aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/mutex.h
diff options
context:
space:
mode:
Diffstat (limited to 'internal/ceres/mutex.h')
-rw-r--r--internal/ceres/mutex.h322
1 files changed, 322 insertions, 0 deletions
diff --git a/internal/ceres/mutex.h b/internal/ceres/mutex.h
new file mode 100644
index 0000000..5090a71
--- /dev/null
+++ b/internal/ceres/mutex.h
@@ -0,0 +1,322 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: Craig Silverstein.
+//
+// A simple mutex wrapper, supporting locks and read-write locks.
+// You should assume the locks are *not* re-entrant.
+//
+// This class is meant to be internal-only and should be wrapped by an
+// internal namespace. Before you use this module, please give the
+// name of your internal namespace for this module. Or, if you want
+// to expose it, you'll want to move it to the Google namespace. We
+// cannot put this class in global namespace because there can be some
+// problems when we have multiple versions of Mutex in each shared object.
+//
+// NOTE: by default, we have #ifdef'ed out the TryLock() method.
+// This is for two reasons:
+// 1) TryLock() under Windows is a bit annoying (it requires a
+// #define to be defined very early).
+// 2) TryLock() is broken for NO_THREADS mode, at least in NDEBUG
+// mode.
+// If you need TryLock(), and either these two caveats are not a
+// problem for you, or you're willing to work around them, then
+// feel free to #define GMUTEX_TRYLOCK, or to remove the #ifdefs
+// in the code below.
+//
+// CYGWIN NOTE: Cygwin support for rwlock seems to be buggy:
+// http://www.cygwin.com/ml/cygwin/2008-12/msg00017.html
+// Because of that, we might as well use windows locks for
+// cygwin. They seem to be more reliable than the cygwin pthreads layer.
+//
+// TRICKY IMPLEMENTATION NOTE:
+// This class is designed to be safe to use during
+// dynamic-initialization -- that is, by global constructors that are
+// run before main() starts. The issue in this case is that
+// dynamic-initialization happens in an unpredictable order, and it
+// could be that someone else's dynamic initializer could call a
+// function that tries to acquire this mutex -- but that all happens
+// before this mutex's constructor has run. (This can happen even if
+// the mutex and the function that uses the mutex are in the same .cc
+// file.) Basically, because Mutex does non-trivial work in its
+// constructor, it's not, in the naive implementation, safe to use
+// before dynamic initialization has run on it.
+//
+// The solution used here is to pair the actual mutex primitive with a
+// bool that is set to true when the mutex is dynamically initialized.
+// (Before that it's false.) Then we modify all mutex routines to
+// look at the bool, and not try to lock/unlock until the bool makes
+// it to true (which happens after the Mutex constructor has run.)
+//
+// This works because before main() starts -- particularly, during
+// dynamic initialization -- there are no threads, so a) it's ok that
+// the mutex operations are a no-op, since we don't need locking then
+// anyway; and b) we can be quite confident our bool won't change
+// state between a call to Lock() and a call to Unlock() (that would
+// require a global constructor in one translation unit to call Lock()
+// and another global constructor in another translation unit to call
+// Unlock() later, which is pretty perverse).
+//
+// That said, it's tricky, and can conceivably fail; it's safest to
+// avoid trying to acquire a mutex in a global constructor, if you
+// can. One way it can fail is that a really smart compiler might
+// initialize the bool to true at static-initialization time (too
+// early) rather than at dynamic-initialization time. To discourage
+// that, we set is_safe_ to true in code (not the constructor
+// colon-initializer) and set it to true via a function that always
+// evaluates to true, but that the compiler can't know always
+// evaluates to true. This should be good enough.
+
+#ifndef CERES_INTERNAL_MUTEX_H_
+#define CERES_INTERNAL_MUTEX_H_
+
+#if defined(CERES_NO_THREADS)
+ typedef int MutexType; // to keep a lock-count
+#elif defined(_WIN32) || defined(__CYGWIN32__) || defined(__CYGWIN64__)
+# define CERES_WIN32_LEAN_AND_MEAN // We only need minimal includes
+# ifdef CERES_GMUTEX_TRYLOCK
+ // We need Windows NT or later for TryEnterCriticalSection(). If you
+ // don't need that functionality, you can remove these _WIN32_WINNT
+ // lines, and change TryLock() to assert(0) or something.
+# ifndef _WIN32_WINNT
+# define _WIN32_WINNT 0x0400
+# endif
+# endif
+// To avoid macro definition of ERROR.
+# define CERES_NOGDI
+// To avoid macro definition of min/max.
+# define CERES_NOMINMAX
+# include <windows.h>
+ typedef CRITICAL_SECTION MutexType;
+#elif defined(CERES_HAVE_PTHREAD) && defined(CERES_HAVE_RWLOCK)
+ // Needed for pthread_rwlock_*. If it causes problems, you could take it
+ // out, but then you'd have to unset CERES_HAVE_RWLOCK (at least on linux --
+ // it *does* cause problems for FreeBSD, or MacOSX, but isn't needed for
+ // locking there.)
+# if defined(__linux__) && !defined(_XOPEN_SOURCE)
+# define _XOPEN_SOURCE 500 // may be needed to get the rwlock calls
+# endif
+# include <pthread.h>
+ typedef pthread_rwlock_t MutexType;
+#elif defined(CERES_HAVE_PTHREAD)
+# include <pthread.h>
+ typedef pthread_mutex_t MutexType;
+#else
+# error Need to implement mutex.h for your architecture, or #define NO_THREADS
+#endif
+
+// We need to include these header files after defining _XOPEN_SOURCE
+// as they may define the _XOPEN_SOURCE macro.
+#include <assert.h>
+#include <stdlib.h> // for abort()
+
+namespace ceres {
+namespace internal {
+
+class Mutex {
+ public:
+ // Create a Mutex that is not held by anybody. This constructor is
+ // typically used for Mutexes allocated on the heap or the stack.
+ // See below for a recommendation for constructing global Mutex
+ // objects.
+ inline Mutex();
+
+ // Destructor
+ inline ~Mutex();
+
+ inline void Lock(); // Block if needed until free then acquire exclusively
+ inline void Unlock(); // Release a lock acquired via Lock()
+#ifdef CERES_GMUTEX_TRYLOCK
+ inline bool TryLock(); // If free, Lock() and return true, else return false
+#endif
+ // Note that on systems that don't support read-write locks, these may
+ // be implemented as synonyms to Lock() and Unlock(). So you can use
+ // these for efficiency, but don't use them anyplace where being able
+ // to do shared reads is necessary to avoid deadlock.
+ inline void ReaderLock(); // Block until free or shared then acquire a share
+ inline void ReaderUnlock(); // Release a read share of this Mutex
+ inline void WriterLock() { Lock(); } // Acquire an exclusive lock
+ inline void WriterUnlock() { Unlock(); } // Release a lock from WriterLock()
+
+ // TODO(hamaji): Do nothing, implement correctly.
+ inline void AssertHeld() {}
+
+ private:
+ MutexType mutex_;
+ // We want to make sure that the compiler sets is_safe_ to true only
+ // when we tell it to, and never makes assumptions is_safe_ is
+ // always true. volatile is the most reliable way to do that.
+ volatile bool is_safe_;
+
+ inline void SetIsSafe() { is_safe_ = true; }
+
+ // Catch the error of writing Mutex when intending MutexLock.
+ Mutex(Mutex* /*ignored*/) {}
+ // Disallow "evil" constructors
+ Mutex(const Mutex&);
+ void operator=(const Mutex&);
+};
+
+// Now the implementation of Mutex for various systems
+#if defined(CERES_NO_THREADS)
+
+// When we don't have threads, we can be either reading or writing,
+// but not both. We can have lots of readers at once (in no-threads
+// mode, that's most likely to happen in recursive function calls),
+// but only one writer. We represent this by having mutex_ be -1 when
+// writing and a number > 0 when reading (and 0 when no lock is held).
+//
+// In debug mode, we assert these invariants, while in non-debug mode
+// we do nothing, for efficiency. That's why everything is in an
+// assert.
+
+Mutex::Mutex() : mutex_(0) { }
+Mutex::~Mutex() { assert(mutex_ == 0); }
+void Mutex::Lock() { assert(--mutex_ == -1); }
+void Mutex::Unlock() { assert(mutex_++ == -1); }
+#ifdef CERES_GMUTEX_TRYLOCK
+bool Mutex::TryLock() { if (mutex_) return false; Lock(); return true; }
+#endif
+void Mutex::ReaderLock() { assert(++mutex_ > 0); }
+void Mutex::ReaderUnlock() { assert(mutex_-- > 0); }
+
+#elif defined(_WIN32) || defined(__CYGWIN32__) || defined(__CYGWIN64__)
+
+Mutex::Mutex() { InitializeCriticalSection(&mutex_); SetIsSafe(); }
+Mutex::~Mutex() { DeleteCriticalSection(&mutex_); }
+void Mutex::Lock() { if (is_safe_) EnterCriticalSection(&mutex_); }
+void Mutex::Unlock() { if (is_safe_) LeaveCriticalSection(&mutex_); }
+#ifdef GMUTEX_TRYLOCK
+bool Mutex::TryLock() { return is_safe_ ?
+ TryEnterCriticalSection(&mutex_) != 0 : true; }
+#endif
+void Mutex::ReaderLock() { Lock(); } // we don't have read-write locks
+void Mutex::ReaderUnlock() { Unlock(); }
+
+#elif defined(CERES_HAVE_PTHREAD) && defined(CERES_HAVE_RWLOCK)
+
+#define CERES_SAFE_PTHREAD(fncall) do { /* run fncall if is_safe_ is true */ \
+ if (is_safe_ && fncall(&mutex_) != 0) abort(); \
+} while (0)
+
+Mutex::Mutex() {
+ SetIsSafe();
+ if (is_safe_ && pthread_rwlock_init(&mutex_, NULL) != 0) abort();
+}
+Mutex::~Mutex() { CERES_SAFE_PTHREAD(pthread_rwlock_destroy); }
+void Mutex::Lock() { CERES_SAFE_PTHREAD(pthread_rwlock_wrlock); }
+void Mutex::Unlock() { CERES_SAFE_PTHREAD(pthread_rwlock_unlock); }
+#ifdef CERES_GMUTEX_TRYLOCK
+bool Mutex::TryLock() { return is_safe_ ?
+ pthread_rwlock_trywrlock(&mutex_) == 0 :
+ true; }
+#endif
+void Mutex::ReaderLock() { CERES_SAFE_PTHREAD(pthread_rwlock_rdlock); }
+void Mutex::ReaderUnlock() { CERES_SAFE_PTHREAD(pthread_rwlock_unlock); }
+#undef CERES_SAFE_PTHREAD
+
+#elif defined(CERES_HAVE_PTHREAD)
+
+#define CERES_SAFE_PTHREAD(fncall) do { /* run fncall if is_safe_ is true */ \
+ if (is_safe_ && fncall(&mutex_) != 0) abort(); \
+} while (0)
+
+Mutex::Mutex() {
+ SetIsSafe();
+ if (is_safe_ && pthread_mutex_init(&mutex_, NULL) != 0) abort();
+}
+Mutex::~Mutex() { CERES_SAFE_PTHREAD(pthread_mutex_destroy); }
+void Mutex::Lock() { CERES_SAFE_PTHREAD(pthread_mutex_lock); }
+void Mutex::Unlock() { CERES_SAFE_PTHREAD(pthread_mutex_unlock); }
+#ifdef CERES_GMUTEX_TRYLOCK
+bool Mutex::TryLock() { return is_safe_ ?
+ pthread_mutex_trylock(&mutex_) == 0 : true; }
+#endif
+void Mutex::ReaderLock() { Lock(); }
+void Mutex::ReaderUnlock() { Unlock(); }
+#undef CERES_SAFE_PTHREAD
+
+#endif
+
+// --------------------------------------------------------------------------
+// Some helper classes
+
+// Note: The weird "Ceres" prefix for the class is a workaround for having two
+// similar mutex.h files included in the same translation unit. This is a
+// problem because macros do not respect C++ namespaces, and as a result, this
+// does not work well (e.g. inside Chrome). The offending macros are
+// "MutexLock(x) COMPILE_ASSERT(false)". To work around this, "Ceres" is
+// prefixed to the class names; this permits defining the classes.
+
+// CeresMutexLock(mu) acquires mu when constructed and releases it when destroyed.
+class CeresMutexLock {
+ public:
+ explicit CeresMutexLock(Mutex *mu) : mu_(mu) { mu_->Lock(); }
+ ~CeresMutexLock() { mu_->Unlock(); }
+ private:
+ Mutex * const mu_;
+ // Disallow "evil" constructors
+ CeresMutexLock(const CeresMutexLock&);
+ void operator=(const CeresMutexLock&);
+};
+
+// CeresReaderMutexLock and CeresWriterMutexLock do the same, for rwlocks
+class CeresReaderMutexLock {
+ public:
+ explicit CeresReaderMutexLock(Mutex *mu) : mu_(mu) { mu_->ReaderLock(); }
+ ~CeresReaderMutexLock() { mu_->ReaderUnlock(); }
+ private:
+ Mutex * const mu_;
+ // Disallow "evil" constructors
+ CeresReaderMutexLock(const CeresReaderMutexLock&);
+ void operator=(const CeresReaderMutexLock&);
+};
+
+class CeresWriterMutexLock {
+ public:
+ explicit CeresWriterMutexLock(Mutex *mu) : mu_(mu) { mu_->WriterLock(); }
+ ~CeresWriterMutexLock() { mu_->WriterUnlock(); }
+ private:
+ Mutex * const mu_;
+ // Disallow "evil" constructors
+ CeresWriterMutexLock(const CeresWriterMutexLock&);
+ void operator=(const CeresWriterMutexLock&);
+};
+
+// Catch bug where variable name is omitted, e.g. MutexLock (&mu);
+#define CeresMutexLock(x) \
+ COMPILE_ASSERT(0, ceres_mutex_lock_decl_missing_var_name)
+#define CeresReaderMutexLock(x) \
+ COMPILE_ASSERT(0, ceres_rmutex_lock_decl_missing_var_name)
+#define CeresWriterMutexLock(x) \
+ COMPILE_ASSERT(0, ceres_wmutex_lock_decl_missing_var_name)
+
+} // namespace internal
+} // namespace ceres
+
+#endif // CERES_INTERNAL_MUTEX_H_