aboutsummaryrefslogtreecommitdiff
path: root/include/ceres/rotation.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/ceres/rotation.h')
-rw-r--r--include/ceres/rotation.h534
1 files changed, 534 insertions, 0 deletions
diff --git a/include/ceres/rotation.h b/include/ceres/rotation.h
new file mode 100644
index 0000000..0d8a390
--- /dev/null
+++ b/include/ceres/rotation.h
@@ -0,0 +1,534 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: keir@google.com (Keir Mierle)
+// sameeragarwal@google.com (Sameer Agarwal)
+//
+// Templated functions for manipulating rotations. The templated
+// functions are useful when implementing functors for automatic
+// differentiation.
+//
+// In the following, the Quaternions are laid out as 4-vectors, thus:
+//
+// q[0] scalar part.
+// q[1] coefficient of i.
+// q[2] coefficient of j.
+// q[3] coefficient of k.
+//
+// where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.
+
+#ifndef CERES_PUBLIC_ROTATION_H_
+#define CERES_PUBLIC_ROTATION_H_
+
+#include <algorithm>
+#include <cmath>
+#include "glog/logging.h"
+
+namespace ceres {
+
+// Convert a value in combined axis-angle representation to a quaternion.
+// The value angle_axis is a triple whose norm is an angle in radians,
+// and whose direction is aligned with the axis of rotation,
+// and quaternion is a 4-tuple that will contain the resulting quaternion.
+// The implementation may be used with auto-differentiation up to the first
+// derivative, higher derivatives may have unexpected results near the origin.
+template<typename T>
+void AngleAxisToQuaternion(T const* angle_axis, T* quaternion);
+
+// Convert a quaternion to the equivalent combined axis-angle representation.
+// The value quaternion must be a unit quaternion - it is not normalized first,
+// and angle_axis will be filled with a value whose norm is the angle of
+// rotation in radians, and whose direction is the axis of rotation.
+// The implemention may be used with auto-differentiation up to the first
+// derivative, higher derivatives may have unexpected results near the origin.
+template<typename T>
+void QuaternionToAngleAxis(T const* quaternion, T* angle_axis);
+
+// Conversions between 3x3 rotation matrix (in column major order) and
+// axis-angle rotation representations. Templated for use with
+// autodifferentiation.
+template <typename T>
+void RotationMatrixToAngleAxis(T const * R, T * angle_axis);
+template <typename T>
+void AngleAxisToRotationMatrix(T const * angle_axis, T * R);
+
+// Conversions between 3x3 rotation matrix (in row major order) and
+// Euler angle (in degrees) rotation representations.
+//
+// The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
+// axes, respectively. They are applied in that same order, so the
+// total rotation R is Rz * Ry * Rx.
+template <typename T>
+void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R);
+
+// Convert a 4-vector to a 3x3 scaled rotation matrix.
+//
+// The choice of rotation is such that the quaternion [1 0 0 0] goes to an
+// identity matrix and for small a, b, c the quaternion [1 a b c] goes to
+// the matrix
+//
+// [ 0 -c b ]
+// I + 2 [ c 0 -a ] + higher order terms
+// [ -b a 0 ]
+//
+// which corresponds to a Rodrigues approximation, the last matrix being
+// the cross-product matrix of [a b c]. Together with the property that
+// R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R.
+//
+// The rotation matrix is row-major.
+//
+// No normalization of the quaternion is performed, i.e.
+// R = ||q||^2 * Q, where Q is an orthonormal matrix
+// such that det(Q) = 1 and Q*Q' = I
+template <typename T> inline
+void QuaternionToScaledRotation(const T q[4], T R[3 * 3]);
+
+// Same as above except that the rotation matrix is normalized by the
+// Frobenius norm, so that R * R' = I (and det(R) = 1).
+template <typename T> inline
+void QuaternionToRotation(const T q[4], T R[3 * 3]);
+
+// Rotates a point pt by a quaternion q:
+//
+// result = R(q) * pt
+//
+// Assumes the quaternion is unit norm. This assumption allows us to
+// write the transform as (something)*pt + pt, as is clear from the
+// formula below. If you pass in a quaternion with |q|^2 = 2 then you
+// WILL NOT get back 2 times the result you get for a unit quaternion.
+template <typename T> inline
+void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
+
+// With this function you do not need to assume that q has unit norm.
+// It does assume that the norm is non-zero.
+template <typename T> inline
+void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
+
+// zw = z * w, where * is the Quaternion product between 4 vectors.
+template<typename T> inline
+void QuaternionProduct(const T z[4], const T w[4], T zw[4]);
+
+// xy = x cross y;
+template<typename T> inline
+void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]);
+
+template<typename T> inline
+T DotProduct(const T x[3], const T y[3]);
+
+// y = R(angle_axis) * x;
+template<typename T> inline
+void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]);
+
+// --- IMPLEMENTATION
+
+template<typename T>
+inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) {
+ const T& a0 = angle_axis[0];
+ const T& a1 = angle_axis[1];
+ const T& a2 = angle_axis[2];
+ const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;
+
+ // For points not at the origin, the full conversion is numerically stable.
+ if (theta_squared > T(0.0)) {
+ const T theta = sqrt(theta_squared);
+ const T half_theta = theta * T(0.5);
+ const T k = sin(half_theta) / theta;
+ quaternion[0] = cos(half_theta);
+ quaternion[1] = a0 * k;
+ quaternion[2] = a1 * k;
+ quaternion[3] = a2 * k;
+ } else {
+ // At the origin, sqrt() will produce NaN in the derivative since
+ // the argument is zero. By approximating with a Taylor series,
+ // and truncating at one term, the value and first derivatives will be
+ // computed correctly when Jets are used.
+ const T k(0.5);
+ quaternion[0] = T(1.0);
+ quaternion[1] = a0 * k;
+ quaternion[2] = a1 * k;
+ quaternion[3] = a2 * k;
+ }
+}
+
+template<typename T>
+inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {
+ const T& q1 = quaternion[1];
+ const T& q2 = quaternion[2];
+ const T& q3 = quaternion[3];
+ const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3;
+
+ // For quaternions representing non-zero rotation, the conversion
+ // is numerically stable.
+ if (sin_squared_theta > T(0.0)) {
+ const T sin_theta = sqrt(sin_squared_theta);
+ const T& cos_theta = quaternion[0];
+
+ // If cos_theta is negative, theta is greater than pi/2, which
+ // means that angle for the angle_axis vector which is 2 * theta
+ // would be greater than pi.
+ //
+ // While this will result in the correct rotation, it does not
+ // result in a normalized angle-axis vector.
+ //
+ // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi,
+ // which is equivalent saying
+ //
+ // theta - pi = atan(sin(theta - pi), cos(theta - pi))
+ // = atan(-sin(theta), -cos(theta))
+ //
+ const T two_theta =
+ T(2.0) * ((cos_theta < 0.0)
+ ? atan2(-sin_theta, -cos_theta)
+ : atan2(sin_theta, cos_theta));
+ const T k = two_theta / sin_theta;
+ angle_axis[0] = q1 * k;
+ angle_axis[1] = q2 * k;
+ angle_axis[2] = q3 * k;
+ } else {
+ // For zero rotation, sqrt() will produce NaN in the derivative since
+ // the argument is zero. By approximating with a Taylor series,
+ // and truncating at one term, the value and first derivatives will be
+ // computed correctly when Jets are used.
+ const T k(2.0);
+ angle_axis[0] = q1 * k;
+ angle_axis[1] = q2 * k;
+ angle_axis[2] = q3 * k;
+ }
+}
+
+// The conversion of a rotation matrix to the angle-axis form is
+// numerically problematic when then rotation angle is close to zero
+// or to Pi. The following implementation detects when these two cases
+// occurs and deals with them by taking code paths that are guaranteed
+// to not perform division by a small number.
+template <typename T>
+inline void RotationMatrixToAngleAxis(const T * R, T * angle_axis) {
+ // x = k * 2 * sin(theta), where k is the axis of rotation.
+ angle_axis[0] = R[5] - R[7];
+ angle_axis[1] = R[6] - R[2];
+ angle_axis[2] = R[1] - R[3];
+
+ static const T kOne = T(1.0);
+ static const T kTwo = T(2.0);
+
+ // Since the right hand side may give numbers just above 1.0 or
+ // below -1.0 leading to atan misbehaving, we threshold.
+ T costheta = std::min(std::max((R[0] + R[4] + R[8] - kOne) / kTwo,
+ T(-1.0)),
+ kOne);
+
+ // sqrt is guaranteed to give non-negative results, so we only
+ // threshold above.
+ T sintheta = std::min(sqrt(angle_axis[0] * angle_axis[0] +
+ angle_axis[1] * angle_axis[1] +
+ angle_axis[2] * angle_axis[2]) / kTwo,
+ kOne);
+
+ // Use the arctan2 to get the right sign on theta
+ const T theta = atan2(sintheta, costheta);
+
+ // Case 1: sin(theta) is large enough, so dividing by it is not a
+ // problem. We do not use abs here, because while jets.h imports
+ // std::abs into the namespace, here in this file, abs resolves to
+ // the int version of the function, which returns zero always.
+ //
+ // We use a threshold much larger then the machine epsilon, because
+ // if sin(theta) is small, not only do we risk overflow but even if
+ // that does not occur, just dividing by a small number will result
+ // in numerical garbage. So we play it safe.
+ static const double kThreshold = 1e-12;
+ if ((sintheta > kThreshold) || (sintheta < -kThreshold)) {
+ const T r = theta / (kTwo * sintheta);
+ for (int i = 0; i < 3; ++i) {
+ angle_axis[i] *= r;
+ }
+ return;
+ }
+
+ // Case 2: theta ~ 0, means sin(theta) ~ theta to a good
+ // approximation.
+ if (costheta > 0.0) {
+ const T kHalf = T(0.5);
+ for (int i = 0; i < 3; ++i) {
+ angle_axis[i] *= kHalf;
+ }
+ return;
+ }
+
+ // Case 3: theta ~ pi, this is the hard case. Since theta is large,
+ // and sin(theta) is small. Dividing by theta by sin(theta) will
+ // either give an overflow or worse still numerically meaningless
+ // results. Thus we use an alternate more complicated formula
+ // here.
+
+ // Since cos(theta) is negative, division by (1-cos(theta)) cannot
+ // overflow.
+ const T inv_one_minus_costheta = kOne / (kOne - costheta);
+
+ // We now compute the absolute value of coordinates of the axis
+ // vector using the diagonal entries of R. To resolve the sign of
+ // these entries, we compare the sign of angle_axis[i]*sin(theta)
+ // with the sign of sin(theta). If they are the same, then
+ // angle_axis[i] should be positive, otherwise negative.
+ for (int i = 0; i < 3; ++i) {
+ angle_axis[i] = theta * sqrt((R[i*4] - costheta) * inv_one_minus_costheta);
+ if (((sintheta < 0.0) && (angle_axis[i] > 0.0)) ||
+ ((sintheta > 0.0) && (angle_axis[i] < 0.0))) {
+ angle_axis[i] = -angle_axis[i];
+ }
+ }
+}
+
+template <typename T>
+inline void AngleAxisToRotationMatrix(const T * angle_axis, T * R) {
+ static const T kOne = T(1.0);
+ const T theta2 = DotProduct(angle_axis, angle_axis);
+ if (theta2 > 0.0) {
+ // We want to be careful to only evaluate the square root if the
+ // norm of the angle_axis vector is greater than zero. Otherwise
+ // we get a division by zero.
+ const T theta = sqrt(theta2);
+ const T wx = angle_axis[0] / theta;
+ const T wy = angle_axis[1] / theta;
+ const T wz = angle_axis[2] / theta;
+
+ const T costheta = cos(theta);
+ const T sintheta = sin(theta);
+
+ R[0] = costheta + wx*wx*(kOne - costheta);
+ R[1] = wz*sintheta + wx*wy*(kOne - costheta);
+ R[2] = -wy*sintheta + wx*wz*(kOne - costheta);
+ R[3] = wx*wy*(kOne - costheta) - wz*sintheta;
+ R[4] = costheta + wy*wy*(kOne - costheta);
+ R[5] = wx*sintheta + wy*wz*(kOne - costheta);
+ R[6] = wy*sintheta + wx*wz*(kOne - costheta);
+ R[7] = -wx*sintheta + wy*wz*(kOne - costheta);
+ R[8] = costheta + wz*wz*(kOne - costheta);
+ } else {
+ // At zero, we switch to using the first order Taylor expansion.
+ R[0] = kOne;
+ R[1] = -angle_axis[2];
+ R[2] = angle_axis[1];
+ R[3] = angle_axis[2];
+ R[4] = kOne;
+ R[5] = -angle_axis[0];
+ R[6] = -angle_axis[1];
+ R[7] = angle_axis[0];
+ R[8] = kOne;
+ }
+}
+
+template <typename T>
+inline void EulerAnglesToRotationMatrix(const T* euler,
+ const int row_stride,
+ T* R) {
+ const double kPi = 3.14159265358979323846;
+ const T degrees_to_radians(kPi / 180.0);
+
+ const T pitch(euler[0] * degrees_to_radians);
+ const T roll(euler[1] * degrees_to_radians);
+ const T yaw(euler[2] * degrees_to_radians);
+
+ const T c1 = cos(yaw);
+ const T s1 = sin(yaw);
+ const T c2 = cos(roll);
+ const T s2 = sin(roll);
+ const T c3 = cos(pitch);
+ const T s3 = sin(pitch);
+
+ // Rows of the rotation matrix.
+ T* R1 = R;
+ T* R2 = R1 + row_stride;
+ T* R3 = R2 + row_stride;
+
+ R1[0] = c1*c2;
+ R1[1] = -s1*c3 + c1*s2*s3;
+ R1[2] = s1*s3 + c1*s2*c3;
+
+ R2[0] = s1*c2;
+ R2[1] = c1*c3 + s1*s2*s3;
+ R2[2] = -c1*s3 + s1*s2*c3;
+
+ R3[0] = -s2;
+ R3[1] = c2*s3;
+ R3[2] = c2*c3;
+}
+
+template <typename T> inline
+void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) {
+ // Make convenient names for elements of q.
+ T a = q[0];
+ T b = q[1];
+ T c = q[2];
+ T d = q[3];
+ // This is not to eliminate common sub-expression, but to
+ // make the lines shorter so that they fit in 80 columns!
+ T aa = a * a;
+ T ab = a * b;
+ T ac = a * c;
+ T ad = a * d;
+ T bb = b * b;
+ T bc = b * c;
+ T bd = b * d;
+ T cc = c * c;
+ T cd = c * d;
+ T dd = d * d;
+
+ R[0] = aa + bb - cc - dd; R[1] = T(2) * (bc - ad); R[2] = T(2) * (ac + bd); // NOLINT
+ R[3] = T(2) * (ad + bc); R[4] = aa - bb + cc - dd; R[5] = T(2) * (cd - ab); // NOLINT
+ R[6] = T(2) * (bd - ac); R[7] = T(2) * (ab + cd); R[8] = aa - bb - cc + dd; // NOLINT
+}
+
+template <typename T> inline
+void QuaternionToRotation(const T q[4], T R[3 * 3]) {
+ QuaternionToScaledRotation(q, R);
+
+ T normalizer = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
+ CHECK_NE(normalizer, T(0));
+ normalizer = T(1) / normalizer;
+
+ for (int i = 0; i < 9; ++i) {
+ R[i] *= normalizer;
+ }
+}
+
+template <typename T> inline
+void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
+ const T t2 = q[0] * q[1];
+ const T t3 = q[0] * q[2];
+ const T t4 = q[0] * q[3];
+ const T t5 = -q[1] * q[1];
+ const T t6 = q[1] * q[2];
+ const T t7 = q[1] * q[3];
+ const T t8 = -q[2] * q[2];
+ const T t9 = q[2] * q[3];
+ const T t1 = -q[3] * q[3];
+ result[0] = T(2) * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0]; // NOLINT
+ result[1] = T(2) * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1]; // NOLINT
+ result[2] = T(2) * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2]; // NOLINT
+}
+
+
+template <typename T> inline
+void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
+ // 'scale' is 1 / norm(q).
+ const T scale = T(1) / sqrt(q[0] * q[0] +
+ q[1] * q[1] +
+ q[2] * q[2] +
+ q[3] * q[3]);
+
+ // Make unit-norm version of q.
+ const T unit[4] = {
+ scale * q[0],
+ scale * q[1],
+ scale * q[2],
+ scale * q[3],
+ };
+
+ UnitQuaternionRotatePoint(unit, pt, result);
+}
+
+template<typename T> inline
+void QuaternionProduct(const T z[4], const T w[4], T zw[4]) {
+ zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];
+ zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];
+ zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];
+ zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];
+}
+
+// xy = x cross y;
+template<typename T> inline
+void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) {
+ x_cross_y[0] = x[1] * y[2] - x[2] * y[1];
+ x_cross_y[1] = x[2] * y[0] - x[0] * y[2];
+ x_cross_y[2] = x[0] * y[1] - x[1] * y[0];
+}
+
+template<typename T> inline
+T DotProduct(const T x[3], const T y[3]) {
+ return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
+}
+
+template<typename T> inline
+void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) {
+ T w[3];
+ T sintheta;
+ T costheta;
+
+ const T theta2 = DotProduct(angle_axis, angle_axis);
+ if (theta2 > 0.0) {
+ // Away from zero, use the rodriguez formula
+ //
+ // result = pt costheta +
+ // (w x pt) * sintheta +
+ // w (w . pt) (1 - costheta)
+ //
+ // We want to be careful to only evaluate the square root if the
+ // norm of the angle_axis vector is greater than zero. Otherwise
+ // we get a division by zero.
+ //
+ const T theta = sqrt(theta2);
+ w[0] = angle_axis[0] / theta;
+ w[1] = angle_axis[1] / theta;
+ w[2] = angle_axis[2] / theta;
+ costheta = cos(theta);
+ sintheta = sin(theta);
+ T w_cross_pt[3];
+ CrossProduct(w, pt, w_cross_pt);
+ T w_dot_pt = DotProduct(w, pt);
+ for (int i = 0; i < 3; ++i) {
+ result[i] = pt[i] * costheta +
+ w_cross_pt[i] * sintheta +
+ w[i] * (T(1.0) - costheta) * w_dot_pt;
+ }
+ } else {
+ // Near zero, the first order Taylor approximation of the rotation
+ // matrix R corresponding to a vector w and angle w is
+ //
+ // R = I + hat(w) * sin(theta)
+ //
+ // But sintheta ~ theta and theta * w = angle_axis, which gives us
+ //
+ // R = I + hat(w)
+ //
+ // and actually performing multiplication with the point pt, gives us
+ // R * pt = pt + w x pt.
+ //
+ // Switching to the Taylor expansion at zero helps avoid all sorts
+ // of numerical nastiness.
+ T w_cross_pt[3];
+ CrossProduct(angle_axis, pt, w_cross_pt);
+ for (int i = 0; i < 3; ++i) {
+ result[i] = pt[i] + w_cross_pt[i];
+ }
+ }
+}
+
+} // namespace ceres
+
+#endif // CERES_PUBLIC_ROTATION_H_