aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/evaluator.h
diff options
context:
space:
mode:
Diffstat (limited to 'internal/ceres/evaluator.h')
-rw-r--r--internal/ceres/evaluator.h160
1 files changed, 160 insertions, 0 deletions
diff --git a/internal/ceres/evaluator.h b/internal/ceres/evaluator.h
new file mode 100644
index 0000000..3bbf50a
--- /dev/null
+++ b/internal/ceres/evaluator.h
@@ -0,0 +1,160 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+// keir@google.com (Keir Mierle)
+
+#ifndef CERES_INTERNAL_EVALUATOR_H_
+#define CERES_INTERNAL_EVALUATOR_H_
+
+#include <string>
+#include <vector>
+#include "ceres/internal/port.h"
+#include "ceres/types.h"
+
+namespace ceres {
+
+struct CRSMatrix;
+
+namespace internal {
+
+class Program;
+class SparseMatrix;
+
+// The Evaluator interface offers a way to interact with a least squares cost
+// function that is useful for an optimizer that wants to minimize the least
+// squares objective. This insulates the optimizer from issues like Jacobian
+// storage, parameterization, etc.
+class Evaluator {
+ public:
+ virtual ~Evaluator();
+
+ struct Options {
+ Options()
+ : num_threads(1),
+ num_eliminate_blocks(-1),
+ linear_solver_type(DENSE_QR) {}
+
+ int num_threads;
+ int num_eliminate_blocks;
+ LinearSolverType linear_solver_type;
+ };
+
+ static Evaluator* Create(const Options& options,
+ Program* program,
+ string* error);
+
+
+ // This is used for computing the cost, residual and Jacobian for
+ // returning to the user. For actually solving the optimization
+ // problem, the optimization algorithm uses the ProgramEvaluator
+ // objects directly.
+ //
+ // The residual, gradients and jacobian pointers can be NULL, in
+ // which case they will not be evaluated. cost cannot be NULL.
+ //
+ // The parallelism of the evaluator is controlled by num_threads; it
+ // should be at least 1.
+ //
+ // Note: That this function does not take a parameter vector as
+ // input. The parameter blocks are evaluated on the values contained
+ // in the arrays pointed to by their user_state pointers.
+ //
+ // Also worth noting is that this function mutates program by
+ // calling Program::SetParameterOffsetsAndIndex() on it so that an
+ // evaluator object can be constructed.
+ static bool Evaluate(Program* program,
+ int num_threads,
+ double* cost,
+ vector<double>* residuals,
+ vector<double>* gradient,
+ CRSMatrix* jacobian);
+
+ // Build and return a sparse matrix for storing and working with the Jacobian
+ // of the objective function. The jacobian has dimensions
+ // NumEffectiveParameters() by NumParameters(), and is typically extremely
+ // sparse. Since the sparsity pattern of the Jacobian remains constant over
+ // the lifetime of the optimization problem, this method is used to
+ // instantiate a SparseMatrix object with the appropriate sparsity structure
+ // (which can be an expensive operation) and then reused by the optimization
+ // algorithm and the various linear solvers.
+ //
+ // It is expected that the classes implementing this interface will be aware
+ // of their client's requirements for the kind of sparse matrix storage and
+ // layout that is needed for an efficient implementation. For example
+ // CompressedRowOptimizationProblem creates a compressed row representation of
+ // the jacobian for use with CHOLMOD, where as BlockOptimizationProblem
+ // creates a BlockSparseMatrix representation of the jacobian for use in the
+ // Schur complement based methods.
+ virtual SparseMatrix* CreateJacobian() const = 0;
+
+ // Evaluate the cost function for the given state. Returns the cost,
+ // residuals, and jacobian in the corresponding arguments. Both residuals and
+ // jacobian are optional; to avoid computing them, pass NULL.
+ //
+ // If non-NULL, the Jacobian must have a suitable sparsity pattern; only the
+ // values array of the jacobian is modified.
+ //
+ // state is an array of size NumParameters(), cost is a pointer to a single
+ // double, and residuals is an array of doubles of size NumResiduals().
+ virtual bool Evaluate(const double* state,
+ double* cost,
+ double* residuals,
+ double* gradient,
+ SparseMatrix* jacobian) = 0;
+
+ // Make a change delta (of size NumEffectiveParameters()) to state (of size
+ // NumParameters()) and store the result in state_plus_delta.
+ //
+ // In the case that there are no parameterizations used, this is equivalent to
+ //
+ // state_plus_delta[i] = state[i] + delta[i] ;
+ //
+ // however, the mapping is more complicated in the case of parameterizations
+ // like quaternions. This is the same as the "Plus()" operation in
+ // local_parameterization.h, but operating over the entire state vector for a
+ // problem.
+ virtual bool Plus(const double* state,
+ const double* delta,
+ double* state_plus_delta) const = 0;
+
+ // The number of parameters in the optimization problem.
+ virtual int NumParameters() const = 0;
+
+ // This is the effective number of parameters that the optimizer may adjust.
+ // This applies when there are parameterizations on some of the parameters.
+ virtual int NumEffectiveParameters() const = 0;
+
+ // The number of residuals in the optimization problem.
+ virtual int NumResiduals() const = 0;
+};
+
+} // namespace internal
+} // namespace ceres
+
+#endif // CERES_INTERNAL_EVALUATOR_H_