summaryrefslogtreecommitdiff
path: root/src/third_party/sike/asm/fp_generic.c
blob: 991ad1e175ed871803785941c9292ac6d70ac637 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/********************************************************************************************
* SIDH: an efficient supersingular isogeny cryptography library
*
* Abstract: portable modular arithmetic for P503
*********************************************************************************************/

#include <openssl/base.h>

#if defined(OPENSSL_NO_ASM) || \
    (!defined(OPENSSL_X86_64) && !defined(OPENSSL_AARCH64))

#include "../utils.h"
#include "../fpx.h"

// Global constants
extern const struct params_t sike_params;

static void digit_x_digit(const crypto_word_t a, const crypto_word_t b, crypto_word_t* c)
{ // Digit multiplication, digit * digit -> 2-digit result
    crypto_word_t al, ah, bl, bh, temp;
    crypto_word_t albl, albh, ahbl, ahbh, res1, res2, res3, carry;
    crypto_word_t mask_low = (crypto_word_t)(-1) >> (sizeof(crypto_word_t)*4);
    crypto_word_t mask_high = (crypto_word_t)(-1) << (sizeof(crypto_word_t)*4);

    al = a & mask_low;                              // Low part
    ah = a >> (sizeof(crypto_word_t) * 4);          // High part
    bl = b & mask_low;
    bh = b >> (sizeof(crypto_word_t) * 4);

    albl = al*bl;
    albh = al*bh;
    ahbl = ah*bl;
    ahbh = ah*bh;
    c[0] = albl & mask_low;                         // C00

    res1 = albl >> (sizeof(crypto_word_t) * 4);
    res2 = ahbl & mask_low;
    res3 = albh & mask_low;
    temp = res1 + res2 + res3;
    carry = temp >> (sizeof(crypto_word_t) * 4);
    c[0] ^= temp << (sizeof(crypto_word_t) * 4);    // C01

    res1 = ahbl >> (sizeof(crypto_word_t) * 4);
    res2 = albh >> (sizeof(crypto_word_t) * 4);
    res3 = ahbh & mask_low;
    temp = res1 + res2 + res3 + carry;
    c[1] = temp & mask_low;                         // C10
    carry = temp & mask_high;
    c[1] ^= (ahbh & mask_high) + carry;             // C11
}

void sike_fpadd(const felm_t a, const felm_t b, felm_t c)
{ // Modular addition, c = a+b mod p434.
  // Inputs: a, b in [0, 2*p434-1]
  // Output: c in [0, 2*p434-1]
    unsigned int i, carry = 0;
    crypto_word_t mask;

    for (i = 0; i < NWORDS_FIELD; i++) {
        ADDC(carry, a[i], b[i], carry, c[i]);
    }

    carry = 0;
    for (i = 0; i < NWORDS_FIELD; i++) {
        SUBC(carry, c[i], sike_params.prime_x2[i], carry, c[i]);
    }
    mask = 0 - (crypto_word_t)carry;

    carry = 0;
    for (i = 0; i < NWORDS_FIELD; i++) {
        ADDC(carry, c[i], sike_params.prime_x2[i] & mask, carry, c[i]);
    }
}

void sike_fpsub(const felm_t a, const felm_t b, felm_t c)
{ // Modular subtraction, c = a-b mod p434.
  // Inputs: a, b in [0, 2*p434-1]
  // Output: c in [0, 2*p434-1]
    unsigned int i, borrow = 0;
    crypto_word_t mask;

    for (i = 0; i < NWORDS_FIELD; i++) {
        SUBC(borrow, a[i], b[i], borrow, c[i]);
    }
    mask = 0 - (crypto_word_t)borrow;

    borrow = 0;
    for (i = 0; i < NWORDS_FIELD; i++) {
        ADDC(borrow, c[i], sike_params.prime_x2[i] & mask, borrow, c[i]);
    }
}

void sike_mpmul(const felm_t a, const felm_t b, dfelm_t c)
{ // Multiprecision comba multiply, c = a*b, where lng(a) = lng(b) = NWORDS_FIELD.
    unsigned int i, j;
    crypto_word_t t = 0, u = 0, v = 0, UV[2];
    unsigned int carry = 0;

    for (i = 0; i < NWORDS_FIELD; i++) {
        for (j = 0; j <= i; j++) {
            MUL(a[j], b[i-j], UV+1, UV[0]);
            ADDC(0, UV[0], v, carry, v);
            ADDC(carry, UV[1], u, carry, u);
            t += carry;
        }
        c[i] = v;
        v = u;
        u = t;
        t = 0;
    }

    for (i = NWORDS_FIELD; i < 2*NWORDS_FIELD-1; i++) {
        for (j = i-NWORDS_FIELD+1; j < NWORDS_FIELD; j++) {
            MUL(a[j], b[i-j], UV+1, UV[0]);
            ADDC(0, UV[0], v, carry, v);
            ADDC(carry, UV[1], u, carry, u);
            t += carry;
        }
        c[i] = v;
        v = u;
        u = t;
        t = 0;
    }
    c[2*NWORDS_FIELD-1] = v;
}

void sike_fprdc(felm_t ma, felm_t mc)
{ // Efficient Montgomery reduction using comba and exploiting the special form of the prime p434.
  // mc = ma*R^-1 mod p434x2, where R = 2^448.
  // If ma < 2^448*p434, the output mc is in the range [0, 2*p434-1].
  // ma is assumed to be in Montgomery representation.
    unsigned int i, j, carry, count = ZERO_WORDS;
    crypto_word_t UV[2], t = 0, u = 0, v = 0;

    for (i = 0; i < NWORDS_FIELD; i++) {
        mc[i] = 0;
    }

    for (i = 0; i < NWORDS_FIELD; i++) {
        for (j = 0; j < i; j++) {
            if (j < (i-ZERO_WORDS+1)) {
                MUL(mc[j], sike_params.prime_p1[i-j], UV+1, UV[0]);
                ADDC(0, UV[0], v, carry, v);
                ADDC(carry, UV[1], u, carry, u);
                t += carry;
            }
        }
        ADDC(0, v, ma[i], carry, v);
        ADDC(carry, u, 0, carry, u);
        t += carry;
        mc[i] = v;
        v = u;
        u = t;
        t = 0;
    }

    for (i = NWORDS_FIELD; i < 2*NWORDS_FIELD-1; i++) {
        if (count > 0) {
            count -= 1;
        }
        for (j = i-NWORDS_FIELD+1; j < NWORDS_FIELD; j++) {
            if (j < (NWORDS_FIELD-count)) {
                MUL(mc[j], sike_params.prime_p1[i-j], UV+1, UV[0]);
                ADDC(0, UV[0], v, carry, v);
                ADDC(carry, UV[1], u, carry, u);
                t += carry;
            }
        }
        ADDC(0, v, ma[i], carry, v);
        ADDC(carry, u, 0, carry, u);
        t += carry;
        mc[i-NWORDS_FIELD] = v;
        v = u;
        u = t;
        t = 0;
    }
    ADDC(0, v, ma[2*NWORDS_FIELD-1], carry, v);
    mc[NWORDS_FIELD-1] = v;
}

#endif  // NO_ASM || (!X86_64 && !AARCH64)