aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/covariance_impl.cc
diff options
context:
space:
mode:
Diffstat (limited to 'internal/ceres/covariance_impl.cc')
-rw-r--r--internal/ceres/covariance_impl.cc821
1 files changed, 821 insertions, 0 deletions
diff --git a/internal/ceres/covariance_impl.cc b/internal/ceres/covariance_impl.cc
new file mode 100644
index 0000000..1befde7
--- /dev/null
+++ b/internal/ceres/covariance_impl.cc
@@ -0,0 +1,821 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2013 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include "ceres/covariance_impl.h"
+
+#ifdef CERES_USE_OPENMP
+#include <omp.h>
+#endif
+
+#include <algorithm>
+#include <utility>
+#include <vector>
+#include "Eigen/SVD"
+#include "ceres/compressed_row_sparse_matrix.h"
+#include "ceres/covariance.h"
+#include "ceres/crs_matrix.h"
+#include "ceres/internal/eigen.h"
+#include "ceres/map_util.h"
+#include "ceres/parameter_block.h"
+#include "ceres/problem_impl.h"
+#include "ceres/suitesparse.h"
+#include "ceres/wall_time.h"
+#include "glog/logging.h"
+#include "SuiteSparseQR.hpp"
+
+namespace ceres {
+namespace internal {
+namespace {
+
+// Per thread storage for SuiteSparse.
+#ifndef CERES_NO_SUITESPARSE
+struct PerThreadContext {
+ explicit PerThreadContext(int num_rows)
+ : solution(NULL),
+ solution_set(NULL),
+ y_workspace(NULL),
+ e_workspace(NULL),
+ rhs(NULL) {
+ rhs = ss.CreateDenseVector(NULL, num_rows, num_rows);
+ }
+
+ ~PerThreadContext() {
+ ss.Free(solution);
+ ss.Free(solution_set);
+ ss.Free(y_workspace);
+ ss.Free(e_workspace);
+ ss.Free(rhs);
+ }
+
+ cholmod_dense* solution;
+ cholmod_sparse* solution_set;
+ cholmod_dense* y_workspace;
+ cholmod_dense* e_workspace;
+ cholmod_dense* rhs;
+ SuiteSparse ss;
+};
+#endif
+
+} // namespace
+
+typedef vector<pair<const double*, const double*> > CovarianceBlocks;
+
+CovarianceImpl::CovarianceImpl(const Covariance::Options& options)
+ : options_(options),
+ is_computed_(false),
+ is_valid_(false) {
+ evaluate_options_.num_threads = options.num_threads;
+ evaluate_options_.apply_loss_function = options.apply_loss_function;
+}
+
+CovarianceImpl::~CovarianceImpl() {
+}
+
+bool CovarianceImpl::Compute(const CovarianceBlocks& covariance_blocks,
+ ProblemImpl* problem) {
+ problem_ = problem;
+ parameter_block_to_row_index_.clear();
+ covariance_matrix_.reset(NULL);
+ is_valid_ = (ComputeCovarianceSparsity(covariance_blocks, problem) &&
+ ComputeCovarianceValues());
+ is_computed_ = true;
+ return is_valid_;
+}
+
+bool CovarianceImpl::GetCovarianceBlock(const double* original_parameter_block1,
+ const double* original_parameter_block2,
+ double* covariance_block) const {
+ CHECK(is_computed_)
+ << "Covariance::GetCovarianceBlock called before Covariance::Compute";
+ CHECK(is_valid_)
+ << "Covariance::GetCovarianceBlock called when Covariance::Compute "
+ << "returned false.";
+
+ // If either of the two parameter blocks is constant, then the
+ // covariance block is also zero.
+ if (constant_parameter_blocks_.count(original_parameter_block1) > 0 ||
+ constant_parameter_blocks_.count(original_parameter_block2) > 0) {
+ const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map();
+ ParameterBlock* block1 =
+ FindOrDie(parameter_map,
+ const_cast<double*>(original_parameter_block1));
+
+ ParameterBlock* block2 =
+ FindOrDie(parameter_map,
+ const_cast<double*>(original_parameter_block2));
+ const int block1_size = block1->Size();
+ const int block2_size = block2->Size();
+ MatrixRef(covariance_block, block1_size, block2_size).setZero();
+ return true;
+ }
+
+ const double* parameter_block1 = original_parameter_block1;
+ const double* parameter_block2 = original_parameter_block2;
+ const bool transpose = parameter_block1 > parameter_block2;
+ if (transpose) {
+ std::swap(parameter_block1, parameter_block2);
+ }
+
+ // Find where in the covariance matrix the block is located.
+ const int row_begin =
+ FindOrDie(parameter_block_to_row_index_, parameter_block1);
+ const int col_begin =
+ FindOrDie(parameter_block_to_row_index_, parameter_block2);
+ const int* rows = covariance_matrix_->rows();
+ const int* cols = covariance_matrix_->cols();
+ const int row_size = rows[row_begin + 1] - rows[row_begin];
+ const int* cols_begin = cols + rows[row_begin];
+
+ // The only part that requires work is walking the compressed column
+ // vector to determine where the set of columns correspnding to the
+ // covariance block begin.
+ int offset = 0;
+ while (cols_begin[offset] != col_begin && offset < row_size) {
+ ++offset;
+ }
+
+ if (offset == row_size) {
+ LOG(WARNING) << "Unable to find covariance block for "
+ << original_parameter_block1 << " "
+ << original_parameter_block2;
+ return false;
+ }
+
+ const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map();
+ ParameterBlock* block1 =
+ FindOrDie(parameter_map, const_cast<double*>(parameter_block1));
+ ParameterBlock* block2 =
+ FindOrDie(parameter_map, const_cast<double*>(parameter_block2));
+ const LocalParameterization* local_param1 = block1->local_parameterization();
+ const LocalParameterization* local_param2 = block2->local_parameterization();
+ const int block1_size = block1->Size();
+ const int block1_local_size = block1->LocalSize();
+ const int block2_size = block2->Size();
+ const int block2_local_size = block2->LocalSize();
+
+ ConstMatrixRef cov(covariance_matrix_->values() + rows[row_begin],
+ block1_size,
+ row_size);
+
+ // Fast path when there are no local parameterizations.
+ if (local_param1 == NULL && local_param2 == NULL) {
+ if (transpose) {
+ MatrixRef(covariance_block, block2_size, block1_size) =
+ cov.block(0, offset, block1_size, block2_size).transpose();
+ } else {
+ MatrixRef(covariance_block, block1_size, block2_size) =
+ cov.block(0, offset, block1_size, block2_size);
+ }
+ return true;
+ }
+
+ // If local parameterizations are used then the covariance that has
+ // been computed is in the tangent space and it needs to be lifted
+ // back to the ambient space.
+ //
+ // This is given by the formula
+ //
+ // C'_12 = J_1 C_12 J_2'
+ //
+ // Where C_12 is the local tangent space covariance for parameter
+ // blocks 1 and 2. J_1 and J_2 are respectively the local to global
+ // jacobians for parameter blocks 1 and 2.
+ //
+ // See Result 5.11 on page 142 of Hartley & Zisserman (2nd Edition)
+ // for a proof.
+ //
+ // TODO(sameeragarwal): Add caching of local parameterization, so
+ // that they are computed just once per parameter block.
+ Matrix block1_jacobian(block1_size, block1_local_size);
+ if (local_param1 == NULL) {
+ block1_jacobian.setIdentity();
+ } else {
+ local_param1->ComputeJacobian(parameter_block1, block1_jacobian.data());
+ }
+
+ Matrix block2_jacobian(block2_size, block2_local_size);
+ // Fast path if the user is requesting a diagonal block.
+ if (parameter_block1 == parameter_block2) {
+ block2_jacobian = block1_jacobian;
+ } else {
+ if (local_param2 == NULL) {
+ block2_jacobian.setIdentity();
+ } else {
+ local_param2->ComputeJacobian(parameter_block2, block2_jacobian.data());
+ }
+ }
+
+ if (transpose) {
+ MatrixRef(covariance_block, block2_size, block1_size) =
+ block2_jacobian *
+ cov.block(0, offset, block1_local_size, block2_local_size).transpose() *
+ block1_jacobian.transpose();
+ } else {
+ MatrixRef(covariance_block, block1_size, block2_size) =
+ block1_jacobian *
+ cov.block(0, offset, block1_local_size, block2_local_size) *
+ block2_jacobian.transpose();
+ }
+
+ return true;
+}
+
+// Determine the sparsity pattern of the covariance matrix based on
+// the block pairs requested by the user.
+bool CovarianceImpl::ComputeCovarianceSparsity(
+ const CovarianceBlocks& original_covariance_blocks,
+ ProblemImpl* problem) {
+ EventLogger event_logger("CovarianceImpl::ComputeCovarianceSparsity");
+
+ // Determine an ordering for the parameter block, by sorting the
+ // parameter blocks by their pointers.
+ vector<double*> all_parameter_blocks;
+ problem->GetParameterBlocks(&all_parameter_blocks);
+ const ProblemImpl::ParameterMap& parameter_map = problem->parameter_map();
+ constant_parameter_blocks_.clear();
+ vector<double*>& active_parameter_blocks = evaluate_options_.parameter_blocks;
+ active_parameter_blocks.clear();
+ for (int i = 0; i < all_parameter_blocks.size(); ++i) {
+ double* parameter_block = all_parameter_blocks[i];
+
+ ParameterBlock* block = FindOrDie(parameter_map, parameter_block);
+ if (block->IsConstant()) {
+ constant_parameter_blocks_.insert(parameter_block);
+ } else {
+ active_parameter_blocks.push_back(parameter_block);
+ }
+ }
+
+ sort(active_parameter_blocks.begin(), active_parameter_blocks.end());
+
+ // Compute the number of rows. Map each parameter block to the
+ // first row corresponding to it in the covariance matrix using the
+ // ordering of parameter blocks just constructed.
+ int num_rows = 0;
+ parameter_block_to_row_index_.clear();
+ for (int i = 0; i < active_parameter_blocks.size(); ++i) {
+ double* parameter_block = active_parameter_blocks[i];
+ const int parameter_block_size =
+ problem->ParameterBlockLocalSize(parameter_block);
+ parameter_block_to_row_index_[parameter_block] = num_rows;
+ num_rows += parameter_block_size;
+ }
+
+ // Compute the number of non-zeros in the covariance matrix. Along
+ // the way flip any covariance blocks which are in the lower
+ // triangular part of the matrix.
+ int num_nonzeros = 0;
+ CovarianceBlocks covariance_blocks;
+ for (int i = 0; i < original_covariance_blocks.size(); ++i) {
+ const pair<const double*, const double*>& block_pair =
+ original_covariance_blocks[i];
+ if (constant_parameter_blocks_.count(block_pair.first) > 0 ||
+ constant_parameter_blocks_.count(block_pair.second) > 0) {
+ continue;
+ }
+
+ int index1 = FindOrDie(parameter_block_to_row_index_, block_pair.first);
+ int index2 = FindOrDie(parameter_block_to_row_index_, block_pair.second);
+ const int size1 = problem->ParameterBlockLocalSize(block_pair.first);
+ const int size2 = problem->ParameterBlockLocalSize(block_pair.second);
+ num_nonzeros += size1 * size2;
+
+ // Make sure we are constructing a block upper triangular matrix.
+ if (index1 > index2) {
+ covariance_blocks.push_back(make_pair(block_pair.second,
+ block_pair.first));
+ } else {
+ covariance_blocks.push_back(block_pair);
+ }
+ }
+
+ if (covariance_blocks.size() == 0) {
+ VLOG(2) << "No non-zero covariance blocks found";
+ covariance_matrix_.reset(NULL);
+ return true;
+ }
+
+ // Sort the block pairs. As a consequence we get the covariance
+ // blocks as they will occur in the CompressedRowSparseMatrix that
+ // will store the covariance.
+ sort(covariance_blocks.begin(), covariance_blocks.end());
+
+ // Fill the sparsity pattern of the covariance matrix.
+ covariance_matrix_.reset(
+ new CompressedRowSparseMatrix(num_rows, num_rows, num_nonzeros));
+
+ int* rows = covariance_matrix_->mutable_rows();
+ int* cols = covariance_matrix_->mutable_cols();
+
+ // Iterate over parameter blocks and in turn over the rows of the
+ // covariance matrix. For each parameter block, look in the upper
+ // triangular part of the covariance matrix to see if there are any
+ // blocks requested by the user. If this is the case then fill out a
+ // set of compressed rows corresponding to this parameter block.
+ //
+ // The key thing that makes this loop work is the fact that the
+ // row/columns of the covariance matrix are ordered by the pointer
+ // values of the parameter blocks. Thus iterating over the keys of
+ // parameter_block_to_row_index_ corresponds to iterating over the
+ // rows of the covariance matrix in order.
+ int i = 0; // index into covariance_blocks.
+ int cursor = 0; // index into the covariance matrix.
+ for (map<const double*, int>::const_iterator it =
+ parameter_block_to_row_index_.begin();
+ it != parameter_block_to_row_index_.end();
+ ++it) {
+ const double* row_block = it->first;
+ const int row_block_size = problem->ParameterBlockLocalSize(row_block);
+ int row_begin = it->second;
+
+ // Iterate over the covariance blocks contained in this row block
+ // and count the number of columns in this row block.
+ int num_col_blocks = 0;
+ int num_columns = 0;
+ for (int j = i; j < covariance_blocks.size(); ++j, ++num_col_blocks) {
+ const pair<const double*, const double*>& block_pair =
+ covariance_blocks[j];
+ if (block_pair.first != row_block) {
+ break;
+ }
+ num_columns += problem->ParameterBlockLocalSize(block_pair.second);
+ }
+
+ // Fill out all the compressed rows for this parameter block.
+ for (int r = 0; r < row_block_size; ++r) {
+ rows[row_begin + r] = cursor;
+ for (int c = 0; c < num_col_blocks; ++c) {
+ const double* col_block = covariance_blocks[i + c].second;
+ const int col_block_size = problem->ParameterBlockLocalSize(col_block);
+ int col_begin = FindOrDie(parameter_block_to_row_index_, col_block);
+ for (int k = 0; k < col_block_size; ++k) {
+ cols[cursor++] = col_begin++;
+ }
+ }
+ }
+
+ i+= num_col_blocks;
+ }
+
+ rows[num_rows] = cursor;
+ return true;
+}
+
+bool CovarianceImpl::ComputeCovarianceValues() {
+ switch (options_.algorithm_type) {
+ case (DENSE_SVD):
+ return ComputeCovarianceValuesUsingDenseSVD();
+#ifndef CERES_NO_SUITESPARSE
+ case (SPARSE_CHOLESKY):
+ return ComputeCovarianceValuesUsingSparseCholesky();
+ case (SPARSE_QR):
+ return ComputeCovarianceValuesUsingSparseQR();
+#endif
+ default:
+ LOG(ERROR) << "Unsupported covariance estimation algorithm type: "
+ << CovarianceAlgorithmTypeToString(options_.algorithm_type);
+ return false;
+ }
+ return false;
+}
+
+bool CovarianceImpl::ComputeCovarianceValuesUsingSparseCholesky() {
+ EventLogger event_logger(
+ "CovarianceImpl::ComputeCovarianceValuesUsingSparseCholesky");
+#ifndef CERES_NO_SUITESPARSE
+ if (covariance_matrix_.get() == NULL) {
+ // Nothing to do, all zeros covariance matrix.
+ return true;
+ }
+
+ SuiteSparse ss;
+
+ CRSMatrix jacobian;
+ problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian);
+
+ event_logger.AddEvent("Evaluate");
+ // m is a transposed view of the Jacobian.
+ cholmod_sparse cholmod_jacobian_view;
+ cholmod_jacobian_view.nrow = jacobian.num_cols;
+ cholmod_jacobian_view.ncol = jacobian.num_rows;
+ cholmod_jacobian_view.nzmax = jacobian.values.size();
+ cholmod_jacobian_view.nz = NULL;
+ cholmod_jacobian_view.p = reinterpret_cast<void*>(&jacobian.rows[0]);
+ cholmod_jacobian_view.i = reinterpret_cast<void*>(&jacobian.cols[0]);
+ cholmod_jacobian_view.x = reinterpret_cast<void*>(&jacobian.values[0]);
+ cholmod_jacobian_view.z = NULL;
+ cholmod_jacobian_view.stype = 0; // Matrix is not symmetric.
+ cholmod_jacobian_view.itype = CHOLMOD_INT;
+ cholmod_jacobian_view.xtype = CHOLMOD_REAL;
+ cholmod_jacobian_view.dtype = CHOLMOD_DOUBLE;
+ cholmod_jacobian_view.sorted = 1;
+ cholmod_jacobian_view.packed = 1;
+
+ cholmod_factor* factor = ss.AnalyzeCholesky(&cholmod_jacobian_view);
+ event_logger.AddEvent("Symbolic Factorization");
+ bool factorization_succeeded = ss.Cholesky(&cholmod_jacobian_view, factor);
+ if (factorization_succeeded) {
+ const double reciprocal_condition_number =
+ cholmod_rcond(factor, ss.mutable_cc());
+ if (reciprocal_condition_number <
+ options_.min_reciprocal_condition_number) {
+ LOG(WARNING) << "Cholesky factorization of J'J is not reliable. "
+ << "Reciprocal condition number: "
+ << reciprocal_condition_number << " "
+ << "min_reciprocal_condition_number : "
+ << options_.min_reciprocal_condition_number;
+ factorization_succeeded = false;
+ }
+ }
+
+ event_logger.AddEvent("Numeric Factorization");
+ if (!factorization_succeeded) {
+ ss.Free(factor);
+ LOG(WARNING) << "Cholesky factorization failed.";
+ return false;
+ }
+
+ const int num_rows = covariance_matrix_->num_rows();
+ const int* rows = covariance_matrix_->rows();
+ const int* cols = covariance_matrix_->cols();
+ double* values = covariance_matrix_->mutable_values();
+
+ // The following loop exploits the fact that the i^th column of A^{-1}
+ // is given by the solution to the linear system
+ //
+ // A x = e_i
+ //
+ // where e_i is a vector with e(i) = 1 and all other entries zero.
+ //
+ // Since the covariance matrix is symmetric, the i^th row and column
+ // are equal.
+ //
+ // The ifdef separates two different version of SuiteSparse. Newer
+ // versions of SuiteSparse have the cholmod_solve2 function which
+ // re-uses memory across calls.
+#if (SUITESPARSE_VERSION < 4002)
+ cholmod_dense* rhs = ss.CreateDenseVector(NULL, num_rows, num_rows);
+ double* rhs_x = reinterpret_cast<double*>(rhs->x);
+
+ for (int r = 0; r < num_rows; ++r) {
+ int row_begin = rows[r];
+ int row_end = rows[r + 1];
+ if (row_end == row_begin) {
+ continue;
+ }
+
+ rhs_x[r] = 1.0;
+ cholmod_dense* solution = ss.Solve(factor, rhs);
+ double* solution_x = reinterpret_cast<double*>(solution->x);
+ for (int idx = row_begin; idx < row_end; ++idx) {
+ const int c = cols[idx];
+ values[idx] = solution_x[c];
+ }
+ ss.Free(solution);
+ rhs_x[r] = 0.0;
+ }
+
+ ss.Free(rhs);
+#else // SUITESPARSE_VERSION < 4002
+
+ const int num_threads = options_.num_threads;
+ vector<PerThreadContext*> contexts(num_threads);
+ for (int i = 0; i < num_threads; ++i) {
+ contexts[i] = new PerThreadContext(num_rows);
+ }
+
+ // The first call to cholmod_solve2 is not thread safe, since it
+ // changes the factorization from supernodal to simplicial etc.
+ {
+ PerThreadContext* context = contexts[0];
+ double* context_rhs_x = reinterpret_cast<double*>(context->rhs->x);
+ context_rhs_x[0] = 1.0;
+ cholmod_solve2(CHOLMOD_A,
+ factor,
+ context->rhs,
+ NULL,
+ &context->solution,
+ &context->solution_set,
+ &context->y_workspace,
+ &context->e_workspace,
+ context->ss.mutable_cc());
+ context_rhs_x[0] = 0.0;
+ }
+
+#pragma omp parallel for num_threads(num_threads) schedule(dynamic)
+ for (int r = 0; r < num_rows; ++r) {
+ int row_begin = rows[r];
+ int row_end = rows[r + 1];
+ if (row_end == row_begin) {
+ continue;
+ }
+
+# ifdef CERES_USE_OPENMP
+ int thread_id = omp_get_thread_num();
+# else
+ int thread_id = 0;
+# endif
+
+ PerThreadContext* context = contexts[thread_id];
+ double* context_rhs_x = reinterpret_cast<double*>(context->rhs->x);
+ context_rhs_x[r] = 1.0;
+
+ // TODO(sameeragarwal) There should be a more efficient way
+ // involving the use of Bset but I am unable to make it work right
+ // now.
+ cholmod_solve2(CHOLMOD_A,
+ factor,
+ context->rhs,
+ NULL,
+ &context->solution,
+ &context->solution_set,
+ &context->y_workspace,
+ &context->e_workspace,
+ context->ss.mutable_cc());
+
+ double* solution_x = reinterpret_cast<double*>(context->solution->x);
+ for (int idx = row_begin; idx < row_end; ++idx) {
+ const int c = cols[idx];
+ values[idx] = solution_x[c];
+ }
+ context_rhs_x[r] = 0.0;
+ }
+
+ for (int i = 0; i < num_threads; ++i) {
+ delete contexts[i];
+ }
+
+#endif // SUITESPARSE_VERSION < 4002
+
+ ss.Free(factor);
+ event_logger.AddEvent("Inversion");
+ return true;
+
+#else // CERES_NO_SUITESPARSE
+
+ return false;
+
+#endif // CERES_NO_SUITESPARSE
+};
+
+bool CovarianceImpl::ComputeCovarianceValuesUsingSparseQR() {
+ EventLogger event_logger(
+ "CovarianceImpl::ComputeCovarianceValuesUsingSparseQR");
+
+#ifndef CERES_NO_SUITESPARSE
+ if (covariance_matrix_.get() == NULL) {
+ // Nothing to do, all zeros covariance matrix.
+ return true;
+ }
+
+ CRSMatrix jacobian;
+ problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian);
+ event_logger.AddEvent("Evaluate");
+
+ // Construct a compressed column form of the Jacobian.
+ const int num_rows = jacobian.num_rows;
+ const int num_cols = jacobian.num_cols;
+ const int num_nonzeros = jacobian.values.size();
+
+ // UF_long is deprecated but SuiteSparse_long is only available in
+ // newer versions of SuiteSparse.
+#if (SUITESPARSE_VERSION < 4002)
+ vector<UF_long> transpose_rows(num_cols + 1, 0);
+ vector<UF_long> transpose_cols(num_nonzeros, 0);
+#else
+ vector<SuiteSparse_long> transpose_rows(num_cols + 1, 0);
+ vector<SuiteSparse_long> transpose_cols(num_nonzeros, 0);
+#endif
+
+ vector<double> transpose_values(num_nonzeros, 0);
+
+ for (int idx = 0; idx < num_nonzeros; ++idx) {
+ transpose_rows[jacobian.cols[idx] + 1] += 1;
+ }
+
+ for (int i = 1; i < transpose_rows.size(); ++i) {
+ transpose_rows[i] += transpose_rows[i - 1];
+ }
+
+ for (int r = 0; r < num_rows; ++r) {
+ for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) {
+ const int c = jacobian.cols[idx];
+ const int transpose_idx = transpose_rows[c];
+ transpose_cols[transpose_idx] = r;
+ transpose_values[transpose_idx] = jacobian.values[idx];
+ ++transpose_rows[c];
+ }
+ }
+
+ for (int i = transpose_rows.size() - 1; i > 0 ; --i) {
+ transpose_rows[i] = transpose_rows[i - 1];
+ }
+ transpose_rows[0] = 0;
+
+ cholmod_sparse cholmod_jacobian;
+ cholmod_jacobian.nrow = num_rows;
+ cholmod_jacobian.ncol = num_cols;
+ cholmod_jacobian.nzmax = num_nonzeros;
+ cholmod_jacobian.nz = NULL;
+ cholmod_jacobian.p = reinterpret_cast<void*>(&transpose_rows[0]);
+ cholmod_jacobian.i = reinterpret_cast<void*>(&transpose_cols[0]);
+ cholmod_jacobian.x = reinterpret_cast<void*>(&transpose_values[0]);
+ cholmod_jacobian.z = NULL;
+ cholmod_jacobian.stype = 0; // Matrix is not symmetric.
+ cholmod_jacobian.itype = CHOLMOD_LONG;
+ cholmod_jacobian.xtype = CHOLMOD_REAL;
+ cholmod_jacobian.dtype = CHOLMOD_DOUBLE;
+ cholmod_jacobian.sorted = 1;
+ cholmod_jacobian.packed = 1;
+
+ cholmod_common cc;
+ cholmod_l_start(&cc);
+
+ SuiteSparseQR_factorization<double>* factor =
+ SuiteSparseQR_factorize<double>(SPQR_ORDERING_BESTAMD,
+ SPQR_DEFAULT_TOL,
+ &cholmod_jacobian,
+ &cc);
+ event_logger.AddEvent("Numeric Factorization");
+
+ const int rank = cc.SPQR_istat[4];
+ if (rank < cholmod_jacobian.ncol) {
+ LOG(WARNING) << "Jacobian matrix is rank deficient."
+ << "Number of columns: " << cholmod_jacobian.ncol
+ << " rank: " << rank;
+ SuiteSparseQR_free(&factor, &cc);
+ cholmod_l_finish(&cc);
+ return false;
+ }
+
+ const int* rows = covariance_matrix_->rows();
+ const int* cols = covariance_matrix_->cols();
+ double* values = covariance_matrix_->mutable_values();
+
+ // The following loop exploits the fact that the i^th column of A^{-1}
+ // is given by the solution to the linear system
+ //
+ // A x = e_i
+ //
+ // where e_i is a vector with e(i) = 1 and all other entries zero.
+ //
+ // Since the covariance matrix is symmetric, the i^th row and column
+ // are equal.
+
+ cholmod_dense* rhs = cholmod_l_zeros(num_cols, 1, CHOLMOD_REAL, &cc);
+ double* rhs_x = reinterpret_cast<double*>(rhs->x);
+
+ for (int r = 0; r < num_cols; ++r) {
+ int row_begin = rows[r];
+ int row_end = rows[r + 1];
+ if (row_end == row_begin) {
+ continue;
+ }
+
+ rhs_x[r] = 1.0;
+
+ cholmod_dense* y1 = SuiteSparseQR_solve<double>(SPQR_RTX_EQUALS_ETB, factor, rhs, &cc);
+ cholmod_dense* solution = SuiteSparseQR_solve<double>(SPQR_RETX_EQUALS_B, factor, y1, &cc);
+
+ double* solution_x = reinterpret_cast<double*>(solution->x);
+ for (int idx = row_begin; idx < row_end; ++idx) {
+ const int c = cols[idx];
+ values[idx] = solution_x[c];
+ }
+
+ cholmod_l_free_dense(&y1, &cc);
+ cholmod_l_free_dense(&solution, &cc);
+ rhs_x[r] = 0.0;
+ }
+
+ cholmod_l_free_dense(&rhs, &cc);
+ SuiteSparseQR_free(&factor, &cc);
+ cholmod_l_finish(&cc);
+ event_logger.AddEvent("Inversion");
+ return true;
+
+#else // CERES_NO_SUITESPARSE
+
+ return false;
+
+#endif // CERES_NO_SUITESPARSE
+}
+
+bool CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD() {
+ EventLogger event_logger(
+ "CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD");
+ if (covariance_matrix_.get() == NULL) {
+ // Nothing to do, all zeros covariance matrix.
+ return true;
+ }
+
+ CRSMatrix jacobian;
+ problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian);
+ event_logger.AddEvent("Evaluate");
+
+ Matrix dense_jacobian(jacobian.num_rows, jacobian.num_cols);
+ dense_jacobian.setZero();
+ for (int r = 0; r < jacobian.num_rows; ++r) {
+ for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) {
+ const int c = jacobian.cols[idx];
+ dense_jacobian(r, c) = jacobian.values[idx];
+ }
+ }
+ event_logger.AddEvent("ConvertToDenseMatrix");
+
+ Eigen::JacobiSVD<Matrix> svd(dense_jacobian,
+ Eigen::ComputeThinU | Eigen::ComputeThinV);
+
+ event_logger.AddEvent("SingularValueDecomposition");
+
+ const Vector singular_values = svd.singularValues();
+ const int num_singular_values = singular_values.rows();
+ Vector inverse_squared_singular_values(num_singular_values);
+ inverse_squared_singular_values.setZero();
+
+ const double max_singular_value = singular_values[0];
+ const double min_singular_value_ratio =
+ sqrt(options_.min_reciprocal_condition_number);
+
+ const bool automatic_truncation = (options_.null_space_rank < 0);
+ const int max_rank = min(num_singular_values,
+ num_singular_values - options_.null_space_rank);
+
+ // Compute the squared inverse of the singular values. Truncate the
+ // computation based on min_singular_value_ratio and
+ // null_space_rank. When either of these two quantities are active,
+ // the resulting covariance matrix is a Moore-Penrose inverse
+ // instead of a regular inverse.
+ for (int i = 0; i < max_rank; ++i) {
+ const double singular_value_ratio = singular_values[i] / max_singular_value;
+ if (singular_value_ratio < min_singular_value_ratio) {
+ // Since the singular values are in decreasing order, if
+ // automatic truncation is enabled, then from this point on
+ // all values will fail the ratio test and there is nothing to
+ // do in this loop.
+ if (automatic_truncation) {
+ break;
+ } else {
+ LOG(WARNING) << "Cholesky factorization of J'J is not reliable. "
+ << "Reciprocal condition number: "
+ << singular_value_ratio * singular_value_ratio << " "
+ << "min_reciprocal_condition_number : "
+ << options_.min_reciprocal_condition_number;
+ return false;
+ }
+ }
+
+ inverse_squared_singular_values[i] =
+ 1.0 / (singular_values[i] * singular_values[i]);
+ }
+
+ Matrix dense_covariance =
+ svd.matrixV() *
+ inverse_squared_singular_values.asDiagonal() *
+ svd.matrixV().transpose();
+ event_logger.AddEvent("PseudoInverse");
+
+ const int num_rows = covariance_matrix_->num_rows();
+ const int* rows = covariance_matrix_->rows();
+ const int* cols = covariance_matrix_->cols();
+ double* values = covariance_matrix_->mutable_values();
+
+ for (int r = 0; r < num_rows; ++r) {
+ for (int idx = rows[r]; idx < rows[r + 1]; ++idx) {
+ const int c = cols[idx];
+ values[idx] = dense_covariance(r, c);
+ }
+ }
+ event_logger.AddEvent("CopyToCovarianceMatrix");
+ return true;
+};
+
+} // namespace internal
+} // namespace ceres