aboutsummaryrefslogtreecommitdiff
path: root/include/ceres/internal/macros.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/ceres/internal/macros.h')
-rw-r--r--include/ceres/internal/macros.h171
1 files changed, 171 insertions, 0 deletions
diff --git a/include/ceres/internal/macros.h b/include/ceres/internal/macros.h
new file mode 100644
index 0000000..83ec311
--- /dev/null
+++ b/include/ceres/internal/macros.h
@@ -0,0 +1,171 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+//
+// Various Google-specific macros.
+//
+// This code is compiled directly on many platforms, including client
+// platforms like Windows, Mac, and embedded systems. Before making
+// any changes here, make sure that you're not breaking any platforms.
+
+#ifndef CERES_PUBLIC_INTERNAL_MACROS_H_
+#define CERES_PUBLIC_INTERNAL_MACROS_H_
+
+#include <cstddef> // For size_t.
+
+// A macro to disallow the copy constructor and operator= functions
+// This should be used in the private: declarations for a class
+//
+// For disallowing only assign or copy, write the code directly, but declare
+// the intend in a comment, for example:
+//
+// void operator=(const TypeName&); // _DISALLOW_ASSIGN
+
+// Note, that most uses of CERES_DISALLOW_ASSIGN and CERES_DISALLOW_COPY
+// are broken semantically, one should either use disallow both or
+// neither. Try to avoid these in new code.
+#define CERES_DISALLOW_COPY_AND_ASSIGN(TypeName) \
+ TypeName(const TypeName&); \
+ void operator=(const TypeName&)
+
+// A macro to disallow all the implicit constructors, namely the
+// default constructor, copy constructor and operator= functions.
+//
+// This should be used in the private: declarations for a class
+// that wants to prevent anyone from instantiating it. This is
+// especially useful for classes containing only static methods.
+#define CERES_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
+ TypeName(); \
+ CERES_DISALLOW_COPY_AND_ASSIGN(TypeName)
+
+// The arraysize(arr) macro returns the # of elements in an array arr.
+// The expression is a compile-time constant, and therefore can be
+// used in defining new arrays, for example. If you use arraysize on
+// a pointer by mistake, you will get a compile-time error.
+//
+// One caveat is that arraysize() doesn't accept any array of an
+// anonymous type or a type defined inside a function. In these rare
+// cases, you have to use the unsafe ARRAYSIZE() macro below. This is
+// due to a limitation in C++'s template system. The limitation might
+// eventually be removed, but it hasn't happened yet.
+
+// This template function declaration is used in defining arraysize.
+// Note that the function doesn't need an implementation, as we only
+// use its type.
+template <typename T, size_t N>
+char (&ArraySizeHelper(T (&array)[N]))[N];
+
+// That gcc wants both of these prototypes seems mysterious. VC, for
+// its part, can't decide which to use (another mystery). Matching of
+// template overloads: the final frontier.
+#ifndef _WIN32
+template <typename T, size_t N>
+char (&ArraySizeHelper(const T (&array)[N]))[N];
+#endif
+
+#define arraysize(array) (sizeof(ArraySizeHelper(array)))
+
+// ARRAYSIZE performs essentially the same calculation as arraysize,
+// but can be used on anonymous types or types defined inside
+// functions. It's less safe than arraysize as it accepts some
+// (although not all) pointers. Therefore, you should use arraysize
+// whenever possible.
+//
+// The expression ARRAYSIZE(a) is a compile-time constant of type
+// size_t.
+//
+// ARRAYSIZE catches a few type errors. If you see a compiler error
+//
+// "warning: division by zero in ..."
+//
+// when using ARRAYSIZE, you are (wrongfully) giving it a pointer.
+// You should only use ARRAYSIZE on statically allocated arrays.
+//
+// The following comments are on the implementation details, and can
+// be ignored by the users.
+//
+// ARRAYSIZE(arr) works by inspecting sizeof(arr) (the # of bytes in
+// the array) and sizeof(*(arr)) (the # of bytes in one array
+// element). If the former is divisible by the latter, perhaps arr is
+// indeed an array, in which case the division result is the # of
+// elements in the array. Otherwise, arr cannot possibly be an array,
+// and we generate a compiler error to prevent the code from
+// compiling.
+//
+// Since the size of bool is implementation-defined, we need to cast
+// !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
+// result has type size_t.
+//
+// This macro is not perfect as it wrongfully accepts certain
+// pointers, namely where the pointer size is divisible by the pointee
+// size. Since all our code has to go through a 32-bit compiler,
+// where a pointer is 4 bytes, this means all pointers to a type whose
+// size is 3 or greater than 4 will be (righteously) rejected.
+//
+// Kudos to Jorg Brown for this simple and elegant implementation.
+//
+// - wan 2005-11-16
+//
+// Starting with Visual C++ 2005, WinNT.h includes ARRAYSIZE. However,
+// the definition comes from the over-broad windows.h header that
+// introduces a macro, ERROR, that conflicts with the logging framework
+// that Ceres uses. Instead, rename ARRAYSIZE to CERES_ARRAYSIZE.
+#define CERES_ARRAYSIZE(a) \
+ ((sizeof(a) / sizeof(*(a))) / \
+ static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
+
+// Tell the compiler to warn about unused return values for functions declared
+// with this macro. The macro should be used on function declarations
+// following the argument list:
+//
+// Sprocket* AllocateSprocket() MUST_USE_RESULT;
+//
+#undef MUST_USE_RESULT
+#if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) \
+ && !defined(COMPILER_ICC)
+#define MUST_USE_RESULT __attribute__ ((warn_unused_result))
+#else
+#define MUST_USE_RESULT
+#endif
+
+// Platform independent macros to get aligned memory allocations.
+// For example
+//
+// MyFoo my_foo CERES_ALIGN_ATTRIBUTE(16);
+//
+// Gives us an instance of MyFoo which is aligned at a 16 byte
+// boundary.
+#if defined(_MSC_VER)
+#define CERES_ALIGN_ATTRIBUTE(n) __declspec(align(n))
+#define CERES_ALIGN_OF(T) __alignof(T)
+#elif defined(__GNUC__)
+#define CERES_ALIGN_ATTRIBUTE(n) __attribute__((aligned(n)))
+#define CERES_ALIGN_OF(T) __alignof(T)
+#endif
+
+#endif // CERES_PUBLIC_INTERNAL_MACROS_H_