aboutsummaryrefslogtreecommitdiff
path: root/include/ceres/cost_function_to_functor.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/ceres/cost_function_to_functor.h')
-rw-r--r--include/ceres/cost_function_to_functor.h752
1 files changed, 752 insertions, 0 deletions
diff --git a/include/ceres/cost_function_to_functor.h b/include/ceres/cost_function_to_functor.h
new file mode 100644
index 0000000..fa1012d
--- /dev/null
+++ b/include/ceres/cost_function_to_functor.h
@@ -0,0 +1,752 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2013 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+//
+// CostFunctionToFunctor is an adapter class that allows users to use
+// CostFunction objects in templated functors which are to be used for
+// automatic differentiation. This allows the user to seamlessly mix
+// analytic, numeric and automatic differentiation.
+//
+// For example, let us assume that
+//
+// class IntrinsicProjection : public SizedCostFunction<2, 5, 3> {
+// public:
+// IntrinsicProjection(const double* observations);
+// virtual bool Evaluate(double const* const* parameters,
+// double* residuals,
+// double** jacobians) const;
+// };
+//
+// is a cost function that implements the projection of a point in its
+// local coordinate system onto its image plane and subtracts it from
+// the observed point projection. It can compute its residual and
+// either via analytic or numerical differentiation can compute its
+// jacobians.
+//
+// Now we would like to compose the action of this CostFunction with
+// the action of camera extrinsics, i.e., rotation and
+// translation. Say we have a templated function
+//
+// template<typename T>
+// void RotateAndTranslatePoint(const T* rotation,
+// const T* translation,
+// const T* point,
+// T* result);
+//
+// Then we can now do the following,
+//
+// struct CameraProjection {
+// CameraProjection(double* observation) {
+// intrinsic_projection_.reset(
+// new CostFunctionToFunctor<2, 5, 3>(
+// new IntrinsicProjection(observation_)));
+// }
+// template <typename T>
+// bool operator()(const T* rotation,
+// const T* translation,
+// const T* intrinsics,
+// const T* point,
+// T* residual) const {
+// T transformed_point[3];
+// RotateAndTranslatePoint(rotation, translation, point, transformed_point);
+//
+// // Note that we call intrinsic_projection_, just like it was
+// // any other templated functor.
+//
+// return (*intrinsic_projection_)(intrinsics, transformed_point, residual);
+// }
+//
+// private:
+// scoped_ptr<CostFunctionToFunctor<2,5,3> > intrinsic_projection_;
+// };
+
+#ifndef CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_
+#define CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_
+
+#include <numeric>
+#include <vector>
+
+#include "ceres/cost_function.h"
+#include "ceres/internal/fixed_array.h"
+#include "ceres/internal/port.h"
+#include "ceres/internal/scoped_ptr.h"
+
+namespace ceres {
+
+template <int kNumResiduals,
+ int N0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,
+ int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>
+class CostFunctionToFunctor {
+ public:
+ explicit CostFunctionToFunctor(CostFunction* cost_function)
+ : cost_function_(cost_function) {
+ CHECK_NOTNULL(cost_function);
+
+ CHECK_GE(kNumResiduals, 0);
+ CHECK_EQ(cost_function->num_residuals(), kNumResiduals);
+
+ // This block breaks the 80 column rule to keep it somewhat readable.
+ CHECK((!N1 && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
+ ((N1 > 0) && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
+ ((N1 > 0) && (N2 > 0) && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
+ ((N1 > 0) && (N2 > 0) && (N3 > 0) && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
+ ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && !N5 && !N6 && !N7 && !N8 && !N9) ||
+ ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && !N6 && !N7 && !N8 && !N9) ||
+ ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && !N7 && !N8 && !N9) ||
+ ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && !N8 && !N9) ||
+ ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && !N9) ||
+ ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && (N9 > 0)))
+ << "Zero block cannot precede a non-zero block. Block sizes are "
+ << "(ignore trailing 0s): " << N0 << ", " << N1 << ", " << N2 << ", "
+ << N3 << ", " << N4 << ", " << N5 << ", " << N6 << ", " << N7 << ", "
+ << N8 << ", " << N9;
+
+ const vector<int16>& parameter_block_sizes =
+ cost_function->parameter_block_sizes();
+ const int num_parameter_blocks =
+ (N0 > 0) + (N1 > 0) + (N2 > 0) + (N3 > 0) + (N4 > 0) +
+ (N5 > 0) + (N6 > 0) + (N7 > 0) + (N8 > 0) + (N9 > 0);
+ CHECK_EQ(parameter_block_sizes.size(), num_parameter_blocks);
+
+ CHECK_EQ(N0, parameter_block_sizes[0]);
+ if (parameter_block_sizes.size() > 1) CHECK_EQ(N1, parameter_block_sizes[1]); // NOLINT
+ if (parameter_block_sizes.size() > 2) CHECK_EQ(N2, parameter_block_sizes[2]); // NOLINT
+ if (parameter_block_sizes.size() > 3) CHECK_EQ(N3, parameter_block_sizes[3]); // NOLINT
+ if (parameter_block_sizes.size() > 4) CHECK_EQ(N4, parameter_block_sizes[4]); // NOLINT
+ if (parameter_block_sizes.size() > 5) CHECK_EQ(N5, parameter_block_sizes[5]); // NOLINT
+ if (parameter_block_sizes.size() > 6) CHECK_EQ(N6, parameter_block_sizes[6]); // NOLINT
+ if (parameter_block_sizes.size() > 7) CHECK_EQ(N7, parameter_block_sizes[7]); // NOLINT
+ if (parameter_block_sizes.size() > 8) CHECK_EQ(N8, parameter_block_sizes[8]); // NOLINT
+ if (parameter_block_sizes.size() > 9) CHECK_EQ(N9, parameter_block_sizes[9]); // NOLINT
+
+ CHECK_EQ(accumulate(parameter_block_sizes.begin(),
+ parameter_block_sizes.end(), 0),
+ N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9);
+ }
+
+ bool operator()(const double* x0, double* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_EQ(N1, 0);
+ CHECK_EQ(N2, 0);
+ CHECK_EQ(N3, 0);
+ CHECK_EQ(N4, 0);
+ CHECK_EQ(N5, 0);
+ CHECK_EQ(N6, 0);
+ CHECK_EQ(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+
+ return cost_function_->Evaluate(&x0, residuals, NULL);
+ }
+
+ bool operator()(const double* x0,
+ const double* x1,
+ double* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_EQ(N2, 0);
+ CHECK_EQ(N3, 0);
+ CHECK_EQ(N4, 0);
+ CHECK_EQ(N5, 0);
+ CHECK_EQ(N6, 0);
+ CHECK_EQ(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const double*> parameter_blocks(2);
+ parameter_blocks[0] = x0;
+ parameter_blocks[1] = x1;
+ return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL);
+ }
+
+ bool operator()(const double* x0,
+ const double* x1,
+ const double* x2,
+ double* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_EQ(N3, 0);
+ CHECK_EQ(N4, 0);
+ CHECK_EQ(N5, 0);
+ CHECK_EQ(N6, 0);
+ CHECK_EQ(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const double*> parameter_blocks(3);
+ parameter_blocks[0] = x0;
+ parameter_blocks[1] = x1;
+ parameter_blocks[2] = x2;
+ return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL);
+ }
+
+ bool operator()(const double* x0,
+ const double* x1,
+ const double* x2,
+ const double* x3,
+ double* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_NE(N3, 0);
+ CHECK_EQ(N4, 0);
+ CHECK_EQ(N5, 0);
+ CHECK_EQ(N6, 0);
+ CHECK_EQ(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const double*> parameter_blocks(4);
+ parameter_blocks[0] = x0;
+ parameter_blocks[1] = x1;
+ parameter_blocks[2] = x2;
+ parameter_blocks[3] = x3;
+ return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL);
+ }
+
+ bool operator()(const double* x0,
+ const double* x1,
+ const double* x2,
+ const double* x3,
+ const double* x4,
+ double* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_NE(N3, 0);
+ CHECK_NE(N4, 0);
+ CHECK_EQ(N5, 0);
+ CHECK_EQ(N6, 0);
+ CHECK_EQ(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const double*> parameter_blocks(5);
+ parameter_blocks[0] = x0;
+ parameter_blocks[1] = x1;
+ parameter_blocks[2] = x2;
+ parameter_blocks[3] = x3;
+ parameter_blocks[4] = x4;
+ return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL);
+ }
+
+ bool operator()(const double* x0,
+ const double* x1,
+ const double* x2,
+ const double* x3,
+ const double* x4,
+ const double* x5,
+ double* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_NE(N3, 0);
+ CHECK_NE(N4, 0);
+ CHECK_NE(N5, 0);
+ CHECK_EQ(N6, 0);
+ CHECK_EQ(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const double*> parameter_blocks(6);
+ parameter_blocks[0] = x0;
+ parameter_blocks[1] = x1;
+ parameter_blocks[2] = x2;
+ parameter_blocks[3] = x3;
+ parameter_blocks[4] = x4;
+ parameter_blocks[5] = x5;
+ return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL);
+ }
+
+ bool operator()(const double* x0,
+ const double* x1,
+ const double* x2,
+ const double* x3,
+ const double* x4,
+ const double* x5,
+ const double* x6,
+ double* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_NE(N3, 0);
+ CHECK_NE(N4, 0);
+ CHECK_NE(N5, 0);
+ CHECK_NE(N6, 0);
+ CHECK_EQ(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const double*> parameter_blocks(7);
+ parameter_blocks[0] = x0;
+ parameter_blocks[1] = x1;
+ parameter_blocks[2] = x2;
+ parameter_blocks[3] = x3;
+ parameter_blocks[4] = x4;
+ parameter_blocks[5] = x5;
+ parameter_blocks[6] = x6;
+ return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL);
+ }
+
+ bool operator()(const double* x0,
+ const double* x1,
+ const double* x2,
+ const double* x3,
+ const double* x4,
+ const double* x5,
+ const double* x6,
+ const double* x7,
+ double* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_NE(N3, 0);
+ CHECK_NE(N4, 0);
+ CHECK_NE(N5, 0);
+ CHECK_NE(N6, 0);
+ CHECK_NE(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const double*> parameter_blocks(8);
+ parameter_blocks[0] = x0;
+ parameter_blocks[1] = x1;
+ parameter_blocks[2] = x2;
+ parameter_blocks[3] = x3;
+ parameter_blocks[4] = x4;
+ parameter_blocks[5] = x5;
+ parameter_blocks[6] = x6;
+ parameter_blocks[7] = x7;
+ return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL);
+ }
+
+ bool operator()(const double* x0,
+ const double* x1,
+ const double* x2,
+ const double* x3,
+ const double* x4,
+ const double* x5,
+ const double* x6,
+ const double* x7,
+ const double* x8,
+ double* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_NE(N3, 0);
+ CHECK_NE(N4, 0);
+ CHECK_NE(N5, 0);
+ CHECK_NE(N6, 0);
+ CHECK_NE(N7, 0);
+ CHECK_NE(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const double*> parameter_blocks(9);
+ parameter_blocks[0] = x0;
+ parameter_blocks[1] = x1;
+ parameter_blocks[2] = x2;
+ parameter_blocks[3] = x3;
+ parameter_blocks[4] = x4;
+ parameter_blocks[5] = x5;
+ parameter_blocks[6] = x6;
+ parameter_blocks[7] = x7;
+ parameter_blocks[8] = x8;
+ return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL);
+ }
+
+ bool operator()(const double* x0,
+ const double* x1,
+ const double* x2,
+ const double* x3,
+ const double* x4,
+ const double* x5,
+ const double* x6,
+ const double* x7,
+ const double* x8,
+ const double* x9,
+ double* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_NE(N3, 0);
+ CHECK_NE(N4, 0);
+ CHECK_NE(N5, 0);
+ CHECK_NE(N6, 0);
+ CHECK_NE(N7, 0);
+ CHECK_NE(N8, 0);
+ CHECK_NE(N9, 0);
+ internal::FixedArray<const double*> parameter_blocks(10);
+ parameter_blocks[0] = x0;
+ parameter_blocks[1] = x1;
+ parameter_blocks[2] = x2;
+ parameter_blocks[3] = x3;
+ parameter_blocks[4] = x4;
+ parameter_blocks[5] = x5;
+ parameter_blocks[6] = x6;
+ parameter_blocks[7] = x7;
+ parameter_blocks[8] = x8;
+ parameter_blocks[9] = x9;
+ return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL);
+ }
+
+ template <typename JetT>
+ bool operator()(const JetT* x0, JetT* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_EQ(N1, 0);
+ CHECK_EQ(N2, 0);
+ CHECK_EQ(N3, 0);
+ CHECK_EQ(N4, 0);
+ CHECK_EQ(N5, 0);
+ CHECK_EQ(N6, 0);
+ CHECK_EQ(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ return EvaluateWithJets(&x0, residuals);
+ }
+
+ template <typename JetT>
+ bool operator()(const JetT* x0,
+ const JetT* x1,
+ JetT* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_EQ(N2, 0);
+ CHECK_EQ(N3, 0);
+ CHECK_EQ(N4, 0);
+ CHECK_EQ(N5, 0);
+ CHECK_EQ(N6, 0);
+ CHECK_EQ(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const JetT*> jets(2);
+ jets[0] = x0;
+ jets[1] = x1;
+ return EvaluateWithJets(jets.get(), residuals);
+ }
+
+ template <typename JetT>
+ bool operator()(const JetT* x0,
+ const JetT* x1,
+ const JetT* x2,
+ JetT* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_EQ(N3, 0);
+ CHECK_EQ(N4, 0);
+ CHECK_EQ(N5, 0);
+ CHECK_EQ(N6, 0);
+ CHECK_EQ(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const JetT*> jets(3);
+ jets[0] = x0;
+ jets[1] = x1;
+ jets[2] = x2;
+ return EvaluateWithJets(jets.get(), residuals);
+ }
+
+ template <typename JetT>
+ bool operator()(const JetT* x0,
+ const JetT* x1,
+ const JetT* x2,
+ const JetT* x3,
+ JetT* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_NE(N3, 0);
+ CHECK_EQ(N4, 0);
+ CHECK_EQ(N5, 0);
+ CHECK_EQ(N6, 0);
+ CHECK_EQ(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const JetT*> jets(4);
+ jets[0] = x0;
+ jets[1] = x1;
+ jets[2] = x2;
+ jets[3] = x3;
+ return EvaluateWithJets(jets.get(), residuals);
+ }
+
+ template <typename JetT>
+ bool operator()(const JetT* x0,
+ const JetT* x1,
+ const JetT* x2,
+ const JetT* x3,
+ const JetT* x4,
+ JetT* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_NE(N3, 0);
+ CHECK_NE(N4, 0);
+ CHECK_EQ(N5, 0);
+ CHECK_EQ(N6, 0);
+ CHECK_EQ(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const JetT*> jets(5);
+ jets[0] = x0;
+ jets[1] = x1;
+ jets[2] = x2;
+ jets[3] = x3;
+ jets[4] = x4;
+ return EvaluateWithJets(jets.get(), residuals);
+ }
+
+ template <typename JetT>
+ bool operator()(const JetT* x0,
+ const JetT* x1,
+ const JetT* x2,
+ const JetT* x3,
+ const JetT* x4,
+ const JetT* x5,
+ JetT* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_NE(N3, 0);
+ CHECK_NE(N4, 0);
+ CHECK_NE(N5, 0);
+ CHECK_EQ(N6, 0);
+ CHECK_EQ(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const JetT*> jets(6);
+ jets[0] = x0;
+ jets[1] = x1;
+ jets[2] = x2;
+ jets[3] = x3;
+ jets[4] = x4;
+ jets[5] = x5;
+ return EvaluateWithJets(jets.get(), residuals);
+ }
+
+ template <typename JetT>
+ bool operator()(const JetT* x0,
+ const JetT* x1,
+ const JetT* x2,
+ const JetT* x3,
+ const JetT* x4,
+ const JetT* x5,
+ const JetT* x6,
+ JetT* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_NE(N3, 0);
+ CHECK_NE(N4, 0);
+ CHECK_NE(N5, 0);
+ CHECK_NE(N6, 0);
+ CHECK_EQ(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const JetT*> jets(7);
+ jets[0] = x0;
+ jets[1] = x1;
+ jets[2] = x2;
+ jets[3] = x3;
+ jets[4] = x4;
+ jets[5] = x5;
+ jets[6] = x6;
+ return EvaluateWithJets(jets.get(), residuals);
+ }
+
+ template <typename JetT>
+ bool operator()(const JetT* x0,
+ const JetT* x1,
+ const JetT* x2,
+ const JetT* x3,
+ const JetT* x4,
+ const JetT* x5,
+ const JetT* x6,
+ const JetT* x7,
+ JetT* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_NE(N3, 0);
+ CHECK_NE(N4, 0);
+ CHECK_NE(N5, 0);
+ CHECK_NE(N6, 0);
+ CHECK_NE(N7, 0);
+ CHECK_EQ(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const JetT*> jets(8);
+ jets[0] = x0;
+ jets[1] = x1;
+ jets[2] = x2;
+ jets[3] = x3;
+ jets[4] = x4;
+ jets[5] = x5;
+ jets[6] = x6;
+ jets[7] = x7;
+ return EvaluateWithJets(jets.get(), residuals);
+ }
+
+ template <typename JetT>
+ bool operator()(const JetT* x0,
+ const JetT* x1,
+ const JetT* x2,
+ const JetT* x3,
+ const JetT* x4,
+ const JetT* x5,
+ const JetT* x6,
+ const JetT* x7,
+ const JetT* x8,
+ JetT* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_NE(N3, 0);
+ CHECK_NE(N4, 0);
+ CHECK_NE(N5, 0);
+ CHECK_NE(N6, 0);
+ CHECK_NE(N7, 0);
+ CHECK_NE(N8, 0);
+ CHECK_EQ(N9, 0);
+ internal::FixedArray<const JetT*> jets(9);
+ jets[0] = x0;
+ jets[1] = x1;
+ jets[2] = x2;
+ jets[3] = x3;
+ jets[4] = x4;
+ jets[5] = x5;
+ jets[6] = x6;
+ jets[7] = x7;
+ jets[8] = x8;
+ return EvaluateWithJets(jets.get(), residuals);
+ }
+
+ template <typename JetT>
+ bool operator()(const JetT* x0,
+ const JetT* x1,
+ const JetT* x2,
+ const JetT* x3,
+ const JetT* x4,
+ const JetT* x5,
+ const JetT* x6,
+ const JetT* x7,
+ const JetT* x8,
+ const JetT* x9,
+ JetT* residuals) const {
+ CHECK_NE(N0, 0);
+ CHECK_NE(N1, 0);
+ CHECK_NE(N2, 0);
+ CHECK_NE(N3, 0);
+ CHECK_NE(N4, 0);
+ CHECK_NE(N5, 0);
+ CHECK_NE(N6, 0);
+ CHECK_NE(N7, 0);
+ CHECK_NE(N8, 0);
+ CHECK_NE(N9, 0);
+ internal::FixedArray<const JetT*> jets(10);
+ jets[0] = x0;
+ jets[1] = x1;
+ jets[2] = x2;
+ jets[3] = x3;
+ jets[4] = x4;
+ jets[5] = x5;
+ jets[6] = x6;
+ jets[7] = x7;
+ jets[8] = x8;
+ jets[9] = x9;
+ return EvaluateWithJets(jets.get(), residuals);
+ }
+
+ private:
+ template <typename JetT>
+ bool EvaluateWithJets(const JetT** inputs, JetT* output) const {
+ const int kNumParameters = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9;
+ const vector<int16>& parameter_block_sizes =
+ cost_function_->parameter_block_sizes();
+ const int num_parameter_blocks = parameter_block_sizes.size();
+ const int num_residuals = cost_function_->num_residuals();
+
+ internal::FixedArray<double> parameters(kNumParameters);
+ internal::FixedArray<double*> parameter_blocks(num_parameter_blocks);
+ internal::FixedArray<double> jacobians(num_residuals * kNumParameters);
+ internal::FixedArray<double*> jacobian_blocks(num_parameter_blocks);
+ internal::FixedArray<double> residuals(num_residuals);
+
+ // Build a set of arrays to get the residuals and jacobians from
+ // the CostFunction wrapped by this functor.
+ double* parameter_ptr = parameters.get();
+ double* jacobian_ptr = jacobians.get();
+ for (int i = 0; i < num_parameter_blocks; ++i) {
+ parameter_blocks[i] = parameter_ptr;
+ jacobian_blocks[i] = jacobian_ptr;
+ for (int j = 0; j < parameter_block_sizes[i]; ++j) {
+ *parameter_ptr++ = inputs[i][j].a;
+ }
+ jacobian_ptr += num_residuals * parameter_block_sizes[i];
+ }
+
+ if (!cost_function_->Evaluate(parameter_blocks.get(),
+ residuals.get(),
+ jacobian_blocks.get())) {
+ return false;
+ }
+
+ // Now that we have the incoming Jets, which are carrying the
+ // partial derivatives of each of the inputs w.r.t to some other
+ // underlying parameters. The derivative of the outputs of the
+ // cost function w.r.t to the same underlying parameters can now
+ // be computed by applying the chain rule.
+ //
+ // d output[i] d output[i] d input[j]
+ // -------------- = sum_j ----------- * ------------
+ // d parameter[k] d input[j] d parameter[k]
+ //
+ // d input[j]
+ // -------------- = inputs[j], so
+ // d parameter[k]
+ //
+ // outputJet[i] = sum_k jacobian[i][k] * inputJet[k]
+ //
+ // The following loop, iterates over the residuals, computing one
+ // output jet at a time.
+ for (int i = 0; i < num_residuals; ++i) {
+ output[i].a = residuals[i];
+ output[i].v.setZero();
+
+ for (int j = 0; j < num_parameter_blocks; ++j) {
+ const int16 block_size = parameter_block_sizes[j];
+ for (int k = 0; k < parameter_block_sizes[j]; ++k) {
+ output[i].v +=
+ jacobian_blocks[j][i * block_size + k] * inputs[j][k].v;
+ }
+ }
+ }
+
+ return true;
+ }
+
+ private:
+ internal::scoped_ptr<CostFunction> cost_function_;
+};
+
+} // namespace ceres
+
+#endif // CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_