aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/dogleg_strategy.cc
diff options
context:
space:
mode:
Diffstat (limited to 'internal/ceres/dogleg_strategy.cc')
-rw-r--r--internal/ceres/dogleg_strategy.cc691
1 files changed, 691 insertions, 0 deletions
diff --git a/internal/ceres/dogleg_strategy.cc b/internal/ceres/dogleg_strategy.cc
new file mode 100644
index 0000000..668fa54
--- /dev/null
+++ b/internal/ceres/dogleg_strategy.cc
@@ -0,0 +1,691 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include "ceres/dogleg_strategy.h"
+
+#include <cmath>
+#include "Eigen/Dense"
+#include "ceres/array_utils.h"
+#include "ceres/internal/eigen.h"
+#include "ceres/linear_solver.h"
+#include "ceres/polynomial_solver.h"
+#include "ceres/sparse_matrix.h"
+#include "ceres/trust_region_strategy.h"
+#include "ceres/types.h"
+#include "glog/logging.h"
+
+namespace ceres {
+namespace internal {
+namespace {
+const double kMaxMu = 1.0;
+const double kMinMu = 1e-8;
+}
+
+DoglegStrategy::DoglegStrategy(const TrustRegionStrategy::Options& options)
+ : linear_solver_(options.linear_solver),
+ radius_(options.initial_radius),
+ max_radius_(options.max_radius),
+ min_diagonal_(options.lm_min_diagonal),
+ max_diagonal_(options.lm_max_diagonal),
+ mu_(kMinMu),
+ min_mu_(kMinMu),
+ max_mu_(kMaxMu),
+ mu_increase_factor_(10.0),
+ increase_threshold_(0.75),
+ decrease_threshold_(0.25),
+ dogleg_step_norm_(0.0),
+ reuse_(false),
+ dogleg_type_(options.dogleg_type) {
+ CHECK_NOTNULL(linear_solver_);
+ CHECK_GT(min_diagonal_, 0.0);
+ CHECK_LE(min_diagonal_, max_diagonal_);
+ CHECK_GT(max_radius_, 0.0);
+}
+
+// If the reuse_ flag is not set, then the Cauchy point (scaled
+// gradient) and the new Gauss-Newton step are computed from
+// scratch. The Dogleg step is then computed as interpolation of these
+// two vectors.
+TrustRegionStrategy::Summary DoglegStrategy::ComputeStep(
+ const TrustRegionStrategy::PerSolveOptions& per_solve_options,
+ SparseMatrix* jacobian,
+ const double* residuals,
+ double* step) {
+ CHECK_NOTNULL(jacobian);
+ CHECK_NOTNULL(residuals);
+ CHECK_NOTNULL(step);
+
+ const int n = jacobian->num_cols();
+ if (reuse_) {
+ // Gauss-Newton and gradient vectors are always available, only a
+ // new interpolant need to be computed. For the subspace case,
+ // the subspace and the two-dimensional model are also still valid.
+ switch(dogleg_type_) {
+ case TRADITIONAL_DOGLEG:
+ ComputeTraditionalDoglegStep(step);
+ break;
+
+ case SUBSPACE_DOGLEG:
+ ComputeSubspaceDoglegStep(step);
+ break;
+ }
+ TrustRegionStrategy::Summary summary;
+ summary.num_iterations = 0;
+ summary.termination_type = TOLERANCE;
+ return summary;
+ }
+
+ reuse_ = true;
+ // Check that we have the storage needed to hold the various
+ // temporary vectors.
+ if (diagonal_.rows() != n) {
+ diagonal_.resize(n, 1);
+ gradient_.resize(n, 1);
+ gauss_newton_step_.resize(n, 1);
+ }
+
+ // Vector used to form the diagonal matrix that is used to
+ // regularize the Gauss-Newton solve and that defines the
+ // elliptical trust region
+ //
+ // || D * step || <= radius_ .
+ //
+ jacobian->SquaredColumnNorm(diagonal_.data());
+ for (int i = 0; i < n; ++i) {
+ diagonal_[i] = min(max(diagonal_[i], min_diagonal_), max_diagonal_);
+ }
+ diagonal_ = diagonal_.array().sqrt();
+
+ ComputeGradient(jacobian, residuals);
+ ComputeCauchyPoint(jacobian);
+
+ LinearSolver::Summary linear_solver_summary =
+ ComputeGaussNewtonStep(jacobian, residuals);
+
+ TrustRegionStrategy::Summary summary;
+ summary.residual_norm = linear_solver_summary.residual_norm;
+ summary.num_iterations = linear_solver_summary.num_iterations;
+ summary.termination_type = linear_solver_summary.termination_type;
+
+ if (linear_solver_summary.termination_type != FAILURE) {
+ switch(dogleg_type_) {
+ // Interpolate the Cauchy point and the Gauss-Newton step.
+ case TRADITIONAL_DOGLEG:
+ ComputeTraditionalDoglegStep(step);
+ break;
+
+ // Find the minimum in the subspace defined by the
+ // Cauchy point and the (Gauss-)Newton step.
+ case SUBSPACE_DOGLEG:
+ if (!ComputeSubspaceModel(jacobian)) {
+ summary.termination_type = FAILURE;
+ break;
+ }
+ ComputeSubspaceDoglegStep(step);
+ break;
+ }
+ }
+
+ return summary;
+}
+
+// The trust region is assumed to be elliptical with the
+// diagonal scaling matrix D defined by sqrt(diagonal_).
+// It is implemented by substituting step' = D * step.
+// The trust region for step' is spherical.
+// The gradient, the Gauss-Newton step, the Cauchy point,
+// and all calculations involving the Jacobian have to
+// be adjusted accordingly.
+void DoglegStrategy::ComputeGradient(
+ SparseMatrix* jacobian,
+ const double* residuals) {
+ gradient_.setZero();
+ jacobian->LeftMultiply(residuals, gradient_.data());
+ gradient_.array() /= diagonal_.array();
+}
+
+// The Cauchy point is the global minimizer of the quadratic model
+// along the one-dimensional subspace spanned by the gradient.
+void DoglegStrategy::ComputeCauchyPoint(SparseMatrix* jacobian) {
+ // alpha * -gradient is the Cauchy point.
+ Vector Jg(jacobian->num_rows());
+ Jg.setZero();
+ // The Jacobian is scaled implicitly by computing J * (D^-1 * (D^-1 * g))
+ // instead of (J * D^-1) * (D^-1 * g).
+ Vector scaled_gradient =
+ (gradient_.array() / diagonal_.array()).matrix();
+ jacobian->RightMultiply(scaled_gradient.data(), Jg.data());
+ alpha_ = gradient_.squaredNorm() / Jg.squaredNorm();
+}
+
+// The dogleg step is defined as the intersection of the trust region
+// boundary with the piecewise linear path from the origin to the Cauchy
+// point and then from there to the Gauss-Newton point (global minimizer
+// of the model function). The Gauss-Newton point is taken if it lies
+// within the trust region.
+void DoglegStrategy::ComputeTraditionalDoglegStep(double* dogleg) {
+ VectorRef dogleg_step(dogleg, gradient_.rows());
+
+ // Case 1. The Gauss-Newton step lies inside the trust region, and
+ // is therefore the optimal solution to the trust-region problem.
+ const double gradient_norm = gradient_.norm();
+ const double gauss_newton_norm = gauss_newton_step_.norm();
+ if (gauss_newton_norm <= radius_) {
+ dogleg_step = gauss_newton_step_;
+ dogleg_step_norm_ = gauss_newton_norm;
+ dogleg_step.array() /= diagonal_.array();
+ VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
+ << " radius: " << radius_;
+ return;
+ }
+
+ // Case 2. The Cauchy point and the Gauss-Newton steps lie outside
+ // the trust region. Rescale the Cauchy point to the trust region
+ // and return.
+ if (gradient_norm * alpha_ >= radius_) {
+ dogleg_step = -(radius_ / gradient_norm) * gradient_;
+ dogleg_step_norm_ = radius_;
+ dogleg_step.array() /= diagonal_.array();
+ VLOG(3) << "Cauchy step size: " << dogleg_step_norm_
+ << " radius: " << radius_;
+ return;
+ }
+
+ // Case 3. The Cauchy point is inside the trust region and the
+ // Gauss-Newton step is outside. Compute the line joining the two
+ // points and the point on it which intersects the trust region
+ // boundary.
+
+ // a = alpha * -gradient
+ // b = gauss_newton_step
+ const double b_dot_a = -alpha_ * gradient_.dot(gauss_newton_step_);
+ const double a_squared_norm = pow(alpha_ * gradient_norm, 2.0);
+ const double b_minus_a_squared_norm =
+ a_squared_norm - 2 * b_dot_a + pow(gauss_newton_norm, 2);
+
+ // c = a' (b - a)
+ // = alpha * -gradient' gauss_newton_step - alpha^2 |gradient|^2
+ const double c = b_dot_a - a_squared_norm;
+ const double d = sqrt(c * c + b_minus_a_squared_norm *
+ (pow(radius_, 2.0) - a_squared_norm));
+
+ double beta =
+ (c <= 0)
+ ? (d - c) / b_minus_a_squared_norm
+ : (radius_ * radius_ - a_squared_norm) / (d + c);
+ dogleg_step = (-alpha_ * (1.0 - beta)) * gradient_
+ + beta * gauss_newton_step_;
+ dogleg_step_norm_ = dogleg_step.norm();
+ dogleg_step.array() /= diagonal_.array();
+ VLOG(3) << "Dogleg step size: " << dogleg_step_norm_
+ << " radius: " << radius_;
+}
+
+// The subspace method finds the minimum of the two-dimensional problem
+//
+// min. 1/2 x' B' H B x + g' B x
+// s.t. || B x ||^2 <= r^2
+//
+// where r is the trust region radius and B is the matrix with unit columns
+// spanning the subspace defined by the steepest descent and Newton direction.
+// This subspace by definition includes the Gauss-Newton point, which is
+// therefore taken if it lies within the trust region.
+void DoglegStrategy::ComputeSubspaceDoglegStep(double* dogleg) {
+ VectorRef dogleg_step(dogleg, gradient_.rows());
+
+ // The Gauss-Newton point is inside the trust region if |GN| <= radius_.
+ // This test is valid even though radius_ is a length in the two-dimensional
+ // subspace while gauss_newton_step_ is expressed in the (scaled)
+ // higher dimensional original space. This is because
+ //
+ // 1. gauss_newton_step_ by definition lies in the subspace, and
+ // 2. the subspace basis is orthonormal.
+ //
+ // As a consequence, the norm of the gauss_newton_step_ in the subspace is
+ // the same as its norm in the original space.
+ const double gauss_newton_norm = gauss_newton_step_.norm();
+ if (gauss_newton_norm <= radius_) {
+ dogleg_step = gauss_newton_step_;
+ dogleg_step_norm_ = gauss_newton_norm;
+ dogleg_step.array() /= diagonal_.array();
+ VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
+ << " radius: " << radius_;
+ return;
+ }
+
+ // The optimum lies on the boundary of the trust region. The above problem
+ // therefore becomes
+ //
+ // min. 1/2 x^T B^T H B x + g^T B x
+ // s.t. || B x ||^2 = r^2
+ //
+ // Notice the equality in the constraint.
+ //
+ // This can be solved by forming the Lagrangian, solving for x(y), where
+ // y is the Lagrange multiplier, using the gradient of the objective, and
+ // putting x(y) back into the constraint. This results in a fourth order
+ // polynomial in y, which can be solved using e.g. the companion matrix.
+ // See the description of MakePolynomialForBoundaryConstrainedProblem for
+ // details. The result is up to four real roots y*, not all of which
+ // correspond to feasible points. The feasible points x(y*) have to be
+ // tested for optimality.
+
+ if (subspace_is_one_dimensional_) {
+ // The subspace is one-dimensional, so both the gradient and
+ // the Gauss-Newton step point towards the same direction.
+ // In this case, we move along the gradient until we reach the trust
+ // region boundary.
+ dogleg_step = -(radius_ / gradient_.norm()) * gradient_;
+ dogleg_step_norm_ = radius_;
+ dogleg_step.array() /= diagonal_.array();
+ VLOG(3) << "Dogleg subspace step size (1D): " << dogleg_step_norm_
+ << " radius: " << radius_;
+ return;
+ }
+
+ Vector2d minimum(0.0, 0.0);
+ if (!FindMinimumOnTrustRegionBoundary(&minimum)) {
+ // For the positive semi-definite case, a traditional dogleg step
+ // is taken in this case.
+ LOG(WARNING) << "Failed to compute polynomial roots. "
+ << "Taking traditional dogleg step instead.";
+ ComputeTraditionalDoglegStep(dogleg);
+ return;
+ }
+
+ // Test first order optimality at the minimum.
+ // The first order KKT conditions state that the minimum x*
+ // has to satisfy either || x* ||^2 < r^2 (i.e. has to lie within
+ // the trust region), or
+ //
+ // (B x* + g) + y x* = 0
+ //
+ // for some positive scalar y.
+ // Here, as it is already known that the minimum lies on the boundary, the
+ // latter condition is tested. To allow for small imprecisions, we test if
+ // the angle between (B x* + g) and -x* is smaller than acos(0.99).
+ // The exact value of the cosine is arbitrary but should be close to 1.
+ //
+ // This condition should not be violated. If it is, the minimum was not
+ // correctly determined.
+ const double kCosineThreshold = 0.99;
+ const Vector2d grad_minimum = subspace_B_ * minimum + subspace_g_;
+ const double cosine_angle = -minimum.dot(grad_minimum) /
+ (minimum.norm() * grad_minimum.norm());
+ if (cosine_angle < kCosineThreshold) {
+ LOG(WARNING) << "First order optimality seems to be violated "
+ << "in the subspace method!\n"
+ << "Cosine of angle between x and B x + g is "
+ << cosine_angle << ".\n"
+ << "Taking a regular dogleg step instead.\n"
+ << "Please consider filing a bug report if this "
+ << "happens frequently or consistently.\n";
+ ComputeTraditionalDoglegStep(dogleg);
+ return;
+ }
+
+ // Create the full step from the optimal 2d solution.
+ dogleg_step = subspace_basis_ * minimum;
+ dogleg_step_norm_ = radius_;
+ dogleg_step.array() /= diagonal_.array();
+ VLOG(3) << "Dogleg subspace step size: " << dogleg_step_norm_
+ << " radius: " << radius_;
+}
+
+// Build the polynomial that defines the optimal Lagrange multipliers.
+// Let the Lagrangian be
+//
+// L(x, y) = 0.5 x^T B x + x^T g + y (0.5 x^T x - 0.5 r^2). (1)
+//
+// Stationary points of the Lagrangian are given by
+//
+// 0 = d L(x, y) / dx = Bx + g + y x (2)
+// 0 = d L(x, y) / dy = 0.5 x^T x - 0.5 r^2 (3)
+//
+// For any given y, we can solve (2) for x as
+//
+// x(y) = -(B + y I)^-1 g . (4)
+//
+// As B + y I is 2x2, we form the inverse explicitly:
+//
+// (B + y I)^-1 = (1 / det(B + y I)) adj(B + y I) (5)
+//
+// where adj() denotes adjugation. This should be safe, as B is positive
+// semi-definite and y is necessarily positive, so (B + y I) is indeed
+// invertible.
+// Plugging (5) into (4) and the result into (3), then dividing by 0.5 we
+// obtain
+//
+// 0 = (1 / det(B + y I))^2 g^T adj(B + y I)^T adj(B + y I) g - r^2
+// (6)
+//
+// or
+//
+// det(B + y I)^2 r^2 = g^T adj(B + y I)^T adj(B + y I) g (7a)
+// = g^T adj(B)^T adj(B) g
+// + 2 y g^T adj(B)^T g + y^2 g^T g (7b)
+//
+// as
+//
+// adj(B + y I) = adj(B) + y I = adj(B)^T + y I . (8)
+//
+// The left hand side can be expressed explicitly using
+//
+// det(B + y I) = det(B) + y tr(B) + y^2 . (9)
+//
+// So (7) is a polynomial in y of degree four.
+// Bringing everything back to the left hand side, the coefficients can
+// be read off as
+//
+// y^4 r^2
+// + y^3 2 r^2 tr(B)
+// + y^2 (r^2 tr(B)^2 + 2 r^2 det(B) - g^T g)
+// + y^1 (2 r^2 det(B) tr(B) - 2 g^T adj(B)^T g)
+// + y^0 (r^2 det(B)^2 - g^T adj(B)^T adj(B) g)
+//
+Vector DoglegStrategy::MakePolynomialForBoundaryConstrainedProblem() const {
+ const double detB = subspace_B_.determinant();
+ const double trB = subspace_B_.trace();
+ const double r2 = radius_ * radius_;
+ Matrix2d B_adj;
+ B_adj << subspace_B_(1,1) , -subspace_B_(0,1),
+ -subspace_B_(1,0) , subspace_B_(0,0);
+
+ Vector polynomial(5);
+ polynomial(0) = r2;
+ polynomial(1) = 2.0 * r2 * trB;
+ polynomial(2) = r2 * ( trB * trB + 2.0 * detB ) - subspace_g_.squaredNorm();
+ polynomial(3) = -2.0 * ( subspace_g_.transpose() * B_adj * subspace_g_
+ - r2 * detB * trB );
+ polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm();
+
+ return polynomial;
+}
+
+// Given a Lagrange multiplier y that corresponds to a stationary point
+// of the Lagrangian L(x, y), compute the corresponding x from the
+// equation
+//
+// 0 = d L(x, y) / dx
+// = B * x + g + y * x
+// = (B + y * I) * x + g
+//
+DoglegStrategy::Vector2d DoglegStrategy::ComputeSubspaceStepFromRoot(
+ double y) const {
+ const Matrix2d B_i = subspace_B_ + y * Matrix2d::Identity();
+ return -B_i.partialPivLu().solve(subspace_g_);
+}
+
+// This function evaluates the quadratic model at a point x in the
+// subspace spanned by subspace_basis_.
+double DoglegStrategy::EvaluateSubspaceModel(const Vector2d& x) const {
+ return 0.5 * x.dot(subspace_B_ * x) + subspace_g_.dot(x);
+}
+
+// This function attempts to solve the boundary-constrained subspace problem
+//
+// min. 1/2 x^T B^T H B x + g^T B x
+// s.t. || B x ||^2 = r^2
+//
+// where B is an orthonormal subspace basis and r is the trust-region radius.
+//
+// This is done by finding the roots of a fourth degree polynomial. If the
+// root finding fails, the function returns false and minimum will be set
+// to (0, 0). If it succeeds, true is returned.
+//
+// In the failure case, another step should be taken, such as the traditional
+// dogleg step.
+bool DoglegStrategy::FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const {
+ CHECK_NOTNULL(minimum);
+
+ // Return (0, 0) in all error cases.
+ minimum->setZero();
+
+ // Create the fourth-degree polynomial that is a necessary condition for
+ // optimality.
+ const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem();
+
+ // Find the real parts y_i of its roots (not only the real roots).
+ Vector roots_real;
+ if (!FindPolynomialRoots(polynomial, &roots_real, NULL)) {
+ // Failed to find the roots of the polynomial, i.e. the candidate
+ // solutions of the constrained problem. Report this back to the caller.
+ return false;
+ }
+
+ // For each root y, compute B x(y) and check for feasibility.
+ // Notice that there should always be four roots, as the leading term of
+ // the polynomial is r^2 and therefore non-zero. However, as some roots
+ // may be complex, the real parts are not necessarily unique.
+ double minimum_value = std::numeric_limits<double>::max();
+ bool valid_root_found = false;
+ for (int i = 0; i < roots_real.size(); ++i) {
+ const Vector2d x_i = ComputeSubspaceStepFromRoot(roots_real(i));
+
+ // Not all roots correspond to points on the trust region boundary.
+ // There are at most four candidate solutions. As we are interested
+ // in the minimum, it is safe to consider all of them after projecting
+ // them onto the trust region boundary.
+ if (x_i.norm() > 0) {
+ const double f_i = EvaluateSubspaceModel((radius_ / x_i.norm()) * x_i);
+ valid_root_found = true;
+ if (f_i < minimum_value) {
+ minimum_value = f_i;
+ *minimum = x_i;
+ }
+ }
+ }
+
+ return valid_root_found;
+}
+
+LinearSolver::Summary DoglegStrategy::ComputeGaussNewtonStep(
+ SparseMatrix* jacobian,
+ const double* residuals) {
+ const int n = jacobian->num_cols();
+ LinearSolver::Summary linear_solver_summary;
+ linear_solver_summary.termination_type = FAILURE;
+
+ // The Jacobian matrix is often quite poorly conditioned. Thus it is
+ // necessary to add a diagonal matrix at the bottom to prevent the
+ // linear solver from failing.
+ //
+ // We do this by computing the same diagonal matrix as the one used
+ // by Levenberg-Marquardt (other choices are possible), and scaling
+ // it by a small constant (independent of the trust region radius).
+ //
+ // If the solve fails, the multiplier to the diagonal is increased
+ // up to max_mu_ by a factor of mu_increase_factor_ every time. If
+ // the linear solver is still not successful, the strategy returns
+ // with FAILURE.
+ //
+ // Next time when a new Gauss-Newton step is requested, the
+ // multiplier starts out from the last successful solve.
+ //
+ // When a step is declared successful, the multiplier is decreased
+ // by half of mu_increase_factor_.
+
+ while (mu_ < max_mu_) {
+ // Dogleg, as far as I (sameeragarwal) understand it, requires a
+ // reasonably good estimate of the Gauss-Newton step. This means
+ // that we need to solve the normal equations more or less
+ // exactly. This is reflected in the values of the tolerances set
+ // below.
+ //
+ // For now, this strategy should only be used with exact
+ // factorization based solvers, for which these tolerances are
+ // automatically satisfied.
+ //
+ // The right way to combine inexact solves with trust region
+ // methods is to use Stiehaug's method.
+ LinearSolver::PerSolveOptions solve_options;
+ solve_options.q_tolerance = 0.0;
+ solve_options.r_tolerance = 0.0;
+
+ lm_diagonal_ = diagonal_ * std::sqrt(mu_);
+ solve_options.D = lm_diagonal_.data();
+
+ // As in the LevenbergMarquardtStrategy, solve Jy = r instead
+ // of Jx = -r and later set x = -y to avoid having to modify
+ // either jacobian or residuals.
+ InvalidateArray(n, gauss_newton_step_.data());
+ linear_solver_summary = linear_solver_->Solve(jacobian,
+ residuals,
+ solve_options,
+ gauss_newton_step_.data());
+
+ if (linear_solver_summary.termination_type == FAILURE ||
+ !IsArrayValid(n, gauss_newton_step_.data())) {
+ mu_ *= mu_increase_factor_;
+ VLOG(2) << "Increasing mu " << mu_;
+ linear_solver_summary.termination_type = FAILURE;
+ continue;
+ }
+ break;
+ }
+
+ if (linear_solver_summary.termination_type != FAILURE) {
+ // The scaled Gauss-Newton step is D * GN:
+ //
+ // - (D^-1 J^T J D^-1)^-1 (D^-1 g)
+ // = - D (J^T J)^-1 D D^-1 g
+ // = D -(J^T J)^-1 g
+ //
+ gauss_newton_step_.array() *= -diagonal_.array();
+ }
+
+ return linear_solver_summary;
+}
+
+void DoglegStrategy::StepAccepted(double step_quality) {
+ CHECK_GT(step_quality, 0.0);
+
+ if (step_quality < decrease_threshold_) {
+ radius_ *= 0.5;
+ }
+
+ if (step_quality > increase_threshold_) {
+ radius_ = max(radius_, 3.0 * dogleg_step_norm_);
+ }
+
+ // Reduce the regularization multiplier, in the hope that whatever
+ // was causing the rank deficiency has gone away and we can return
+ // to doing a pure Gauss-Newton solve.
+ mu_ = max(min_mu_, 2.0 * mu_ / mu_increase_factor_ );
+ reuse_ = false;
+}
+
+void DoglegStrategy::StepRejected(double step_quality) {
+ radius_ *= 0.5;
+ reuse_ = true;
+}
+
+void DoglegStrategy::StepIsInvalid() {
+ mu_ *= mu_increase_factor_;
+ reuse_ = false;
+}
+
+double DoglegStrategy::Radius() const {
+ return radius_;
+}
+
+bool DoglegStrategy::ComputeSubspaceModel(SparseMatrix* jacobian) {
+ // Compute an orthogonal basis for the subspace using QR decomposition.
+ Matrix basis_vectors(jacobian->num_cols(), 2);
+ basis_vectors.col(0) = gradient_;
+ basis_vectors.col(1) = gauss_newton_step_;
+ Eigen::ColPivHouseholderQR<Matrix> basis_qr(basis_vectors);
+
+ switch (basis_qr.rank()) {
+ case 0:
+ // This should never happen, as it implies that both the gradient
+ // and the Gauss-Newton step are zero. In this case, the minimizer should
+ // have stopped due to the gradient being too small.
+ LOG(ERROR) << "Rank of subspace basis is 0. "
+ << "This means that the gradient at the current iterate is "
+ << "zero but the optimization has not been terminated. "
+ << "You may have found a bug in Ceres.";
+ return false;
+
+ case 1:
+ // Gradient and Gauss-Newton step coincide, so we lie on one of the
+ // major axes of the quadratic problem. In this case, we simply move
+ // along the gradient until we reach the trust region boundary.
+ subspace_is_one_dimensional_ = true;
+ return true;
+
+ case 2:
+ subspace_is_one_dimensional_ = false;
+ break;
+
+ default:
+ LOG(ERROR) << "Rank of the subspace basis matrix is reported to be "
+ << "greater than 2. As the matrix contains only two "
+ << "columns this cannot be true and is indicative of "
+ << "a bug.";
+ return false;
+ }
+
+ // The subspace is two-dimensional, so compute the subspace model.
+ // Given the basis U, this is
+ //
+ // subspace_g_ = g_scaled^T U
+ //
+ // and
+ //
+ // subspace_B_ = U^T (J_scaled^T J_scaled) U
+ //
+ // As J_scaled = J * D^-1, the latter becomes
+ //
+ // subspace_B_ = ((U^T D^-1) J^T) (J (D^-1 U))
+ // = (J (D^-1 U))^T (J (D^-1 U))
+
+ subspace_basis_ =
+ basis_qr.householderQ() * Matrix::Identity(jacobian->num_cols(), 2);
+
+ subspace_g_ = subspace_basis_.transpose() * gradient_;
+
+ Eigen::Matrix<double, 2, Eigen::Dynamic, Eigen::RowMajor>
+ Jb(2, jacobian->num_rows());
+ Jb.setZero();
+
+ Vector tmp;
+ tmp = (subspace_basis_.col(0).array() / diagonal_.array()).matrix();
+ jacobian->RightMultiply(tmp.data(), Jb.row(0).data());
+ tmp = (subspace_basis_.col(1).array() / diagonal_.array()).matrix();
+ jacobian->RightMultiply(tmp.data(), Jb.row(1).data());
+
+ subspace_B_ = Jb * Jb.transpose();
+
+ return true;
+}
+
+} // namespace internal
+} // namespace ceres