x17);
  uint64_t x19 = (uint64_t)cmovznz_u64(x18, 0x0, 0xffffffffffffffffL);
  uint64_t x20 = (x19 & 0xffffffffffffffffL);
  uint64_t x22; uint8_t x23 = addcarryx_u64(0x0, x8, x20, &x22);
  uint64_t x24 = (x19 & 0xffffffff);
  uint64_t x26; uint8_t x27 = addcarryx_u64(x23, x11, x24, &x26);
  uint64_t x29; uint8_t x30 = addcarryx_u64(x27, x14, 0x0, &x29);
  uint64_t x31 = (x19 & 0xffffffff00000001L);
  uint64_t x33; addcarryx_u64(x30, x17, x31, &x33);
  out[0] = x22;
  out[1] = x26;
  out[2] = x29;
  out[3] = x33;
}

static void fe_mul(uint64_t out[4], const uint64_t in1[4], const uint64_t in2[4]) {
  const uint64_t x8 = in1[3];
  const uint64_t x9 = in1[2];
  const uint64_t x7 = in1[1];
  const uint64_t x5 = in1[0];
  const uint64_t x14 = in2[3];
  const uint64_t x15 = in2[2];
  const uint64_t x13 = in2[1];
  const uint64_t x11 = in2[0];
  uint64_t x18;  uint64_t x17 = mulx_u64(x5, x11, &x18);
  uint64_t x21;  uint64_t x20 = mulx_u64(x5, x13, &x21);
  uint64_t x24;  uint64_t x23 = mulx_u64(x5, x15, &x24);
  uint64_t x27;  uint64_t x26 = mulx_u64(x5, x14, &x27);
  uint64_t x29; uint8_t x30 = addcarryx_u64(0x0, x18, x20, &x29);
  uint64_t x32; uint8_t x33 = addcarryx_u64(x30, x21, x23, &x32);
  uint64_t x35; uint8_t x36 = addcarryx_u64(x33, x24, x26, &x35);
  uint64_t x38; addcarryx_u64(0x0, x36, x27, &x38);
  uint64_t x42;  uint64_t x41 = mulx_u64(x17, 0xffffffffffffffffL, &x42);
  uint64_t x45;  uint64_t x44 = mulx_u64(x17, 0xffffffff, &x45);
  uint64_t x48;  uint64_t x47 = mulx_u64(x17, 0xffffffff00000001L, &x48);
  uint64_t x50; uint8_t x51 = addcarryx_u64(0x0, x42, x44, &x50);
  uint64_t x53; uint8_t x54 = addcarryx_u64(x51, x45, 0x0, &x53);
  uint64_t x56; uint8_t x57 = addcarryx_u64(x54, 0x0, x47, &x56);
  uint64_t x59; addcarryx_u64(0x0, x57, x48, &x59);
  uint64_t _2; uint8_t x63 = addcarryx_u64(0x0, x17, x41, &_2);
  uint64_t x65; uint8_t x66 = addcarryx_u64(x63, x29, x50, &x65);
  uint64_t x68; uint8_t x69 = addcarryx_u64(x66, x32, x53, &x68);
  uint64_t x71; uint8_t x72 = addcarryx_u64(x69, x35, x56, &x71);
  uint64_t x74; uint8_t x75 = addcarryx_u64(x72, x38, x59, &x74);
  uint64_t x78;  uint64_t x77 = mulx_u64(x7, x11, &x78);
  uint64_t x81;  uint64_t x80 = mulx_u64(x7, x13, &x81);
  uint64_t x84;  uint64_t x83 = mulx_u64(x7, x15, &x84);
  uint64_t x87;  uint64_t x86 = mulx_u64(x7, x14, &x87);
  uint64_t x89; uint8_t x90 = addcarryx_u64(0x0, x78, x80, &x89);
  uint64_t x92; uint8_t x93 = addcarryx_u64(x90, x81, x83, &x92);
  uint64_t x95; uint8_t x96 = addcarryx_u64(x93, x84, x86, &x95);
  uint64_t x98; addcarryx_u64(0x0, x96, x87, &x98);
  uint64_t x101; uint8_t x102 = addcarryx_u64(0x0, x65, x77, &x101);
  uint64_t x104; uint8_t x105 = addcarryx_u64(x102, x68, x89, &x104);
  uint64_t x107; uint8_t x108 = addcarryx_u64(x105, x71, x92, &x107);
  uint64_t x110; uint8_t x111 = addcarryx_u64(x108, x74, x95, &x110);
  uint64_t x113; uint8_t x114 = addcarryx_u64(x111, x75, x98, &x113);
  uint64_t x117;  uint64_t x116 = mulx_u64(x101, 0xffffffffffffffffL, &x117);
  uint64_t x120;  uint64_t x119 = mulx_u64(x101, 0xffffffff, &x120);
  uint64_t x123;  uint64_t x122 = mulx_u64(x101, 0xffffffff00000001L, &x123);
  uint64_t x125; uint8_t x126 = addcarryx_u64(0x0, x117, x119, &x125);
  uint64_t x128; uint8_t x129 = addcarryx_u64(x126, x120, 0x0, &x128);
  uint64_t x131; uint8_t x132 = addcarryx_u64(x129, 0x0, x122, &x131);
  uint64_t x134; addcarryx_u64(0x0, x132, x123, &x134);
  uint64_t _3; uint8_t x138 = addcarryx_u64(0x0, x101, x116, &_3);
  uint64_t x140; uint8_t x141 = addcarryx_u64(x138, x104, x125, &x140);
  uint64_t x143; uint8_t x144 = addcarryx_u64(x141, x107, x128, &x143);
  uint64_t x146; uint8_t x147 = addcarryx_u64(x144, x110, x131, &x146);
  uint64_t x149; uint8_t x150 = addcarryx_u64(x147, x113, x134, &x149);
  uint8_t x151 = (x150 + x114);
  uint64_t x154;  uint64_t x153 = mulx_u64(x9, x11, &x154);
  uint64_t x157;  uint64_t x156 = mulx_u64(x9, x13, &x157);
  uint64_t x160;  uint64_t x159 = mulx_u64(x9, x15, &x160);
  uint64_t x163;  uint64_t x162 = mulx_u64(x9, x14, &x163);
  uint64_t x165; uint8_t x166 = addcarryx_u64(0x0, x154, x156, &x165);
  uint64_t x168; uint8_t x169 = addcarryx_u64(x166, x157, x159, &x168);
  uint64_t x171; uint8_t x172 = addcarryx_u64(x169, x160, x162, &x171);
  uint64_t x174; addcarryx_u64(0x0, x172, x163, &x174);
  uint64_t x177; uint8_t x178 = addcarryx_u64(0x0, x140, x153, &x177);
  uint64_t x180; uint8_t x181 = addcarryx_u64(x178, x143, x165, &x180);
  uint64_t x183; uint8_t x184 = addcarryx_u64(x181, x146, x168, &x183);
  uint64_t x186; uint8_t x187 = addcarryx_u64(x184, x149, x171, &x186);
  uint64_t x189; uint8_t x190 = addcarryx_u64(x187, x151, x174, &x189);
  uint64_t x193;  uint64_t x192 = mulx_u64(x177, 0xffffffffffffffffL, &x193);
  uint64_t x196;  uint64_t x195 = mulx_u64(x177, 0xffffffff, &x196);
  uint64_t x199;  uint64_t x198 = mulx_u64(x177, 0xffffffff00000001L, &x199);
  uint64_t x201; uint8_t x202 = addcarryx_u64(0x0, x193, x195, &x201);
  uint64_t x204; uint8_t x205 = addcarryx_u64(x202, x196, 0x0, &x204);
  uint64_t x207; uint8_t x208 = addcarryx_u64(x205, 0x0, x198, &x207);
  uint64_t x210; addcarryx_u64(0x0, x208, x199, &x210);
  uint64_t _4; uint8_t x214 = addcarryx_u64(0x0, x177, x192, &_4);
  uint64_t x216; uint8_t x217 = addcarryx_u64(x214, x180, x201, &x216);
  uint64_t x219; uint8_t x220 = addcarryx_u64(x217, x183, x204, &x219);
  uint64_t x222; uint8_t x223 = addcarryx_u64(x220, x186, x207, &x222);
  uint64_t x225; uint8_t x226 = addcarryx_u64(x223, x189, x210, &x225);
  uint8_t x227 = (x226 + x190);
  uint64_t x230;  uint64_t x229 = mulx_u64(x8, x11, &x230);
  uint64_t x233;  uint64_t x232 = mulx_u64(x8, x13, &x233);
  uint64_t x236;  uint64_t x235 = mulx_u64(x8, x15, &x236);
  uint64_t x239;  uint64_t x238 = mulx_u64(x8, x14, &x239);
  uint64_t x241; uint8_t x242 = addcarryx_u64(0x0, x230, x232, &x241);
  uint64_t x244; uint8_t x245 = addcarryx_u64(x242, x233, x235, &x244);
  uint64_t x247; uint8_t x248 = addcarryx_u64(x245, x236, x238, &x247);
  uint64_t x250; addcarryx_u64(0x0, x248, x239, &x250);
  uint64_t x253; uint8_t x254 = addcarryx_u64(0x0, x216, x229, &x253);
  uint64_t x256; uint8_t x257 = addcarryx_u64(x254, x219, x241, &x256);
  uint64_t x259; uint8_t x260 = addcarryx_u64(x257, x222, x244, &x259);
  uint64_t x262; uint8_t x263 = addcarryx_u64(x260, x225, x247, &x262);
  uint64_t x265; uint8_t x266 = addcarryx_u64(x263, x227, x250, &x265);
  uint64_t x269;  uint64_t x268 = mulx_u64(x253, 0xffffffffffffffffL, &x269);
  uint64_t x272;  uint64_t x271 = mulx_u64(x253, 0xffffffff, &x272);
  uint64_t x275;  uint64_t x274 = mulx_u64(x253, 0xffffffff00000001L, &x275);
  uint64_t x277; uint8_t x278 = addcarryx_u64(0x0, x269, x271, &x277);
  uint64_t x280; uint8_t x281 = addcarryx_u64(x278, x272, 0x0, &x280);
  uint64_t x283; uint8_t x284 = addcarryx_u64(x281, 0x0, x274, &x283);
  uint64_t x286; addcarryx_u64(0x0, x284, x275, &x286);
  uint64_t _5; uint8_t x290 = addcarryx_u64(0x0, x253, x268, &_5);
  uint64_t x292; uint8_t x293 = addcarryx_u64(x290, x256, x277, &x292);
  uint64_t x295; uint8_t x296 = addcarryx_u64(x293, x259, x280, &x295);
  uint64_t x298; uint8_t x299 = addcarryx_u64(x296, x262, x283, &x298);
  uint64_t x301; uint8_t x302 = addcarryx_u64(x299, x265, x286, &x301);
  uint8_t x303 = (x302 + x266);
  uint64_t x305; uint8_t x306 = subborrow_u64(0x0, x292, 0xffffffffffffffffL, &x305);
  uint64_t x308; uint8_t x309 = subborrow_u64(x306, x295, 0xffffffff, &x308);
  uint64_t x311; uint8_t x312 = subborrow_u64(x309, x298, 0x0, &x311);
  uint64_t x314; uint8_t x315 = subborrow_u64(x312, x301, 0xffffffff00000001L, &x314);
  uint64_t _6; uint8_t x318 = subborrow_u64(x315, x303, 0x0, &_6);
  uint64_t x319 = cmovznz_u64(x318, x314, x301);
  uint64_t x320 = cmovznz_u64(x318, x311, x298);
  uint64_t x321 = cmovznz_u64(x318, x308, x295);
  uint64_t x322 = cmovznz_u64(x318, x305, x292);
  out[0] = x322;
  out[1] = x321;
  out[2] = x320;
  out[3] = x319;
}

static void fe_sub(uint64_t out[4], const uint64_t in1[4], const uint64_t in2[4]) {
  const uint64_t x8 = in1[3];
  const uint64_t x9 = in1[2];
  const uint64_t x7 = in1[1];
  const uint64_t x5 = in1[0];
  const uint64_t x14 = in2[3];
  const uint64_t x15 = in2[2];
  const uint64_t x13 = in2[1];
  const uint64_t x11 = in2[0];
  uint64_t x17; uint8_t x18 = subborrow_u64(0x0, x5, x11, &x17);
  uint64_t x20; uint8_t x21 = subborrow_u64(x18, x7, x13, &x20);
  uint64_t x23; uint8_t x24 = subborrow_u64(x21, x9, x15, &x23);
  uint64_t x26; uint8_t x27 = subborrow_u64(x24, x8, x14, &x26);
  uint64_t x28 = (uint64_t)cmovznz_u64(x27, 0x0, 0xffffffffffffffffL);
  uint64_t x29 = (x28 & 0xffffffffffffffffL);
  uint64_t x31; uint8_t x32 = addcarryx_u64(0x0, x17, x29, &x31);
  uint64_t x33 = (x28 & 0xffffffff);
  uint64_t x35; uint8_t x36 = addcarryx_u64(x32, x20, x33, &x35);
  uint64_t x38; uint8_t x39 = addcarryx_u64(x36, x23, 0x0, &x38);
  uint64_t x40 = (x28 & 0xffffffff00000001L);
  uint64_t x42; addcarryx_u64(x39, x26, x40, &x42);
  out[0] = x31;
  out[1] = x35;
  out[2] = x38;
  out[3] = x42;
}

#else // 64BIT, else 32BIT

static void fe_add(uint32_t out[8], const uint32_t in1[8], const uint32_t in2[8]) {
  const uint32_t x16 = in1[7];
  const uint32_t x17 = in1[6];
  const uint32_t x15 = in1[5];
  const uint32_t x13 = in1[4];
  const uint32_t x11 = in1[3];
  const uint32_t x9 = in1[2];
  const uint32_t x7 = in1[1];
  const uint32_t x5 = in1[0];
  const uint32_t x30 = in2[7];
  const uint32_t x31 = in2[6];
  const uint32_t x29 = in2[5];
  const uint32_t x27 = in2[4];
  const uint32_t x25 = in2[3];
  const uint32_t x23 = in2[2];
  const uint32_t x21 = in2[1];
  const uint32_t x19 = in2[0];
  uint32_t x33; uint8_t x34 = addcarryx_u32(0x0, x5, x19, &x33);
  uint32_t x36; uint8_t x37 = addcarryx_u32(x34, x7, x21, &x36);
  uint32_t x39; uint8_t x40 = addcarryx_u32(x37, x9, x23, &x39);
  uint32_t x42; uint8_t x43 = addcarryx_u32(x40, x11, x25, &x42);
  uint32_t x45; uint8_t x46 = addcarryx_u32(x43, x13, x27, &x45);
  uint32_t x48; uint8_t x49 = addcarryx_u32(x46, x15, x29, &x48);
  uint32_t x51; uint8_t x52 = addcarryx_u32(x49, x17, x31, &x51);
  uint32_t x54; uint8_t x55 = addcarryx_u32(x52, x16, x30, &x54);
  uint32_t x57; uint8_t x58 = subborrow_u32(0x0, x33, 0xffffffff, &x57);
  uint32_t x60; uint8_t x61 = subborrow_u32(x58, x36, 0xffffffff, &x60);
  uint32_t x63; uint8_t x64 = subborrow_u32(x61, x39, 0xffffffff, &x63);
  uint32_t x66; uint8_t x67 = subborrow_u32(x64, x42, 0x0, &x66);
  uint32_t x69; uint8_t x70 = subborrow_u32(x67, x45, 0x0, &x69);
  uint32_t x72; uint8_t x73 = subborrow_u32(x70, x48, 0x0, &x72);
  uint32_t x75; uint8_t x76 = subborrow_u32(x73, x51, 0x1, &x75);
  uint32_t x78; uint8_t x79 = subborrow_u32(x76, x54, 0xffffffff, &x78);
  uint32_t _; uint8_t x82 = subborrow_u32(x79, x55, 0x0, &_);
  uint32_t x83 = cmovznz_u32(x82, x78, x54);
  uint32_t x84 = cmovznz_u32(x82, x75, x51);
  uint32_t x85 = cmovznz_u32(x82, x72, x48);
  uint32_t x86 = cmovznz_u32(x82, x69, x45);
  uint32_t x87 = cmovznz_u32(x82, x66, x42);
  uint32_t x88 = cmovznz_u32(x82, x63, x39);
  uint32_t x89 = cmovznz_u32(x82, x60, x36);
  uint32_t x90 = cmovznz_u32(x82, x57, x33);
  out[0] = x90;
  out[1] = x89;
  out[2] = x88;
  out[3] = x87;
  out[4] = x86;
  out[5] = x85;
  out[6] = x84;
  out[7] = x83;
}

static void fe_mul(uint32_t out[8], const uint32_t in1[8], const uint32_t in2[8]) {
  const uint32_t x16 = in1[7];
  const uint32_t x17 = in1[6];
  const uint32_t x15 = in1[5];
  const uint32_t x13 = in1[4];
  const uint32_t x11 = in1[3];
  const uint32_t x9 = in1[2];
  const uint32_t x7 = in1[1];
  const uint32_t x5 = in1[0];
  const uint32_t x30 = in2[7];
  const uint32_t x31 = in2[6];
  const uint32_t x29 = in2[5];
  const uint32_t x27 = in2[4];
  const uint32_t x25 = in2[3];
  const uint32_t x23 = in2[2];
  const uint32_t x21 = in2[1];
  const uint32_t x19 = in2[0];
  uint32_t x34;  uint32_t x33 = mulx_u32(x5, x19, &x34);
  uint32_t x37;  uint32_t x36 = mulx_u32(x5, x21, &x37);
  uint32_t x40;  uint32_t x39 = mulx_u32(x5, x23, &x40);
  uint32_t x43;  uint32_t x42 = mulx_u32(x5, x25, &x43);
  uint32_t x46;  uint32_t x45 = mulx_u32(x5, x27, &x46);
  uint32_t x49;  uint32_t x48 = mulx_u32(x5, x29, &x49);
  uint32_t x52;  uint32_t x51 = mulx_u32(x5, x31, &x52);
  uint32_t x55;  uint32_t x54 = mulx_u32(x5, x30, &x55);
  uint32_t x57; uint8_t x58 = addcarryx_u32(0x0, x34, x36, &x57);
  uint32_t x60; uint8_t x61 = addcarryx_u32(x58, x37, x39, &x60);
  uint32_t x63; uint8_t x64 = addcarryx_u32(x61, x40, x42, &x63);
  uint32_t x66; uint8_t x67 = addcarryx_u32(x64, x43, x45, &x66);
  uint32_t x69; uint8_t x70 = addcarryx_u32(x67, x46, x48, &x69);
  uint32_t x72; uint8_t x73 = addcarryx_u32(x70, x49, x51, &x72);
  uint32_t x75; uint8_t x76 = addcarryx_u32(x73, x52, x54, &x75);
  uint32_t x78; addcarryx_u32(0x0, x76, x55, &x78);
  uint32_t x82;  uint32_t x81 = mulx_u32(x33, 0xffffffff, &x82);
  uint32_t x85;  uint32_t x84 = mulx_u32(x33, 0xffffffff, &x85);
  uint32_t x88;  uint32_t x87 = mulx_u32(x33, 0xffffffff, &x88);
  uint32_t x91;  uint32_t x90 = mulx_u32(x33, 0xffffffff, &x91);
  uint32_t x93; uint8_t x94 = addcarryx_u32(0x0, x82, x84, &x93);
  uint32_t x96; uint8_t x97 = addcarryx_u32(x94, x85, x87, &x96);
  uint32_t x99; uint8_t x100 = addcarryx_u32(x97, x88, 0x0, &x99);
  uint8_t x101 = (0x0 + 0x0);
  uint32_t _1; uint8_t x104 = addcarryx_u32(0x0, x33, x81, &_1);
  uint32_t x106; uint8_t x107 = addcarryx_u32(x104, x57, x93, &x106);
  uint32_t x109; uint8_t x110 = addcarryx_u32(x107, x60, x96, &x109);
  uint32_t x112; uint8_t x113 = addcarryx_u32(x110, x63, x99, &x112);
  uint32_t x115; uint8_t x116 = addcarryx_u32(x113, x66, x100, &x115);
  uint32_t x118; uint8_t x119 = addcarryx_u32(x116, x69, x101, &x118);
  uint32_t x121; uint8_t x122 = addcarryx_u32(x119, x72, x33, &x121);
  uint32_t x124; uint8_t x125 = addcarryx_u32(x122, x75, x90, &x124);
  uint32_t x127; uint8_t x128 = addcarryx_u32(x125, x78, x91, &x127);
  uint8_t x129 = (x128 + 0x0);
  uint32_t x132;  uint32_t x131 = mulx_u32(x7, x19, &x132);
  uint32_t x135;  uint32_t x134 = mulx_u32(x7, x21, &x135);
  uint32_t x138;  uint32_t x137 = mulx_u32(x7, x23, &x138);
  uint32_t x141;  uint32_t x140 = mulx_u32(x7, x25, &x141);
  uint32_t x144;  uint32_t x143 = mulx_u32(x7, x27, &x144);
  uint32_t x147;  uint32_t x146 = mulx_u32(x7, x29, &x147);
  uint32_t x150;  uint32_t x149 = mulx_u32(x7, x31, &x150);
  uint32_t x153;  uint32_t x152 = mulx_u32(x7, x30, &x153);
  uint32_t x155; uint8_t x156 = addcarryx_u32(0x0, x132, x134, &x155);
  uint32_t x158; uint8_t x159 = addcarryx_u32(x156, x135, x137, &x158);
  uint32_t x161; uint8_t x162 = addcarryx_u32(x159, x138, x140, &x161);
  uint32_t x164; uint8_t x165 = addcarryx_u32(x162, x141, x143, &x164);
  uint32_t x167; uint8_t x168 = addcarryx_u32(x165, x144, x146, &x167);
  uint32_t x170; uint8_t x171 = addcarryx_u32(x168, x147, x149, &x170);
  uint32_t x173; uint8_t x174 = addcarryx_u32(x171, x150, x152, &x173);
  uint32_t x176; addcarryx_u32(0x0, x174, x153, &x176);
  uint32_t x179; uint8_t x180 = addcarryx_u32(0x0, x106, x131, &x179);
  uint32_t x182; uint8_t x183 = addcarryx_u32(x180, x109, x155, &x182);
  uint32_t x185; uint8_t x186 = addcarryx_u32(x183, x112, x158, &x185);
  uint32_t x188; uint8_t x189 = addcarryx_u32(x186, x115, x161, &x188);
  uint32_t x191; uint8_t x192 = addcarryx_u32(x189, x118, x164, &x191);
  uint32_t x194; uint8_t x195 = addcarryx_u32(x192, x121, x167, &x194);
  uint32_t x197; uint8_t x198 = addcarryx_u32(x195, x124, x170, &x197);
  uint32_t x200; uint8_t x201 = addcarryx_u32(x198, x127, x173, &x200);
  uint32_t x203; uint8_t x204 = addcarryx_u32(x201, x129, x176, &x203);
  uint32_t x207;  uint32_t x206 = mulx_u32(x179, 0xffffffff, &x207);
  uint32_t x210;  uint32_t x209 = mulx_u32(x179, 0xffffffff, &x210);
  uint32_t x213;  uint32_t x212 = mulx_u32(x179, 0xffffffff, &x213);
  uint32_t x216;  uint32_t x215 = mulx_u32(x179, 0xffffffff, &x216);
  uint32_t x218; uint8_t x219 = addcarryx_u32(0x0, x207, x209, &x218);
  uint32_t x221; uint8_t x222 = addcarryx_u32(x219, x210, x212, &x221);
  uint32_t x224; uint8_t x225 = addcarryx_u32(x222, x213, 0x0, &x224);
  uint8_t x226 = (0x0 + 0x0);
  uint32_t _2; uint8_t x229 = addcarryx_u32(0x0, x179, x206, &_2);
  uint32_t x231; uint8_t x232 = addcarryx_u32(x229, x182, x218, &x231);
  uint32_t x234; uint8_t x235 = addcarryx_u32(x232, x185, x221, &x234);
  uint32_t x237; uint8_t x238 = addcarryx_u32(x235, x188, x224, &x237);
  uint32_t x240; uint8_t x241 = addcarryx_u32(x238, x191, x225, &x240);
  uint32_t x243; uint8_t x244 = addcarryx_u32(x241, x194, x226, &x243);
  uint32_t x246; uint8_t x247 = addcarryx_u32(x244, x197, x179, &x246);
  uint32_t x249; uint8_t x250 = addcarryx_u32(x247, x200, x215, &x249);
  uint32_t x252; uint8_t x253 = addcarryx_u32(x250, x203, x216, &x252);
  uint8_t x254 = (x253 + x204);
  uint32_t x257;  uint32_t x256 = mulx_u32(x9, x19, &x257);
  uint32_t x260;  uint32_t x259 = mulx_u32(x9, x21, &x260);
  uint32_t x263;  uint32_t x262 = mulx_u32(x9, x23, &x263);
  uint32_t x266;  uint32_t x265 = mulx_u32(x9, x25, &x266);
  uint32_t x269;  uint32_t x268 = mulx_u32(x9, x27, &x269);
  uint32_t x272;  uint32_t x271 = mulx_u32(x9, x29, &x272);
  uint32_t x275;  uint32_t x274 = mulx_u32(x9, x31, &x275);
  uint32_t x278;  uint32_t x277 = mulx_u32(x9, x30, &x278);
  uint32_t x280; uint8_t x281 = addcarryx_u32(0x0, x257, x259, &x280);
  uint32_t x283; uint8_t x284 = addcarryx_u32(x281, x260, x262, &x283);
  uint32_t x286; uint8_t x287 = addcarryx_u32(x284, x263, x265, &x286);
  uint32_t x289; uint8_t x290 = addcarryx_u32(x287, x266, x268, &x289);
  uint32_t x292; uint8_t x293 = addcarryx_u32(x290, x269, x271, &x292);
  uint32_t x295; uint8_t x296 = addcarryx_u32(x293, x272, x274, &x295);
  uint32_t x298; uint8_t x299 = addcarryx_u32(x296, x275, x277, &x298);
  uint32_t x301; addcarryx_u32(0x0, x299, x278, &x301);
  uint32_t x304; uint8_t x305 = addcarryx_u32(0x0, x231, x256, &x304);
  uint32_t x307; uint8_t x308 = addcarryx_u32(x305, x234, x280, &x307);
  uint32_t x310; uint8_t x311 = addcarryx_u32(x308, x237, x283, &x310);
  uint32_t x313; uint8_t x314 = addcarryx_u32(x311, x240, x286, &x313);
  uint32_t x316; uint8_t x317 = addcarryx_u32(x314, x243, x289, &x316);
  uint32_t x319; uint8_t x320 = addcarryx_u32(x317, x246, x292, &x319);
  uint32_t x322; uint8_t x323 = addcarryx_u32(x320, x249, x295, &x322);
  uint32_t x325; uint8_t x326 = addcarryx_u32(x323, x252, x298, &x325);
  uint32_t x328; uint8_t x329 = addcarryx_u32(x326, x254, x301, &x328);
  uint32_t x332;  uint32_t x331 = mulx_u32(x304, 0xffffffff, &x332);
  uint32_t x335;  uint32_t x334 = mulx_u32(x304, 0xffffffff, &x335);
  uint32_t x338;  uint32_t x337 = mulx_u32(x304, 0xffffffff, &x338);
  uint32_t x341;  uint32_t x340 = mulx_u32(x304, 0xffffffff, &x341);
  uint32_t x343; uint8_t x344 = addcarryx_u32(0x0, x332, x334, &x343);
  uint32_t x346; uint8_t x347 = addcarryx_u32(x344, x335, x337, &x346);
  uint32_t x349; uint8_t x350 = addcarryx_u32(x347, x338, 0x0, &x349);
  uint8_t x351 = (0x0 + 0x0);
  uint32_t _3; uint8_t x354 = addcarryx_u32(0x0, x304, x331, &_3);
  uint32_t x356; uint8_t x357 = addcarryx_u32(x354, x307, x343, &x356);
  uint32_t x359; uint8_t x360 = addcarryx_u32(x357, x310, x346, &x359);
  uint32_t x362; uint8_t x363 = addcarryx_u32(x360, x313, x349, &x362);
  uint32_t x365; uint8_t x366 = addcarryx_u32(x363, x316, x350, &x365);
  uint32_t x368; uint8_t x369 = addcarryx_u32(x366, x319, x351, &x368);
  uint32_t x371; uint8_t x372 = addcarryx_u32(x369, x322, x304, &x371);
  uint32_t x374; uint8_t x375 = addcarryx_u32(x372, x325, x340, &x374);
  uint32_t x377; uint8_t x378 = addcarryx_u32(x375, x328, x341, &x377);
  uint8_t x379 = (x378 + x329);
  uint32_t x382;  uint32_t x381 = mulx_u32(x11, x19, &x382);
  uint32_t x385;  uint32_t x384 = mulx_u32(x11, x21, &x385);
  uint32_t x388;  uint32_t x387 = mulx_u32(x11, x23, &x388);
  uint32_t x391;  uint32_t x390 = mulx_u32(x11, x25, &x391);
  uint32_t x394;  uint32_t x393 = mulx_u32(x11, x27, &x394);
  uint32_t x397;  uint32_t x396 = mulx_u32(x11, x29, &x397);
  uint32_t x400;  uint32_t x399 = mulx_u32(x11, x31, &x400);
  uint32_t x403;  uint32_t x402 = mulx_u32(x11, x30, &x403);
  uint32_t x405; uint8_t x406 = addcarryx_u32(0x0, x382, x384, &x405);
  uint32_t x408; uint8_t x409 = addcarryx_u32(x406, x385, x387, &x408);
  uint32_t x411; uint8_t x412 = addcarryx_u32(x409, x388, x390, &x411);
  uint32_t x414; uint8_t x415 = addcarryx_u32(x412, x391, x393, &x414);
  uint32_t x417; uint8_t x418 = addcarryx_u32(x415, x394, x396, &x417);
  uint32_t x420; uint8_t x421 = addcarryx_u32(x418, x397, x399, &x420);
  uint32_t x423; uint8_t x424 = addcarryx_u32(x421, x400, x402, &x423);
  uint32_t x426; addcarryx_u32(0x0, x424, x403, &x426);
  uint32_t x429; uint8_t x430 = addcarryx_u32(0x0, x356, x381, &x429);
  uint32_t x432; uint8_t x433 = addcarryx_u32(x430, x359, x405, &x432);
  uint32_t x435; uint8_t x436 = addcarryx_u32(x433, x362, x408, &x435);
  uint32_t x438; uint8_t x439 = addcarryx_u32(x436, x365, x411, &x438);
  uint32_t x441; uint8_t x442 = addcarryx_u32(x439, x368, x414, &x441);
  uint32_t x444; uint8_t x445 = addcarryx_u32(x442, x371, x417, &x444);
  uint32_t x447; uint8_t x448 = addcarryx_u32(x445, x374, x420, &x447);
  uint32_t x450; uint8_t x451 = addcarryx_u32(x448, x377, x423, &x450);
  uint32_t x453; uint8_t x454 = addcarryx_u32(x451, x379, x426, &x453);
  uint32_t x457;  uint32_t x456 = mulx_u32(x429, 0xffffffff, &x457);
  uint32_t x460;  uint32_t x459 = mulx_u32(x429, 0xffffffff, &x460);
  uint32_t x463;  uint32_t x462 = mulx_u32(x429, 0xffffffff, &x463);
  uint32_t x466;  uint32_t x465 = mulx_u32(x429, 0xffffffff, &x466);
  uint32_t x468; uint8_t x469 = addcarryx_u32(0x0, x457, x459, &x468);
  uint32_t x471; uint8_t x472 = addcarryx_u32(x469, x460, x462, &x471);
  uint32_t x474; uint8_t x475 = addcarryx_u32(x472, x463, 0x0, &x474);
  uint8_t x476 = (0x0 + 0x0);
  uint32_t _4; uint8_t x479 = addcarryx_u32(0x0, x429, x456, &_4);
  uint32_t x481; uint8_t x482 = addcarryx_u32(x479, x432, x468, &x481);
  uint32_t x484; uint8_t x485 = addcarryx_u32(x482, x435, x471, &x484);
  uint32_t x487; uint8_t x488 = addcarryx_u32(x485, x438, x474, &x487);
  uint32_t x490; uint8_t x491 = addcarryx_u32(x488, x441, x475, &x490);
  uint32_t x493; uint8_t x494 = addcarryx_u32(x491, x444, x476, &x493);
  uint32_t x496; uint8_t x497 = addcarryx_u32(x494, x447, x429, &x496);
  uint32_t x499; uint8_t x500 = addcarryx_u32(x497, x450, x465, &x499);
  uint32_t x502; uint8_t x503 = addcarryx_u32(x500, x453, x466, &x502);
  uint8_t x504 = (x503 + x454);
  uint32_t x507;  uint32_t x506 = mulx_u32(x13, x19, &x507);
  uint32_t x510;  uint32_t x509 = mulx_u32(x13, x21, &x510);
  uint32_t x513;  uint32_t x512 = mulx_u32(x13, x23, &x513);
  uint32_t x516;  uint32_t x515 = mulx_u32(x13, x25, &x516);
  uint32_t x519;  uint32_t x518 = mulx_u32(x13, x27, &x519);
  uint32_t x522;  uint32_t x521 = mulx_u32(x13, x29, &x522);
  uint32_t x525;  uint32_t x524 = mulx_u32(x13, x31, &x525);
  uint32_t x528;  uint32_t x527 = mulx_u32(x13, x30, &x528);
  uint32_t x530; uint8_t x531 = addcarryx_u32(0x0, x507, x509, &x530);
  uint32_t x533; uint8_t x534 = addcarryx_u32(x531, x510, x512, &x533);
  uint32_t x536; uint8_t x537 = addcarryx_u32(x534, x513, x515, &x536);
  uint32_t x539; uint8_t x540 = addcarryx_u32(x537, x516, x518, &x539);
  uint32_t x542; uint8_t x543 = addcarryx_u32(x540, x519, x521, &x542);
  uint32_t x545; uint8_t x546 = addcarryx_u32(x543, x522, x524, &x545);
  uint32_t x548; uint8_t x549 = addcarryx_u32(x546, x525, x527, &x548);
  uint32_t x551; addcarryx_u32(0x0, x549, x528, &x551);
  uint32_t x554; uint8_t x555 = addcarryx_u32(0x0, x481, x506, &x554);
  uint32_t x557; uint8_t x558 = addcarryx_u32(x555, x484, x530, &x557);
  uint32_t x560; uint8_t x561 = addcarryx_u32(x558, x487, x533, &x560);
  uint32_t x563; uint8_t x564 = addcarryx_u32(x561, x490, x536, &x563);
  uint32_t x566; uint8_t x567 = addcarryx_u32(x564, x493, x539, &x566);
  uint32_t x569; uint8_t x570 = addcarryx_u32(x567, x496, x542, &x569);
  uint32_t x572; uint8_t x573 = addcarryx_u32(x570, x499, x545, &x572);
  uint32_t x575; uint8_t x576 = addcarryx_u32(x573, x502, x548, &x575);
  uint32_t x578; uint8_t x579 = addcarryx_u32(x576, x504, x551, &x578);
  uint32_t x582;  uint32_t x581 = mulx_u32(x554, 0xffffffff, &x582);
  uint32_t x585;  uint32_t x584 = mulx_u32(x554, 0xffffffff, &x585);
  uint32_t x588;  uint32_t x587 = mulx_u32(x554, 0xffffffff, &x588);
  uint32_t x591;  uint32_t x590 = mulx_u32(x554, 0xffffffff, &x591);
  uint32_t x593; uint8_t x594 = addcarryx_u32(0x0, x582, x584, &x593);
  uint32_t x596; uint8_t x597 = addcarryx_u32(x594, x585, x587, &x596);
  uint32_t x599; uint8_t x600 = addcarryx_u32(x597, x588, 0x0, &x599);
  uint8_t x601 = (0x0 + 0x0);
  uint32_t _5; uint8_t x604 = addcarryx_u32(0x0, x554, x581, &_5);
  uint32_t x606; uint8_t x607 = addcarryx_u32(x604, x557, x593, &x606);
  uint32_t x609; uint8_t x610 = addcarryx_u32(x607, x560, x596, &x609);
  uint32_t x612; uint8_t x613 = addcarryx_u32(x610, x563, x599, &x612);
  uint32_t x615; uint8_t x616 = addcarryx_u32(x613, x566, x600, &x615);
  uint32_t x618; uint8_t x619 = addcarryx_u32(x616, x569, x601, &x618);
  uint32_t x621; uint8_t x622 = addcarryx_u32(x619, x572, x554, &x621);
  uint32_t x624; uint8_t x625 = addcarryx_u32(x622, x575, x590, &x624);
  uint32_t x627; uint8_t x628 = addcarryx_u32(x625, x578, x591, &x627);
  uint8_t x629 = (x628 + x579);
  uint32_t x632;  uint32_t x631 = mulx_u32(x15, x19, &x632);
  uint32_t x635;  uint32_t x634 = mulx_u32(x15, x21, &x635);
  uint32_t x638;  uint32_t x637 = mulx_u32(x15, x23, &x638);
  uint32_t x641;  uint32_t x640 = mulx_u32(x15, x25, &x641);
  uint32_t x644;  uint32_t x643 = mulx_u32(x15, x27, &x644);
  uint32_t x647;  uint32_t x646 = mulx_u32(x15, x29, &x647);
  uint32_t x650;  uint32_t x649 = mulx_u32(x15, x31, &x650);
  uint32_t x653;  uint32_t x652 = mulx_u32(x15, x30, &x653);
  uint32_t x655; uint8_t x656 = addcarryx_u32(0x0, x632, x634, &x655);
  uint32_t x658; uint8_t x659 = addcarryx_u32(x656, x635, x637, &x658);
  uint32_t x661; uint8_t x662 = addcarryx_u32(x659, x638, x640, &x661);
  uint32_t x664; uint8_t x665 = addcarryx_u32(x662, x641, x643, &x664);
  uint32_t x667; uint8_t x668 = addcarryx_u32(x665, x644, x646, &x667);
  uint32_t x670; uint8_t x671 = addcarryx_u32(x668, x647, x649, &x670);
  uint32_t x673; uint8_t x674 = addcarryx_u32(x671, x650, x652, &x673);
  uint32_t x676; addcarryx_u32(0x0, x674, x653, &x676);
  uint32_t x679; uint8_t x680 = addcarryx_u32(0x0, x606, x631, &x679);
  uint32_t x682; uint8_t x683 = addcarryx_u32(x680, x609, x655, &x682);
  uint32_t x685; uint8_t x686 = addcarryx_u32(x683, x612, x658, &x685);
  uint32_t x688; uint8_t x689 = addcarryx_u32(x686, x615, x661, &x688);
  uint32_t x691; uint8_t x692 = addcarryx_u32(x689, x618, x664, &x691);
  uint32_t x694; uint8_t x695 = addcarryx_u32(x692, x621, x667, &x694);
  uint32_t x697; uint8_t x698 = addcarryx_u32(x695, x624, x670, &x697);
  uint32_t x700; uint8_t x701 = addcarryx_u32(x698, x627, x673, &x700);
  uint32_t x703; uint8_t x704 = addcarryx_u32(x701, x629, x676, &x703);
  uint32_t x707;  uint32_t x706 = mulx_u32(x679, 0xffffffff, &x707);
  uint32_t x710;  uint32_t x709 = mulx_u32(x679, 0xffffffff, &x710);
  uint32_t x713;  uint32_t x712 = mulx_u32(x679, 0xffffffff, &x713);
  uint32_t x716;  uint32_t x715 = mulx_u32(x679, 0xffffffff, &x716);
  uint32_t x718; uint8_t x719 = addcarryx_u32(0x0, x707, x709, &x718);
  uint32_t x721; uint8_t x722 = addcarryx_u32(x719, x710, x712, &x721);
  uint32_t x724; uint8_t x725 = addcarryx_u32(x722, x713, 0x0, &x724);
  uint8_t x726 = (0x0 + 0x0);
  uint32_t _6; uint8_t x729 = addcarryx_u32(0x0, x679, x706, &_6);
  uint32_t x731; uint8_t x732 = addcarryx_u32(x729, x682, x718, &x731);
  uint32_t x734; uint8_t x735 = addcarryx_u32(x732, x685, x721, &x734);
  uint32_t x737; uint8_t x738 = addcarryx_u32(x735, x688, x724, &x737);
  uint32_t x740; uint8_t x741 = addcarryx_u32(x738, x691, x725, &x740);
  uint32_t x743; uint8_t x744 = addcarryx_u32(x741, x694, x726, &x743);
  uint32_t x746; uint8_t x747 = addcarryx_u32(x744, x697, x679, &x746);
  uint32_t x749; uint8_t x750 = addcarryx_u32(x747, x700, x715, &x749);
  uint32_t x752; uint8_t x753 = addcarryx_u32(x750, x703, x716, &x752);
  uint8_t x754 = (x753 + x704);
  uint32_t x757;  uint32_t x756 = mulx_u32(x17, x19, &x757);
  uint32_t x760;  uint32_t x759 = mulx_u32(x17, x21, &x760);
  uint32_t x763;  uint32_t x762 = mulx_u32(x17, x23, &x763);
  uint32_t x766;  uint32_t x765 = mulx_u32(x17, x25, &x766);
  uint32_t x769;  uint32_t x768 = mulx_u32(x17, x27, &x769);
  uint32_t x772;  uint32_t x771 = mulx_u32(x17, x29, &x772);
  uint32_t x775;  uint32_t x774 = mulx_u32(x17, x31, &x775);
  uint32_t x778;  uint32_t x777 = mulx_u32(x17, x30, &x778);
  uint32_t x780; uint8_t x781 = addcarryx_u32(0x0, x757, x759, &x780);
  uint32_t x783; uint8_t x784 = addcarryx_u32(x781, x760, x762, &x783);
  uint32_t x786; uint8_t x787 = addcarryx_u32(x784, x763, x765, &x786);
  uint32_t x789; uint8_t x790 = addcarryx_u32(x787, x766, x768, &x789);
  uint32_t x792; uint8_t x793 = addcarryx_u32(x790, x769, x771, &x792);
  uint32_t x795; uint8_t x796 = addcarryx_u32(x793, x772, x774, &x795);
  uint32_t x798; uint8_t x799 = addcarryx_u32(x796, x775, x777, &x798);
  uint32_t x801; addcarryx_u32(0x0, x799, x778, &x801);
  uint32_t x804; uint8_t x805 = addcarryx_u32(0x0, x731, x756, &x804);
  uint32_t x807; uint8_t x808 = addcarryx_u32(x805, x734, x780, &x807);
  uint32_t x810; uint8_t x811 = addcarryx_u32(x808, x737, x783, &x810);
  uint32_t x813; uint8_t x814 = addcarryx_u32(x811, x740, x786, &x813);
  uint32_t x816; uint8_t x817 = addcarryx_u32(x814, x743, x789, &x816);
  uint32_t x819; uint8_t x820 = addcarryx_u32(x817, x746, x792, &x819);
  uint32_t x822; uint8_t x823 = addcarryx_u32(x820, x749, x795, &x822);
  uint32_t x825; uint8_t x826 = addcarryx_u32(x823, x752, x798, &x825);
  uint32_t x828; uint8_t x829 = addcarryx_u32(x826, x754, x801, &x828);
  uint32_t x832;  uint32_t x831 = mulx_u32(x804, 0xffffffff, &x832);
  uint32_t x835;  uint32_t x834 = mulx_u32(x804, 0xffffffff, &x835);
  uint32_t x838;  uint32_t x837 = mulx_u32(x804, 0xffffffff, &x838);
  uint32_t x841;  uint32_t x840 = mulx_u32(x804, 0xffffffff, &x841);
  uint32_t x843; uint8_t x844 = addcarryx_u32(0x0, x832, x834, &x843);
  uint32_t x846; uint8_t x847 = addcarryx_u32(x844, x835, x837, &x846);
  uint32_t x849; uint8_t x850 = addcarryx_u32(x847, x838, 0x0, &x849);
  uint8_t x851 = (0x0 + 0x0);
  uint32_t _7; uint8_t x854 = addcarryx_u32(0x0, x804, x831, &_7);
  uint32_t x856; uint8_t x857 = addcarryx_u32(x854, x807, x843, &x856);
  uint32_t x859; uint8_t x860 = addcarryx_u32(x857, x810, x846, &x859);
  uint32_t x862; uint8_t x863 = addcarryx_u32(x860, x813, x849, &x862);
  uint32_t x865; uint8_t x866 = addcarryx_u32(x863, x816, x850, &x865);
  uint32_t x868; uint8_t x869 = addcarryx_u32(x866, x819, x851, &x868);
  uint32_t x871; uint8_t x872 = addcarryx_u32(x869, x822, x804, &x871);
  uint32_t x874; uint8_t x875 = addcarryx_u32(x872, x825, x840, &x874);
  uint32_t x877; uint8_t x878 = addcarryx_u32(x875, x828, x841, &x877);
  uint8_t x879 = (x878 + x829);
  uint32_t x882;  uint32_t x881 = mulx_u32(x16, x19, &x882);
  uint32_t x885;  uint32_t x884 = mulx_u32(x16, x21, &x885);
  uint32_t x888;  uint32_t x887 = mulx_u32(x16, x23, &x888);
  uint32_t x891;  uint32_t x890 = mulx_u32(x16, x25, &x891);
  uint32_t x894;  uint32_t x893 = mulx_u32(x16, x27, &x894);
  uint32_t x897;  uint32_t x896 = mulx_u32(x16, x29, &x897);
  uint32_t x900;  uint32_t x899 = mulx_u32(x16, x31, &x900);
  uint32_t x903;  uint32_t x902 = mulx_u32(x16, x30, &x903);
  uint32_t x905; uint8_t x906 = addcarryx_u32(0x0, x882, x884, &x905);
  uint32_t x908; uint8_t x909 = addcarryx_u32(x906, x885, x887, &x908);
  uint32_t x911; uint8_t x912 = addcarryx_u32(x909, x888, x890, &x911);
  uint32_t x914; uint8_t x915 = addcarryx_u32(x912, x891, x893, &x914);
  uint32_t x917; uint8_t x918 = addcarryx_u32(x915, x894, x896, &x917);
  uint32_t x920; uint8_t x921 = addcarryx_u32(x918, x897, x899, &x920);
  uint32_t x923; uint8_t x924 = addcarryx_u32(x921, x900, x902, &x923);
  uint32_t x926; addcarryx_u32(0x0, x924, x903, &x926);
  uint32_t x929; uint8_t x930 = addcarryx_u32(0x0, x856, x881, &x929);
  uint32_t x932; uint8_t x933 = addcarryx_u32(x930, x859, x905, &x932);
  uint32_t x935; uint8_t x936 = addcarryx_u32(x933, x862, x908, &x935);
  uint32_t x938; uint8_t x939 = addcarryx_u32(x936, x865, x911, &x938);
  uint32_t x941; uint8_t x942 = addcarryx_u32(x939, x868, x914, &x941);
  uint32_t x944; uint8_t x945 = addcarryx_u32(x942, x871, x917, &x944);
  uint32_t x947; uint8_t x948 = addcarryx_u32(x945, x874, x920, &x947);
  uint32_t x950; uint8_t x951 = addcarryx_u32(x948, x877, x923, &x950);
  uint32_t x953; uint8_t x954 = addcarryx_u32(x951, x879, x926, &x953);
  uint32_t x957;  uint32_t x956 = mulx_u32(x929, 0xffffffff, &x957);
  uint32_t x960;  uint32_t x959 = mulx_u32(x929, 0xffffffff, &x960);
  uint32_t x963;  uint32_t x962 = mulx_u32(x929, 0xffffffff, &x963);
  uint32_t x966;  uint32_t x965 = mulx_u32(x929, 0xffffffff, &x966);
  uint32_t x968; uint8_t x969 = addcarryx_u32(0x0, x957, x959, &x968);
  uint32_t x971; uint8_t x972 = addcarryx_u32(x969, x960, x962, &x971);
  uint32_t x974; uint8_t x975 = addcarryx_u32(x972, x963, 0x0, &x974);
  uint8_t x976 = (0x0 + 0x0);
  uint32_t _8; uint8_t x979 = addcarryx_u32(0x0, x929, x956, &_8);
  uint32_t x981; uint8_t x982 = addcarryx_u32(x979, x932, x968, &x981);
  uint32_t x984; uint8_t x985 = addcarryx_u32(x982, x935, x971, &x984);
  uint32_t x987; uint8_t x988 = addcarryx_u32(x985, x938, x974, &x987);
  uint32_t x990; uint8_t x991 = addcarryx_u32(x988, x941, x975, &x990);
  uint32_t x993; uint8_t x994 = addcarryx_u32(x991, x944, x976, &x993);
  uint32_t x996; uint8_t x997 = addcarryx_u32(x994, x947, x929, &x996);
  uint32_t x999; uint8_t x1000 = addcarryx_u32(x997, x950, x965, &x999);
  uint32_t x1002; uint8_t x1003 = addcarryx_u32(x1000, x953, x966, &x1002);
  uint8_t x1004 = (x1003 + x954);
  uint32_t x1006; uint8_t x1007 = subborrow_u32(0x0, x981, 0xffffffff, &x1006);
  uint32_t x1009; uint8_t x1010 = subborrow_u32(x1007, x984, 0xffffffff, &x1009);
  uint32_t x1012; uint8_t x1013 = subborrow_u32(x1010, x987, 0xffffffff, &x1012);
  uint32_t x1015; uint8_t x1016 = subborrow_u32(x1013, x990, 0x0, &x1015);
  uint32_t x1018; uint8_t x1019 = subborrow_u32(x1016, x993, 0x0, &x1018);
  uint32_t x1021; uint8_t x1022 = subborrow_u32(x1019, x996, 0x0, &x1021);
  uint32_t x1024; uint8_t x1025 = subborrow_u32(x1022, x999, 0x1, &x1024);
  uint32_t x1027; uint8_t x1028 = subborrow_u32(x1025, x1002, 0xffffffff, &x1027);
  uint32_t _9; uint8_t x1031 = subborrow_u32(x1028, x1004, 0x0, &_9);
  uint32_t x1032 = cmovznz_u32(x1031, x1027, x1002);
  uint32_t x1033 = cmovznz_u32(x1031, x1024, x999);
  uint32_t x1034 = cmovznz_u32(x1031, x1021, x996);
  uint32_t x1035 = cmovznz_u32(x1031, x1018, x993);
  uint32_t x1036 = cmovznz_u32(x1031, x1015, x990);
  uint32_t x1037 = cmovznz_u32(x1031, x1012, x987);
  uint32_t x1038 = cmovznz_u32(x1031, x1009, x984);
  uint32_t x1039 = cmovznz_u32(x1031, x1006, x981);
  out[0] = x1039;
  out[1] = x1038;
  out[2] = x1037;
  out[3] = x1036;
  out[4] = x1035;
  out[5] = x1034;
  out[6] = x1033;
  out[7] = x1032;
}

// NOTE: the following functions are generated from fiat-crypto, from the same
// template as their 64-bit counterparts above, but the correctness proof of
// the template was not composed with the correctness proof of the
// specialization pipeline. This is because Coq unexplainedly loops on trying
// to synthesize opp and sub using the normal pipeline.

static void fe_sub(uint32_t out[8], const uint32_t in1[8], const uint32_t in2[8]) {
  const uint32_t x14 = in1[7];
  const uint32_t x15 = in1[6];
  const uint32_t x13 = in1[5];
  const uint32_t x11 = in1[4];
  const uint32_t x9 = in1[3];
  const uint32_t x7 = in1[2];
  const uint32_t x5 = in1[1];
  const uint32_t x3 = in1[0];
  const uint32_t x28 = in2[7];
  const uint32_t x29 = in2[6];
  const uint32_t x27 = in2[5];
  const uint32_t x25 = in2[4];
  const uint32_t x23 = in2[3];
  const uint32_t x21 = in2[2];
  const uint32_t x19 = in2[1];
  const uint32_t x17 = in2[0];
  uint32_t x31; uint8_t x32 = subborrow_u32(0x0, x3, x17, &x31);
  uint32_t x34; uint8_t x35 = subborrow_u32(x32, x5, x19, &x34);
  uint32_t x37; uint8_t x38 = subborrow_u32(x35, x7, x21, &x37);
  uint32_t x40; uint8_t x41 = subborrow_u32(x38, x9, x23, &x40);
  uint32_t x43; uint8_t x44 = subborrow_u32(x41, x11, x25, &x43);
  uint32_t x46; uint8_t x47 = subborrow_u32(x44, x13, x27, &x46);
  uint32_t x49; uint8_t x50 = subborrow_u32(x47, x15, x29, &x49);
  uint32_t x52; uint8_t x53 = subborrow_u32(x50, x14, x28, &x52);
  uint32_t x54 = cmovznz_u32(x53, 0x0, 0xffffffff);
  uint32_t x56; uint8_t x57 = addcarryx_u32(0x0, x31, (x54 & 0xffffffff), &x56);
  uint32_t x59; uint8_t x60 = addcarryx_u32(x57, x34, (x54 & 0xffffffff), &x59);
  uint32_t x62; uint8_t x63 = addcarryx_u32(x60, x37, (x54 & 0xffffffff), &x62);
  uint32_t x65; uint8_t x66 = addcarryx_u32(x63, x40, 0x0, &x65);
  uint32_t x68; uint8_t x69 = addcarryx_u32(x66, x43, 0x0, &x68);
  uint32_t x71; uint8_t x72 = addcarryx_u32(x69, x46, 0x0, &x71);
  uint32_t x74; uint8_t x75 = addcarryx_u32(x72, x49, ((uint8_t)x54 & 0x1), &x74);
  uint32_t x77; addcarryx_u32(x75, x52, (x54 & 0xffffffff), &x77);
  out[0] = x56;
  out[1] = x59;
  out[2] = x62;
  out[3] = x65;
  out[4] = x68;
  out[5] = x71;
  out[6] = x74;
  out[7] = x77;
}

// fe_op sets out = -in
static void fe_opp(uint32_t out[8], const uint32_t in1[8]) {
  const uint32_t x12 = in1[7];
  const uint32_t x13 = in1[6];
  const uint32_t x11 = in1[5];
  const uint32_t x9 = in1[4];
  const uint32_t x7 = in1[3];
  const uint32_t x5 = in1[2];
  const uint32_t x3 = in1[1];
  const uint32_t x1 = in1[0];
  uint32_t x15; uint8_t x16 = subborrow_u32(0x0, 0x0, x1, &x15);
  uint32_t x18; uint8_t x19 = subborrow_u32(x16, 0x0, x3, &x18);
  uint32_t x21; uint8_t x22 = subborrow_u32(x19, 0x0, x5, &x21);
  uint32_t x24; uint8_t x25 = subborrow_u32(x22, 0x0, x7, &x24);
  uint32_t x27; uint8_t x28 = subborrow_u32(x25, 0x0, x9, &x27);
  uint32_t x30; uint8_t x31 = subborrow_u32(x28, 0x0, x11, &x30);
  uint32_t x33; uint8_t x34 = subborrow_u32(x31, 0x0, x13, &x33);
  uint32_t x36; uint8_t x37 = subborrow_u32(x34, 0x0, x12, &x36);
  uint32_t x38 = cmovznz_u32(x37, 0x0, 0xffffffff);
  uint32_t x40; uint8_t x41 = addcarryx_u32(0x0, x15, (x38 & 0xffffffff), &x40);
  uint32_t x43; uint8_t x44 = addcarryx_u32(x41, x18, (x38 & 0xffffffff), &x43);
  uint32_t x46; uint8_t x47 = addcarryx_u32(x44, x21, (x38 & 0xffffffff), &x46);
  uint32_t x49; uint8_t x50 = addcarryx_u32(x47, x24, 0x0, &x49);
  uint32_t x52; uint8_t x53 = addcarryx_u32(x50, x27, 0x0, &x52);
  uint32_t x55; uint8_t x56 = addcarryx_u32(x53, x30, 0x0, &x55);
  uint32_t x58; uint8_t x59 = addcarryx_u32(x56, x33, ((uint8_t)x38 & 0x1), &x58);
  uint32_t x61; addcarryx_u32(x59, x36, (x38 & 0xffffffff), &x61);
  out[0] = x40;
  out[1] = x43;
  out[2] = x46;
  out[3] = x49;
  out[4] = x52;
  out[5] = x55;
  out[6] = x58;
  out[7] = x61;
}

#endif

// utility functions, handwritten

#define NBYTES 32

#if defined(BORINGSSL_NISTP256_64BIT)

#define NLIMBS 4
typedef uint64_t limb_t;
#define cmovznz_limb cmovznz_u64
typedef uint64_t fe[NLIMBS];
#else // 64BIT; else 32BIT

#define NLIMBS 8
typedef uint32_t limb_t;
#define cmovznz_limb cmovznz_u32
typedef uint32_t fe[NLIMBS];

#endif // 64BIT

static limb_t fe_nz(const limb_t in1[NLIMBS]) {
  limb_t ret = 0;
  for (int i = 0; i < NLIMBS; i++) {
    ret |= in1[i];
  }
  return ret;
}

static void fe_copy(limb_t out[NLIMBS], const limb_t in1[NLIMBS]) {
  for (int i = 0; i < NLIMBS; i++) {
    out[i] = in1[i];
  }
}

static void fe_cmovznz(limb_t out[NLIMBS], limb_t t, const limb_t z[NLIMBS],
                       const limb_t nz[NLIMBS]) {
  for (int i = 0; i < NLIMBS; i++) {
    out[i] = cmovznz_limb(t, z[i], nz[i]);
  }
}

static void fe_sqr(fe out, const fe in) {
  fe_mul(out, in, in);
}

static void fe_tobytes(uint8_t out[NBYTES], const fe in) {
  for (int i = 0; i<NBYTES; i++) {
    out[i] = (uint8_t)(in[i/sizeof(in[0])] >> (8*(i%sizeof(in[0]))));
  }
}

static void fe_frombytes(fe out, const uint8_t in[NBYTES]) {
  for (int i = 0; i<NLIMBS; i++) {
    out[i] = 0;
  }
  for (int i = 0; i<NBYTES; i++) {
    out[i/sizeof(out[0])] |= ((limb_t)in[i]) << (8*(i%sizeof(out[0])));
  }
}

static void fe_from_montgomery(fe x) {
  static const limb_t kOne[NLIMBS] = {1, 0};
  fe_mul(x, x, kOne);
}

// BN_* compatability wrappers

static int BN_to_fe(fe out, const BIGNUM *bn) {
  uint8_t tmp[NBYTES];
  if (!BN_bn2le_padded(tmp, NBYTES, bn)) {
    return 0;
  }
  fe_frombytes(out, tmp);
  return 1;
}

static BIGNUM *fe_to_BN(BIGNUM *out, const fe in) {
  uint8_t tmp[NBYTES];
  fe_tobytes(tmp, in);
  return BN_le2bn(tmp, NBYTES, out);
}

// fe_inv calculates |out| = |in|^{-1}
//
// Based on Fermat's Little Theorem:
//   a^p = a (mod p)
//   a^{p-1} = 1 (mod p)
//   a^{p-2} = a^{-1} (mod p)
static void fe_inv(fe out, const fe in) {
  fe ftmp, ftmp2;
  // each e_I will hold |in|^{2^I - 1}
  fe e2, e4, e8, e16, e32, e64;

  fe_sqr(ftmp, in);  // 2^1
  fe_mul(ftmp, in, ftmp);  // 2^2 - 2^0
  fe_copy(e2, ftmp);
  fe_sqr(ftmp, ftmp);  // 2^3 - 2^1
  fe_sqr(ftmp, ftmp);  // 2^4 - 2^2
  fe_mul(ftmp, ftmp, e2);  // 2^4 - 2^0
  fe_copy(e4, ftmp);
  fe_sqr(ftmp, ftmp);  // 2^5 - 2^1
  fe_sqr(ftmp, ftmp);  // 2^6 - 2^2
  fe_sqr(ftmp, ftmp);  // 2^7 - 2^3
  fe_sqr(ftmp, ftmp);  // 2^8 - 2^4
  fe_mul(ftmp, ftmp, e4);  // 2^8 - 2^0
  fe_copy(e8, ftmp);
  for (size_t i = 0; i < 8; i++) {
    fe_sqr(ftmp, ftmp);
  }  // 2^16 - 2^8
  fe_mul(ftmp, ftmp, e8);  // 2^16 - 2^0
  fe_copy(e16, ftmp);
  for (size_t i = 0; i < 16; i++) {
    fe_sqr(ftmp, ftmp);
  }  // 2^32 - 2^16
  fe_mul(ftmp, ftmp, e16);  // 2^32 - 2^0
  fe_copy(e32, ftmp);
  for (size_t i = 0; i < 32; i++) {
    fe_sqr(ftmp, ftmp);
  }  // 2^64 - 2^32
  fe_copy(e64, ftmp);
  fe_mul(ftmp, ftmp, in);  // 2^64 - 2^32 + 2^0
  for (size_t i = 0; i < 192; i++) {
    fe_sqr(ftmp, ftmp);
  }  // 2^256 - 2^224 + 2^192

  fe_mul(ftmp2, e64, e32);  // 2^64 - 2^0
  for (size_t i = 0; i < 16; i++) {
    fe_sqr(ftmp2, ftmp2);
  }  // 2^80 - 2^16
  fe_mul(ftmp2, ftmp2, e16);  // 2^80 - 2^0
  for (size_t i = 0; i < 8; i++) {
    fe_sqr(ftmp2, ftmp2);
  }  // 2^88 - 2^8
  fe_mul(ftmp2, ftmp2, e8);  // 2^88 - 2^0
  for (size_t i = 0; i < 4; i++) {
    fe_sqr(ftmp2, ftmp2);
  }  // 2^92 - 2^4
  fe_mul(ftmp2, ftmp2, e4);  // 2^92 - 2^0
  fe_sqr(ftmp2, ftmp2);  // 2^93 - 2^1
  fe_sqr(ftmp2, ftmp2);  // 2^94 - 2^2
  fe_mul(ftmp2, ftmp2, e2);  // 2^94 - 2^0
  fe_sqr(ftmp2, ftmp2);  // 2^95 - 2^1
  fe_sqr(ftmp2, ftmp2);  // 2^96 - 2^2
  fe_mul(ftmp2, ftmp2, in);  // 2^96 - 3

  fe_mul(out, ftmp2, ftmp);  // 2^256 - 2^224 + 2^192 + 2^96 - 3
}

// Group operations
// ----------------
//
// Building on top of the field operations we have the operations on the
// elliptic curve group itself. Points on the curve are represented in Jacobian
// coordinates.
//
// Both operations were transcribed to Coq and proven to correspond to naive
// implementations using Affine coordinates, for all suitable fields.  In the
// Coq proofs, issues of constant-time execution and memory layout (aliasing)
// conventions were not considered. Specification of affine coordinates:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Spec/WeierstrassCurve.v#L28>
// As a sanity check, a proof that these points form a commutative group:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/AffineProofs.v#L33>

// point_double calculates 2*(x_in, y_in, z_in)
//
// The method is taken from:
//   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
//
// Coq transcription and correctness proof:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
//
// Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
// while x_out == y_in is not (maybe this works, but it's not tested).
static void point_double(fe x_out, fe y_out, fe z_out,
                         const fe x_in, const fe y_in, const fe z_in) {
  fe delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
  // delta = z^2
  fe_sqr(delta, z_in);
  // gamma = y^2
  fe_sqr(gamma, y_in);
  // beta = x*gamma
  fe_mul(beta, x_in, gamma);

  // alpha = 3*(x-delta)*(x+delta)
  fe_sub(ftmp, x_in, delta);
  fe_add(ftmp2, x_in, delta);

  fe_add(tmptmp, ftmp2, ftmp2);
  fe_add(ftmp2, ftmp2, tmptmp);
  fe_mul(alpha, ftmp, ftmp2);

  // x' = alpha^2 - 8*beta
  fe_sqr(x_out, alpha);
  fe_add(fourbeta, beta, beta);
  fe_add(fourbeta, fourbeta, fourbeta);
  fe_add(tmptmp, fourbeta, fourbeta);
  fe_sub(x_out, x_out, tmptmp);

  // z' = (y + z)^2 - gamma - delta
  fe_add(delta, gamma, delta);
  fe_add(ftmp, y_in, z_in);
  fe_sqr(z_out, ftmp);
  fe_sub(z_out, z_out, delta);

  // y' = alpha*(4*beta - x') - 8*gamma^2
  fe_sub(y_out, fourbeta, x_out);
  fe_add(gamma, gamma, gamma);
  fe_sqr(gamma, gamma);
  fe_mul(y_out, alpha, y_out);
  fe_add(gamma, gamma, gamma);
  fe_sub(y_out, y_out, gamma);
}

// point_add calcuates (x1, y1, z1) + (x2, y2, z2)
//
// The method is taken from:
//   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
// adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
//
// Coq transcription and correctness proof:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L135>
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L205>
//
// This function includes a branch for checking whether the two input points
// are equal, (while not equal to the point at infinity). This case never
// happens during single point multiplication, so there is no timing leak for
// ECDH or ECDSA signing.
static void point_add(fe x3, fe y3, fe z3, const fe x1,
                      const fe y1, const fe z1, const int mixed,
                      const fe x2, const fe y2, const fe z2) {
  fe x_out, y_out, z_out;
  limb_t z1nz = fe_nz(z1);
  limb_t z2nz = fe_nz(z2);

  // z1z1 = z1z1 = z1**2
  fe z1z1; fe_sqr(z1z1, z1);

  fe u1, s1, two_z1z2;
  if (!mixed) {
    // z2z2 = z2**2
    fe z2z2; fe_sqr(z2z2, z2);

    // u1 = x1*z2z2
    fe_mul(u1, x1, z2z2);

    // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
    fe_add(two_z1z2, z1, z2);
    fe_sqr(two_z1z2, two_z1z2);
    fe_sub(two_z1z2, two_z1z2, z1z1);
    fe_sub(two_z1z2, two_z1z2, z2z2);

    // s1 = y1 * z2**3
    fe_mul(s1, z2, z2z2);
    fe_mul(s1, s1, y1);
  } else {
    // We'll assume z2 = 1 (special case z2 = 0 is handled later).

    // u1 = x1*z2z2
    fe_copy(u1, x1);
    // two_z1z2 = 2z1z2
    fe_add(two_z1z2, z1, z1);
    // s1 = y1 * z2**3
    fe_copy(s1, y1);
  }

  // u2 = x2*z1z1
  fe u2; fe_mul(u2, x2, z1z1);

  // h = u2 - u1
  fe h; fe_sub(h, u2, u1);

  limb_t xneq = fe_nz(h);

  // z_out = two_z1z2 * h
  fe_mul(z_out, h, two_z1z2);

  // z1z1z1 = z1 * z1z1
  fe z1z1z1; fe_mul(z1z1z1, z1, z1z1);

  // s2 = y2 * z1**3
  fe s2; fe_mul(s2, y2, z1z1z1);

  // r = (s2 - s1)*2
  fe r;
  fe_sub(r, s2, s1);
  fe_add(r, r, r);

  limb_t yneq = fe_nz(r);

  if (!xneq && !yneq && z1nz && z2nz) {
    point_double(x3, y3, z3, x1, y1, z1);
    return;
  }

  // I = (2h)**2
  fe i;
  fe_add(i, h, h);
  fe_sqr(i, i);

  // J = h * I
  fe j; fe_mul(j, h, i);

  // V = U1 * I
  fe v; fe_mul(v, u1, i);

  // x_out = r**2 - J - 2V
  fe_sqr(x_out, r);
  fe_sub(x_out, x_out, j);
  fe_sub(x_out, x_out, v);
  fe_sub(x_out, x_out, v);

  // y_out = r(V-x_out) - 2 * s1 * J
  fe_sub(y_out, v, x_out);
  fe_mul(y_out, y_out, r);
  fe s1j;
  fe_mul(s1j, s1, j);
  fe_sub(y_out, y_out, s1j);
  fe_sub(y_out, y_out, s1j);

  fe_cmovznz(x_out, z1nz, x2, x_out);
  fe_cmovznz(x3, z2nz, x1, x_out);
  fe_cmovznz(y_out, z1nz, y2, y_out);
  fe_cmovznz(y3, z2nz, y1, y_out);
  fe_cmovznz(z_out, z1nz, z2, z_out);
  fe_cmovznz(z3, z2nz, z1, z_out);
}

// Base point pre computation
// --------------------------
//
// Two different sorts of precomputed tables are used in the following code.
// Each contain various points on the curve, where each point is three field
// elements (x, y, z).
//
// For the base point table, z is usually 1 (0 for the point at infinity).
// This table has 2 * 16 elements, starting with the following:
// index | bits    | point
// ------+---------+------------------------------
//     0 | 0 0 0 0 | 0G
//     1 | 0 0 0 1 | 1G
//     2 | 0 0 1 0 | 2^64G
//     3 | 0 0 1 1 | (2^64 + 1)G
//     4 | 0 1 0 0 | 2^128G
//     5 | 0 1 0 1 | (2^128 + 1)G
//     6 | 0 1 1 0 | (2^128 + 2^64)G
//     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
//     8 | 1 0 0 0 | 2^192G
//     9 | 1 0 0 1 | (2^192 + 1)G
//    10 | 1 0 1 0 | (2^192 + 2^64)G
//    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
//    12 | 1 1 0 0 | (2^192 + 2^128)G
//    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
//    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
//    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
// followed by a copy of this with each element multiplied by 2^32.
//
// The reason for this is so that we can clock bits into four different
// locations when doing simple scalar multiplies against the base point,
// and then another four locations using the second 16 elements.
//
// Tables for other points have table[i] = iG for i in 0 .. 16.

// g_pre_comp is the table of precomputed base points
#if defined(BORINGSSL_NISTP256_64BIT)
static const fe g_pre_comp[2][16][3] = {
    {{{0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}},
     {{0x79e730d418a9143c, 0x75ba95fc5fedb601, 0x79fb732b77622510,
       0x18905f76a53755c6},
      {0xddf25357ce95560a, 0x8b4ab8e4ba19e45c, 0xd2e88688dd21f325,
       0x8571ff1825885d85},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x4f922fc516a0d2bb, 0xd5cc16c1a623499, 0x9241cf3a57c62c8b,
       0x2f5e6961fd1b667f},
      {0x5c15c70bf5a01797, 0x3d20b44d60956192, 0x4911b37071fdb52,
       0xf648f9168d6f0f7b},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x9e566847e137bbbc, 0xe434469e8a6a0bec, 0xb1c4276179d73463,
       0x5abe0285133d0015},
      {0x92aa837cc04c7dab, 0x573d9f4c43260c07, 0xc93156278e6cc37,
       0x94bb725b6b6f7383},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x62a8c244bfe20925, 0x91c19ac38fdce867, 0x5a96a5d5dd387063,
       0x61d587d421d324f6},
      {0xe87673a2a37173ea, 0x2384800853778b65, 0x10f8441e05bab43e,
       0xfa11fe124621efbe},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x1c891f2b2cb19ffd, 0x1ba8d5bb1923c23, 0xb6d03d678ac5ca8e,
       0x586eb04c1f13bedc},
      {0xc35c6e527e8ed09, 0x1e81a33c1819ede2, 0x278fd6c056c652fa,
       0x19d5ac0870864f11},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x62577734d2b533d5, 0x673b8af6a1bdddc0, 0x577e7c9aa79ec293,
       0xbb6de651c3b266b1},
      {0xe7e9303ab65259b3, 0xd6a0afd3d03a7480, 0xc5ac83d19b3cfc27,
       0x60b4619a5d18b99b},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xbd6a38e11ae5aa1c, 0xb8b7652b49e73658, 0xb130014ee5f87ed,
       0x9d0f27b2aeebffcd},
      {0xca9246317a730a55, 0x9c955b2fddbbc83a, 0x7c1dfe0ac019a71,
       0x244a566d356ec48d},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x56f8410ef4f8b16a, 0x97241afec47b266a, 0xa406b8e6d9c87c1,
       0x803f3e02cd42ab1b},
      {0x7f0309a804dbec69, 0xa83b85f73bbad05f, 0xc6097273ad8e197f,
       0xc097440e5067adc1},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x846a56f2c379ab34, 0xa8ee068b841df8d1, 0x20314459176c68ef,
       0xf1af32d5915f1f30},
      {0x99c375315d75bd50, 0x837cffbaf72f67bc, 0x613a41848d7723f,
       0x23d0f130e2d41c8b},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xed93e225d5be5a2b, 0x6fe799835934f3c6, 0x4314092622626ffc,
       0x50bbb4d97990216a},
      {0x378191c6e57ec63e, 0x65422c40181dcdb2, 0x41a8099b0236e0f6,
       0x2b10011801fe49c3},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xfc68b5c59b391593, 0xc385f5a2598270fc, 0x7144f3aad19adcbb,
       0xdd55899983fbae0c},
      {0x93b88b8e74b82ff4, 0xd2e03c4071e734c9, 0x9a7a9eaf43c0322a,
       0xe6e4c551149d6041},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x5fe14bfe80ec21fe, 0xf6ce116ac255be82, 0x98bc5a072f4a5d67,
       0xfad27148db7e63af},
      {0x90c0b6ac29ab05b3, 0x37a9a83c4e251ae6, 0xa7dc875c2aade7d,
       0x77387de39f0e1a84},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x1e9ecc49a56c0dd7, 0xa5cffcd846086c74, 0x8f7a1408f505aece,
       0xb37b85c0bef0c47e},
      {0x3596b6e4cc0e6a8f, 0xfd6d4bbf6b388f23, 0xaba453fac39cef4e,
       0x9c135ac8f9f628d5},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xa1c729495c8f8be, 0x2961c4803bf362bf, 0x9e418403df63d4ac,
       0xc109f9cb91ece900},
      {0xc2d095d058945705, 0xb9083d96ddeb85c0, 0x84692b8d7a40449b,
       0x9bc3344f2eee1ee1},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xd5ae35642913074, 0x55491b2748a542b1, 0x469ca665b310732a,
       0x29591d525f1a4cc1},
      {0xe76f5b6bb84f983f, 0xbe7eef419f5f84e1, 0x1200d49680baa189,
       0x6376551f18ef332c},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}}},
    {{{0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}},
     {{0x202886024147519a, 0xd0981eac26b372f0, 0xa9d4a7caa785ebc8,
       0xd953c50ddbdf58e9},
      {0x9d6361ccfd590f8f, 0x72e9626b44e6c917, 0x7fd9611022eb64cf,
       0x863ebb7e9eb288f3},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x4fe7ee31b0e63d34, 0xf4600572a9e54fab, 0xc0493334d5e7b5a4,
       0x8589fb9206d54831},
      {0xaa70f5cc6583553a, 0x879094ae25649e5, 0xcc90450710044652,
       0xebb0696d02541c4f},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xabbaa0c03b89da99, 0xa6f2d79eb8284022, 0x27847862b81c05e8,
       0x337a4b5905e54d63},
      {0x3c67500d21f7794a, 0x207005b77d6d7f61, 0xa5a378104cfd6e8,
       0xd65e0d5f4c2fbd6},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xd433e50f6d3549cf, 0x6f33696ffacd665e, 0x695bfdacce11fcb4,
       0x810ee252af7c9860},
      {0x65450fe17159bb2c, 0xf7dfbebe758b357b, 0x2b057e74d69fea72,
       0xd485717a92731745},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xce1f69bbe83f7669, 0x9f8ae8272877d6b, 0x9548ae543244278d,
       0x207755dee3c2c19c},
      {0x87bd61d96fef1945, 0x18813cefb12d28c3, 0x9fbcd1d672df64aa,
       0x48dc5ee57154b00d},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xef0f469ef49a3154, 0x3e85a5956e2b2e9a, 0x45aaec1eaa924a9c,
       0xaa12dfc8a09e4719},
      {0x26f272274df69f1d, 0xe0e4c82ca2ff5e73, 0xb9d8ce73b7a9dd44,
       0x6c036e73e48ca901},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xe1e421e1a47153f0, 0xb86c3b79920418c9, 0x93bdce87705d7672,
       0xf25ae793cab79a77},
      {0x1f3194a36d869d0c, 0x9d55c8824986c264, 0x49fb5ea3096e945e,
       0x39b8e65313db0a3e},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xe3417bc035d0b34a, 0x440b386b8327c0a7, 0x8fb7262dac0362d1,
       0x2c41114ce0cdf943},
      {0x2ba5cef1ad95a0b1, 0xc09b37a867d54362, 0x26d6cdd201e486c9,
       0x20477abf42ff9297},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xf121b41bc0a67d2, 0x62d4760a444d248a, 0xe044f1d659b4737,
       0x8fde365250bb4a8},
      {0xaceec3da848bf287, 0xc2a62182d3369d6e, 0x3582dfdc92449482,
       0x2f7e2fd2565d6cd7},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xa0122b5178a876b, 0x51ff96ff085104b4, 0x50b31ab14f29f76,
       0x84abb28b5f87d4e6},
      {0xd5ed439f8270790a, 0x2d6cb59d85e3f46b, 0x75f55c1b6c1e2212,
       0xe5436f6717655640},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xc2965ecc9aeb596d, 0x1ea03e7023c92b4, 0x4704b4b62e013961,
       0xca8fd3f905ea367},
      {0x92523a42551b2b61, 0x1eb7a89c390fcd06, 0xe7f1d2be0392a63e,
       0x96dca2644ddb0c33},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x231c210e15339848, 0xe87a28e870778c8d, 0x9d1de6616956e170,
       0x4ac3c9382bb09c0b},
      {0x19be05516998987d, 0x8b2376c4ae09f4d6, 0x1de0b7651a3f933d,
       0x380d94c7e39705f4},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x3685954b8c31c31d, 0x68533d005bf21a0c, 0xbd7626e75c79ec9,
       0xca17754742c69d54},
      {0xcc6edafff6d2dbb2, 0xfd0d8cbd174a9d18, 0x875e8793aa4578e8,
       0xa976a7139cab2ce6},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0xce37ab11b43ea1db, 0xa7ff1a95259d292, 0x851b02218f84f186,
       0xa7222beadefaad13},
      {0xa2ac78ec2b0a9144, 0x5a024051f2fa59c5, 0x91d1eca56147ce38,
       0xbe94d523bc2ac690},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
     {{0x2d8daefd79ec1a0f, 0x3bbcd6fdceb39c97, 0xf5575ffc58f61a95,
       0xdbd986c4adf7b420},
      {0x81aa881415f39eb7, 0x6ee2fcf5b98d976c, 0x5465475dcf2f717d,
       0x8e24d3c46860bbd0},
      {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}}}};
#else
static const fe g_pre_comp[2][16][3] = {
    {{{0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
      {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
      {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0}},
     {{0x18a9143c,0x79e730d4, 0x5fedb601,0x75ba95fc, 0x77622510,0x79fb732b,
       0xa53755c6,0x18905f76},
      {0xce95560a,0xddf25357, 0xba19e45c,0x8b4ab8e4, 0xdd21f325,0xd2e88688,
       0x25885d85,0x8571ff18},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x16a0d2bb,0x4f922fc5, 0x1a623499,0xd5cc16c, 0x57c62c8b,0x9241cf3a,
       0xfd1b667f,0x2f5e6961},
      {0xf5a01797,0x5c15c70b, 0x60956192,0x3d20b44d, 0x71fdb52,0x4911b37,
       0x8d6f0f7b,0xf648f916},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xe137bbbc,0x9e566847, 0x8a6a0bec,0xe434469e, 0x79d73463,0xb1c42761,
       0x133d0015,0x5abe0285},
      {0xc04c7dab,0x92aa837c, 0x43260c07,0x573d9f4c, 0x78e6cc37,0xc931562,
       0x6b6f7383,0x94bb725b},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xbfe20925,0x62a8c244, 0x8fdce867,0x91c19ac3, 0xdd387063,0x5a96a5d5,
       0x21d324f6,0x61d587d4},
      {0xa37173ea,0xe87673a2, 0x53778b65,0x23848008, 0x5bab43e,0x10f8441e,
       0x4621efbe,0xfa11fe12},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x2cb19ffd,0x1c891f2b, 0xb1923c23,0x1ba8d5b, 0x8ac5ca8e,0xb6d03d67,
       0x1f13bedc,0x586eb04c},
      {0x27e8ed09,0xc35c6e5, 0x1819ede2,0x1e81a33c, 0x56c652fa,0x278fd6c0,
       0x70864f11,0x19d5ac08},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xd2b533d5,0x62577734, 0xa1bdddc0,0x673b8af6, 0xa79ec293,0x577e7c9a,
       0xc3b266b1,0xbb6de651},
      {0xb65259b3,0xe7e9303a, 0xd03a7480,0xd6a0afd3, 0x9b3cfc27,0xc5ac83d1,
       0x5d18b99b,0x60b4619a},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x1ae5aa1c,0xbd6a38e1, 0x49e73658,0xb8b7652b, 0xee5f87ed,0xb130014,
       0xaeebffcd,0x9d0f27b2},
      {0x7a730a55,0xca924631, 0xddbbc83a,0x9c955b2f, 0xac019a71,0x7c1dfe0,
       0x356ec48d,0x244a566d},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xf4f8b16a,0x56f8410e, 0xc47b266a,0x97241afe, 0x6d9c87c1,0xa406b8e,
       0xcd42ab1b,0x803f3e02},
      {0x4dbec69,0x7f0309a8, 0x3bbad05f,0xa83b85f7, 0xad8e197f,0xc6097273,
       0x5067adc1,0xc097440e},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xc379ab34,0x846a56f2, 0x841df8d1,0xa8ee068b, 0x176c68ef,0x20314459,
       0x915f1f30,0xf1af32d5},
      {0x5d75bd50,0x99c37531, 0xf72f67bc,0x837cffba, 0x48d7723f,0x613a418,
       0xe2d41c8b,0x23d0f130},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xd5be5a2b,0xed93e225, 0x5934f3c6,0x6fe79983, 0x22626ffc,0x43140926,
       0x7990216a,0x50bbb4d9},
      {0xe57ec63e,0x378191c6, 0x181dcdb2,0x65422c40, 0x236e0f6,0x41a8099b,
       0x1fe49c3,0x2b100118},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x9b391593,0xfc68b5c5, 0x598270fc,0xc385f5a2, 0xd19adcbb,0x7144f3aa,
       0x83fbae0c,0xdd558999},
      {0x74b82ff4,0x93b88b8e, 0x71e734c9,0xd2e03c40, 0x43c0322a,0x9a7a9eaf,
       0x149d6041,0xe6e4c551},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x80ec21fe,0x5fe14bfe, 0xc255be82,0xf6ce116a, 0x2f4a5d67,0x98bc5a07,
       0xdb7e63af,0xfad27148},
      {0x29ab05b3,0x90c0b6ac, 0x4e251ae6,0x37a9a83c, 0xc2aade7d,0xa7dc875,
       0x9f0e1a84,0x77387de3},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xa56c0dd7,0x1e9ecc49, 0x46086c74,0xa5cffcd8, 0xf505aece,0x8f7a1408,
       0xbef0c47e,0xb37b85c0},
      {0xcc0e6a8f,0x3596b6e4, 0x6b388f23,0xfd6d4bbf, 0xc39cef4e,0xaba453fa,
       0xf9f628d5,0x9c135ac8},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x95c8f8be,0xa1c7294, 0x3bf362bf,0x2961c480, 0xdf63d4ac,0x9e418403,
       0x91ece900,0xc109f9cb},
      {0x58945705,0xc2d095d0, 0xddeb85c0,0xb9083d96, 0x7a40449b,0x84692b8d,
       0x2eee1ee1,0x9bc3344f},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x42913074,0xd5ae356, 0x48a542b1,0x55491b27, 0xb310732a,0x469ca665,
       0x5f1a4cc1,0x29591d52},
      {0xb84f983f,0xe76f5b6b, 0x9f5f84e1,0xbe7eef41, 0x80baa189,0x1200d496,
       0x18ef332c,0x6376551f},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}}},
    {{{0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
      {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0},
      {0x0,0x0, 0x0,0x0, 0x0,0x0, 0x0,0x0}},
     {{0x4147519a,0x20288602, 0x26b372f0,0xd0981eac, 0xa785ebc8,0xa9d4a7ca,
       0xdbdf58e9,0xd953c50d},
      {0xfd590f8f,0x9d6361cc, 0x44e6c917,0x72e9626b, 0x22eb64cf,0x7fd96110,
       0x9eb288f3,0x863ebb7e},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xb0e63d34,0x4fe7ee31, 0xa9e54fab,0xf4600572, 0xd5e7b5a4,0xc0493334,
       0x6d54831,0x8589fb92},
      {0x6583553a,0xaa70f5cc, 0xe25649e5,0x879094a, 0x10044652,0xcc904507,
       0x2541c4f,0xebb0696d},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x3b89da99,0xabbaa0c0, 0xb8284022,0xa6f2d79e, 0xb81c05e8,0x27847862,
       0x5e54d63,0x337a4b59},
      {0x21f7794a,0x3c67500d, 0x7d6d7f61,0x207005b7, 0x4cfd6e8,0xa5a3781,
       0xf4c2fbd6,0xd65e0d5},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x6d3549cf,0xd433e50f, 0xfacd665e,0x6f33696f, 0xce11fcb4,0x695bfdac,
       0xaf7c9860,0x810ee252},
      {0x7159bb2c,0x65450fe1, 0x758b357b,0xf7dfbebe, 0xd69fea72,0x2b057e74,
       0x92731745,0xd485717a},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xe83f7669,0xce1f69bb, 0x72877d6b,0x9f8ae82, 0x3244278d,0x9548ae54,
       0xe3c2c19c,0x207755de},
      {0x6fef1945,0x87bd61d9, 0xb12d28c3,0x18813cef, 0x72df64aa,0x9fbcd1d6,
       0x7154b00d,0x48dc5ee5},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xf49a3154,0xef0f469e, 0x6e2b2e9a,0x3e85a595, 0xaa924a9c,0x45aaec1e,
       0xa09e4719,0xaa12dfc8},
      {0x4df69f1d,0x26f27227, 0xa2ff5e73,0xe0e4c82c, 0xb7a9dd44,0xb9d8ce73,
       0xe48ca901,0x6c036e73},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xa47153f0,0xe1e421e1, 0x920418c9,0xb86c3b79, 0x705d7672,0x93bdce87,
       0xcab79a77,0xf25ae793},
      {0x6d869d0c,0x1f3194a3, 0x4986c264,0x9d55c882, 0x96e945e,0x49fb5ea3,
       0x13db0a3e,0x39b8e653},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x35d0b34a,0xe3417bc0, 0x8327c0a7,0x440b386b, 0xac0362d1,0x8fb7262d,
       0xe0cdf943,0x2c41114c},
      {0xad95a0b1,0x2ba5cef1, 0x67d54362,0xc09b37a8, 0x1e486c9,0x26d6cdd2,
       0x42ff9297,0x20477abf},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xbc0a67d2,0xf121b41, 0x444d248a,0x62d4760a, 0x659b4737,0xe044f1d,
       0x250bb4a8,0x8fde365},
      {0x848bf287,0xaceec3da, 0xd3369d6e,0xc2a62182, 0x92449482,0x3582dfdc,
       0x565d6cd7,0x2f7e2fd2},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x178a876b,0xa0122b5, 0x85104b4,0x51ff96ff, 0x14f29f76,0x50b31ab,
       0x5f87d4e6,0x84abb28b},
      {0x8270790a,0xd5ed439f, 0x85e3f46b,0x2d6cb59d, 0x6c1e2212,0x75f55c1b,
       0x17655640,0xe5436f67},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x9aeb596d,0xc2965ecc, 0x23c92b4,0x1ea03e7, 0x2e013961,0x4704b4b6,
       0x905ea367,0xca8fd3f},
      {0x551b2b61,0x92523a42, 0x390fcd06,0x1eb7a89c, 0x392a63e,0xe7f1d2be,
       0x4ddb0c33,0x96dca264},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x15339848,0x231c210e, 0x70778c8d,0xe87a28e8, 0x6956e170,0x9d1de661,
       0x2bb09c0b,0x4ac3c938},
      {0x6998987d,0x19be0551, 0xae09f4d6,0x8b2376c4, 0x1a3f933d,0x1de0b765,
       0xe39705f4,0x380d94c7},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x8c31c31d,0x3685954b, 0x5bf21a0c,0x68533d00, 0x75c79ec9,0xbd7626e,
       0x42c69d54,0xca177547},
      {0xf6d2dbb2,0xcc6edaff, 0x174a9d18,0xfd0d8cbd, 0xaa4578e8,0x875e8793,
       0x9cab2ce6,0xa976a713},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0xb43ea1db,0xce37ab11, 0x5259d292,0xa7ff1a9, 0x8f84f186,0x851b0221,
       0xdefaad13,0xa7222bea},
      {0x2b0a9144,0xa2ac78ec, 0xf2fa59c5,0x5a024051, 0x6147ce38,0x91d1eca5,
       0xbc2ac690,0xbe94d523},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}},
     {{0x79ec1a0f,0x2d8daefd, 0xceb39c97,0x3bbcd6fd, 0x58f61a95,0xf5575ffc,
       0xadf7b420,0xdbd986c4},
      {0x15f39eb7,0x81aa8814, 0xb98d976c,0x6ee2fcf5, 0xcf2f717d,0x5465475d,
       0x6860bbd0,0x8e24d3c4},
      {0x1,0x0, 0x0,0xffffffff, 0xffffffff,0xffffffff, 0xfffffffe,0x0}}}};
#endif

// select_point selects the |idx|th point from a precomputation table and
// copies it to out.
static void select_point(const limb_t idx, size_t size,
                         const fe pre_comp[/*size*/][3],
                         fe out[3]) {
  OPENSSL_memset(out, 0, sizeof(fe) * 3);
  for (size_t i = 0; i < size; i++) {
    limb_t mismatch = i ^ idx;
    fe_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
    fe_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
    fe_cmovznz(out[2], mismatch, pre_comp[i][2], out[2]);
  }
}

// get_bit returns the |i|th bit in |in|
static char get_bit(const uint8_t *in, int i) {
  if (i < 0 || i >= 256) {
    return 0;
  }
  return (in[i >> 3] >> (i & 7)) & 1;
}

// Interleaved point multiplication using precomputed point multiples: The
// small point multiples 0*P, 1*P, ..., 17*P are in p_pre_comp, the scalar
// in p_scalar, if non-NULL. If g_scalar is non-NULL, we also add this multiple
// of the generator, using certain (large) precomputed multiples in g_pre_comp.
// Output point (X, Y, Z) is stored in x_out, y_out, z_out.
static void batch_mul(fe x_out, fe y_out, fe z_out,
                      const uint8_t *p_scalar, const uint8_t *g_scalar,
                      const fe p_pre_comp[17][3]) {
  // set nq to the point at infinity
  fe nq[3] = {{0},{0},{0}}, ftmp, tmp[3];
  uint64_t bits;
  uint8_t sign, digit;

  // Loop over both scalars msb-to-lsb, interleaving additions of multiples
  // of the generator (two in each of the last 32 rounds) and additions of p
  // (every 5th round).

  int skip = 1;  // save two point operations in the first round
  size_t i = p_scalar != NULL ? 255 : 31;
  for (;;) {
    // double
    if (!skip) {
      point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
    }

    // add multiples of the generator
    if (g_scalar != NULL && i <= 31) {
      // first, look 32 bits upwards
      bits = get_bit(g_scalar, i + 224) << 3;
      bits |= get_bit(g_scalar, i + 160) << 2;
      bits |= get_bit(g_scalar, i + 96) << 1;
      bits |= get_bit(g_scalar, i + 32);
      // select the point to add, in constant time
      select_point(bits, 16, g_pre_comp[1], tmp);

      if (!skip) {
        point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
                  tmp[0], tmp[1], tmp[2]);
      } else {
        fe_copy(nq[0], tmp[0]);
        fe_copy(nq[1], tmp[1]);
        fe_copy(nq[2], tmp[2]);
        skip = 0;
      }

      // second, look at the current position
      bits = get_bit(g_scalar, i + 192) << 3;
      bits |= get_bit(g_scalar, i + 128) << 2;
      bits |= get_bit(g_scalar, i + 64) << 1;
      bits |= get_bit(g_scalar, i);
      // select the point to add, in constant time
      select_point(bits, 16, g_pre_comp[0], tmp);
      point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, tmp[0],
                tmp[1], tmp[2]);
    }

    // do other additions every 5 doublings
    if (p_scalar != NULL && i % 5 == 0) {
      bits = get_bit(p_scalar, i + 4) << 5;
      bits |= get_bit(p_scalar, i + 3) << 4;
      bits |= get_bit(p_scalar, i + 2) << 3;
      bits |= get_bit(p_scalar, i + 1) << 2;
      bits |= get_bit(p_scalar, i) << 1;
      bits |= get_bit(p_scalar, i - 1);
      ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);

      // select the point to add or subtract, in constant time.
      select_point(digit, 17, p_pre_comp, tmp);
      fe_opp(ftmp, tmp[1]);  // (X, -Y, Z) is the negative point.
      fe_cmovznz(tmp[1], sign, tmp[1], ftmp);

      if (!skip) {
        point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
                  tmp[0], tmp[1], tmp[2]);
      } else {
        fe_copy(nq[0], tmp[0]);
        fe_copy(nq[1], tmp[1]);
        fe_copy(nq[2], tmp[2]);
        skip = 0;
      }
    }

    if (i == 0) {
      break;
    }
    --i;
  }
  fe_copy(x_out, nq[0]);
  fe_copy(y_out, nq[1]);
  fe_copy(z_out, nq[2]);
}

// OPENSSL EC_METHOD FUNCTIONS

// Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
// (X/Z^2, Y/Z^3).
static int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
                                                        const EC_POINT *point,
                                                        BIGNUM *x_out,
                                                        BIGNUM *y_out,
                                                        BN_CTX *ctx) {
  fe x, y, z1, z2;

  if (EC_POINT_is_at_infinity(group, point)) {
    OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
    return 0;
  }
  if (!BN_to_fe(x, &point->X) ||
      !BN_to_fe(y, &point->Y) ||
      !BN_to_fe(z1, &point->Z)) {
    return 0;
  }

  fe_inv(z2, z1);
  fe_sqr(z1, z2);

  // Instead of using |fe_from_montgomery| to convert the |x| coordinate and
  // then calling |fe_from_montgomery| again to convert the |y| coordinate
  // below, convert the common factor |z1| once now, saving one reduction.
  fe_from_montgomery(z1);

  if (x_out != NULL) {
    fe_mul(x, x, z1);
    if (!fe_to_BN(x_out, x)) {
      OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
      return 0;
    }
  }

  if (y_out != NULL) {
    fe_mul(z1, z1, z2);
    fe_mul(y, y, z1);
    if (!fe_to_BN(y_out, y)) {
      OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
      return 0;
    }
  }

  return 1;
}

static int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
                                      const EC_SCALAR *g_scalar,
                                      const EC_POINT *p,
                                      const EC_SCALAR *p_scalar,
                                      BN_CTX *unused_ctx) {
  fe p_pre_comp[17][3];
  fe x_out, y_out, z_out;

  if (p != NULL && p_scalar != NULL) {
    // We treat NULL scalars as 0, and NULL points as points at infinity, i.e.,
    // they contribute nothing to the linear combination.
    OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
    // Precompute multiples.
    if (!BN_to_fe(p_pre_comp[1][0], &p->X) ||
        !BN_to_fe(p_pre_comp[1][1], &p->Y) ||
        !BN_to_fe(p_pre_comp[1][2], &p->Z)) {
      return 0;
    }
    for (size_t j = 2; j <= 16; ++j) {
      if (j & 1) {
        point_add(p_pre_comp[j][0], p_pre_comp[j][1],
                  p_pre_comp[j][2], p_pre_comp[1][0],
                  p_pre_comp[1][1], p_pre_comp[1][2],
                  0,
                  p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
                  p_pre_comp[j - 1][2]);
      } else {
        point_double(p_pre_comp[j][0], p_pre_comp[j][1],
                     p_pre_comp[j][2], p_pre_comp[j / 2][0],
                     p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
      }
    }
  }

  batch_mul(x_out, y_out, z_out,
            (p != NULL && p_scalar != NULL) ? p_scalar->bytes : NULL,
            g_scalar != NULL ? g_scalar->bytes : NULL,
            (const fe (*) [3])p_pre_comp);

  if (!fe_to_BN(&r->X, x_out) ||
      !fe_to_BN(&r->Y, y_out) ||
      !fe_to_BN(&r->Z, z_out)) {
    OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
    return 0;
  }
  return 1;
}

DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp256_method) {
  out->group_init = ec_GFp_mont_group_init;
  out->group_finish = ec_GFp_mont_group_finish;
  out->group_set_curve = ec_GFp_mont_group_set_curve;
  out->point_get_affine_coordinates =
    ec_GFp_nistp256_point_get_affine_coordinates;
  out->mul = ec_GFp_nistp256_points_mul;
// The variable-time wNAF point multiplication uses fewer field operations than
// the constant-time implementation here, but the 64-bit field arithmetic in
// this file is much faster than the generic BIGNUM-based field arithmetic used
// by wNAF. For 32-bit, the wNAF code is overall ~60% faster on non-precomputed
// points, so we use it for public inputs.
#if defined(BORINGSSL_NISTP256_64BIT)
  out->mul_public = ec_GFp_nistp256_points_mul;
#else
  out->mul_public = ec_wNAF_mul;
#endif
  out->field_mul = ec_GFp_mont_field_mul;
  out->field_sqr = ec_GFp_mont_field_sqr;
  out->field_encode = ec_GFp_mont_field_encode;
  out->field_decode = ec_GFp_mont_field_decode;
};

#undef BORINGSSL_NISTP256_64BIT