aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/solver_impl.cc
diff options
context:
space:
mode:
Diffstat (limited to 'internal/ceres/solver_impl.cc')
-rw-r--r--internal/ceres/solver_impl.cc1155
1 files changed, 886 insertions, 269 deletions
diff --git a/internal/ceres/solver_impl.cc b/internal/ceres/solver_impl.cc
index 64e0f8e..d6ef731 100644
--- a/internal/ceres/solver_impl.cc
+++ b/internal/ceres/solver_impl.cc
@@ -33,11 +33,14 @@
#include <cstdio>
#include <iostream> // NOLINT
#include <numeric>
+#include <string>
#include "ceres/coordinate_descent_minimizer.h"
+#include "ceres/cxsparse.h"
#include "ceres/evaluator.h"
#include "ceres/gradient_checking_cost_function.h"
#include "ceres/iteration_callback.h"
#include "ceres/levenberg_marquardt_strategy.h"
+#include "ceres/line_search_minimizer.h"
#include "ceres/linear_solver.h"
#include "ceres/map_util.h"
#include "ceres/minimizer.h"
@@ -49,6 +52,7 @@
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/stringprintf.h"
+#include "ceres/suitesparse.h"
#include "ceres/trust_region_minimizer.h"
#include "ceres/wall_time.h"
@@ -76,14 +80,24 @@ class StateUpdatingCallback : public IterationCallback {
double* parameters_;
};
+void SetSummaryFinalCost(Solver::Summary* summary) {
+ summary->final_cost = summary->initial_cost;
+ // We need the loop here, instead of just looking at the last
+ // iteration because the minimizer maybe making non-monotonic steps.
+ for (int i = 0; i < summary->iterations.size(); ++i) {
+ const IterationSummary& iteration_summary = summary->iterations[i];
+ summary->final_cost = min(iteration_summary.cost, summary->final_cost);
+ }
+}
+
// Callback for logging the state of the minimizer to STDERR or STDOUT
// depending on the user's preferences and logging level.
-class LoggingCallback : public IterationCallback {
+class TrustRegionLoggingCallback : public IterationCallback {
public:
- explicit LoggingCallback(bool log_to_stdout)
+ explicit TrustRegionLoggingCallback(bool log_to_stdout)
: log_to_stdout_(log_to_stdout) {}
- ~LoggingCallback() {}
+ ~TrustRegionLoggingCallback() {}
CallbackReturnType operator()(const IterationSummary& summary) {
const char* kReportRowFormat =
@@ -112,6 +126,42 @@ class LoggingCallback : public IterationCallback {
const bool log_to_stdout_;
};
+// Callback for logging the state of the minimizer to STDERR or STDOUT
+// depending on the user's preferences and logging level.
+class LineSearchLoggingCallback : public IterationCallback {
+ public:
+ explicit LineSearchLoggingCallback(bool log_to_stdout)
+ : log_to_stdout_(log_to_stdout) {}
+
+ ~LineSearchLoggingCallback() {}
+
+ CallbackReturnType operator()(const IterationSummary& summary) {
+ const char* kReportRowFormat =
+ "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e "
+ "s:% 3.2e e:% 3d it:% 3.2e tt:% 3.2e";
+ string output = StringPrintf(kReportRowFormat,
+ summary.iteration,
+ summary.cost,
+ summary.cost_change,
+ summary.gradient_max_norm,
+ summary.step_norm,
+ summary.step_size,
+ summary.line_search_function_evaluations,
+ summary.iteration_time_in_seconds,
+ summary.cumulative_time_in_seconds);
+ if (log_to_stdout_) {
+ cout << output << endl;
+ } else {
+ VLOG(1) << output;
+ }
+ return SOLVER_CONTINUE;
+ }
+
+ private:
+ const bool log_to_stdout_;
+};
+
+
// Basic callback to record the execution of the solver to a file for
// offline analysis.
class FileLoggingCallback : public IterationCallback {
@@ -140,15 +190,34 @@ class FileLoggingCallback : public IterationCallback {
FILE* fptr_;
};
+// Iterate over each of the groups in order of their priority and fill
+// summary with their sizes.
+void SummarizeOrdering(ParameterBlockOrdering* ordering,
+ vector<int>* summary) {
+ CHECK_NOTNULL(summary)->clear();
+ if (ordering == NULL) {
+ return;
+ }
+
+ const map<int, set<double*> >& group_to_elements =
+ ordering->group_to_elements();
+ for (map<int, set<double*> >::const_iterator it = group_to_elements.begin();
+ it != group_to_elements.end();
+ ++it) {
+ summary->push_back(it->second.size());
+ }
+}
+
} // namespace
-void SolverImpl::Minimize(const Solver::Options& options,
- Program* program,
- CoordinateDescentMinimizer* inner_iteration_minimizer,
- Evaluator* evaluator,
- LinearSolver* linear_solver,
- double* parameters,
- Solver::Summary* summary) {
+void SolverImpl::TrustRegionMinimize(
+ const Solver::Options& options,
+ Program* program,
+ CoordinateDescentMinimizer* inner_iteration_minimizer,
+ Evaluator* evaluator,
+ LinearSolver* linear_solver,
+ double* parameters,
+ Solver::Summary* summary) {
Minimizer::Options minimizer_options(options);
// TODO(sameeragarwal): Add support for logging the configuration
@@ -160,7 +229,8 @@ void SolverImpl::Minimize(const Solver::Options& options,
file_logging_callback.get());
}
- LoggingCallback logging_callback(options.minimizer_progress_to_stdout);
+ TrustRegionLoggingCallback logging_callback(
+ options.minimizer_progress_to_stdout);
if (options.logging_type != SILENT) {
minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(),
&logging_callback);
@@ -176,6 +246,7 @@ void SolverImpl::Minimize(const Solver::Options& options,
minimizer_options.evaluator = evaluator;
scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian());
+
minimizer_options.jacobian = jacobian.get();
minimizer_options.inner_iteration_minimizer = inner_iteration_minimizer;
@@ -184,8 +255,8 @@ void SolverImpl::Minimize(const Solver::Options& options,
trust_region_strategy_options.initial_radius =
options.initial_trust_region_radius;
trust_region_strategy_options.max_radius = options.max_trust_region_radius;
- trust_region_strategy_options.lm_min_diagonal = options.lm_min_diagonal;
- trust_region_strategy_options.lm_max_diagonal = options.lm_max_diagonal;
+ trust_region_strategy_options.min_lm_diagonal = options.min_lm_diagonal;
+ trust_region_strategy_options.max_lm_diagonal = options.max_lm_diagonal;
trust_region_strategy_options.trust_region_strategy_type =
options.trust_region_strategy_type;
trust_region_strategy_options.dogleg_type = options.dogleg_type;
@@ -200,9 +271,67 @@ void SolverImpl::Minimize(const Solver::Options& options,
WallTimeInSeconds() - minimizer_start_time;
}
-void SolverImpl::Solve(const Solver::Options& original_options,
- ProblemImpl* original_problem_impl,
+#ifndef CERES_NO_LINE_SEARCH_MINIMIZER
+void SolverImpl::LineSearchMinimize(
+ const Solver::Options& options,
+ Program* program,
+ Evaluator* evaluator,
+ double* parameters,
+ Solver::Summary* summary) {
+ Minimizer::Options minimizer_options(options);
+
+ // TODO(sameeragarwal): Add support for logging the configuration
+ // and more detailed stats.
+ scoped_ptr<IterationCallback> file_logging_callback;
+ if (!options.solver_log.empty()) {
+ file_logging_callback.reset(new FileLoggingCallback(options.solver_log));
+ minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(),
+ file_logging_callback.get());
+ }
+
+ LineSearchLoggingCallback logging_callback(
+ options.minimizer_progress_to_stdout);
+ if (options.logging_type != SILENT) {
+ minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(),
+ &logging_callback);
+ }
+
+ StateUpdatingCallback updating_callback(program, parameters);
+ if (options.update_state_every_iteration) {
+ // This must get pushed to the front of the callbacks so that it is run
+ // before any of the user callbacks.
+ minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(),
+ &updating_callback);
+ }
+
+ minimizer_options.evaluator = evaluator;
+
+ LineSearchMinimizer minimizer;
+ double minimizer_start_time = WallTimeInSeconds();
+ minimizer.Minimize(minimizer_options, parameters, summary);
+ summary->minimizer_time_in_seconds =
+ WallTimeInSeconds() - minimizer_start_time;
+}
+#endif // CERES_NO_LINE_SEARCH_MINIMIZER
+
+void SolverImpl::Solve(const Solver::Options& options,
+ ProblemImpl* problem_impl,
Solver::Summary* summary) {
+ if (options.minimizer_type == TRUST_REGION) {
+ TrustRegionSolve(options, problem_impl, summary);
+ } else {
+#ifndef CERES_NO_LINE_SEARCH_MINIMIZER
+ LineSearchSolve(options, problem_impl, summary);
+#else
+ LOG(FATAL) << "Ceres Solver was compiled with -DLINE_SEARCH_MINIMIZER=OFF";
+#endif
+ }
+}
+
+void SolverImpl::TrustRegionSolve(const Solver::Options& original_options,
+ ProblemImpl* original_problem_impl,
+ Solver::Summary* summary) {
+ EventLogger event_logger("TrustRegionSolve");
double solver_start_time = WallTimeInSeconds();
Program* original_program = original_problem_impl->mutable_program();
@@ -211,8 +340,11 @@ void SolverImpl::Solve(const Solver::Options& original_options,
// Reset the summary object to its default values.
*CHECK_NOTNULL(summary) = Solver::Summary();
+ summary->minimizer_type = TRUST_REGION;
summary->num_parameter_blocks = problem_impl->NumParameterBlocks();
summary->num_parameters = problem_impl->NumParameters();
+ summary->num_effective_parameters =
+ original_program->NumEffectiveParameters();
summary->num_residual_blocks = problem_impl->NumResidualBlocks();
summary->num_residuals = problem_impl->NumResiduals();
@@ -229,6 +361,12 @@ void SolverImpl::Solve(const Solver::Options& original_options,
return;
}
+ SummarizeOrdering(original_options.linear_solver_ordering,
+ &(summary->linear_solver_ordering_given));
+
+ SummarizeOrdering(original_options.inner_iteration_ordering,
+ &(summary->inner_iteration_ordering_given));
+
Solver::Options options(original_options);
options.linear_solver_ordering = NULL;
options.inner_iteration_ordering = NULL;
@@ -253,35 +391,19 @@ void SolverImpl::Solve(const Solver::Options& original_options,
summary->num_threads_given = original_options.num_threads;
summary->num_threads_used = options.num_threads;
- if (options.lsqp_iterations_to_dump.size() > 0) {
- LOG(WARNING) << "Dumping linear least squares problems to disk is"
- " currently broken. Ignoring Solver::Options::lsqp_iterations_to_dump";
- }
-
- // Evaluate the initial cost, residual vector and the jacobian
- // matrix if requested by the user. The initial cost needs to be
- // computed on the original unpreprocessed problem, as it is used to
- // determine the value of the "fixed" part of the objective function
- // after the problem has undergone reduction.
- if (!Evaluator::Evaluate(original_program,
- options.num_threads,
- &(summary->initial_cost),
- options.return_initial_residuals
- ? &summary->initial_residuals
- : NULL,
- options.return_initial_gradient
- ? &summary->initial_gradient
- : NULL,
- options.return_initial_jacobian
- ? &summary->initial_jacobian
- : NULL)) {
- summary->termination_type = NUMERICAL_FAILURE;
- summary->error = "Unable to evaluate the initial cost.";
+ if (options.trust_region_minimizer_iterations_to_dump.size() > 0 &&
+ options.trust_region_problem_dump_format_type != CONSOLE &&
+ options.trust_region_problem_dump_directory.empty()) {
+ summary->error =
+ "Solver::Options::trust_region_problem_dump_directory is empty.";
LOG(ERROR) << summary->error;
return;
}
+ event_logger.AddEvent("Init");
+
original_program->SetParameterBlockStatePtrsToUserStatePtrs();
+ event_logger.AddEvent("SetParameterBlockPtrs");
// If the user requests gradient checking, construct a new
// ProblemImpl by wrapping the CostFunctions of problem_impl inside
@@ -306,8 +428,10 @@ void SolverImpl::Solve(const Solver::Options& original_options,
LOG(ERROR) << summary->error;
return;
}
+ event_logger.AddEvent("CheckOrdering");
options.linear_solver_ordering =
new ParameterBlockOrdering(*original_options.linear_solver_ordering);
+ event_logger.AddEvent("CopyOrdering");
} else {
options.linear_solver_ordering = new ParameterBlockOrdering;
const ProblemImpl::ParameterMap& parameter_map =
@@ -317,6 +441,7 @@ void SolverImpl::Solve(const Solver::Options& original_options,
++it) {
options.linear_solver_ordering->AddElementToGroup(it->first, 0);
}
+ event_logger.AddEvent("ConstructOrdering");
}
// Create the three objects needed to minimize: the transformed program, the
@@ -325,12 +450,19 @@ void SolverImpl::Solve(const Solver::Options& original_options,
problem_impl,
&summary->fixed_cost,
&summary->error));
+
+ event_logger.AddEvent("CreateReducedProgram");
if (reduced_program == NULL) {
return;
}
+ SummarizeOrdering(options.linear_solver_ordering,
+ &(summary->linear_solver_ordering_used));
+
summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks();
summary->num_parameters_reduced = reduced_program->NumParameters();
+ summary->num_effective_parameters_reduced =
+ reduced_program->NumEffectiveParameters();
summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks();
summary->num_residuals_reduced = reduced_program->NumResiduals();
@@ -338,35 +470,18 @@ void SolverImpl::Solve(const Solver::Options& original_options,
summary->preprocessor_time_in_seconds =
WallTimeInSeconds() - solver_start_time;
+ double post_process_start_time = WallTimeInSeconds();
LOG(INFO) << "Terminating: FUNCTION_TOLERANCE reached. "
<< "No non-constant parameter blocks found.";
+ summary->initial_cost = summary->fixed_cost;
+ summary->final_cost = summary->fixed_cost;
+
// FUNCTION_TOLERANCE is the right convergence here, as we know
// that the objective function is constant and cannot be changed
// any further.
summary->termination_type = FUNCTION_TOLERANCE;
- double post_process_start_time = WallTimeInSeconds();
- // Evaluate the final cost, residual vector and the jacobian
- // matrix if requested by the user.
- if (!Evaluator::Evaluate(original_program,
- options.num_threads,
- &summary->final_cost,
- options.return_final_residuals
- ? &summary->final_residuals
- : NULL,
- options.return_final_gradient
- ? &summary->final_gradient
- : NULL,
- options.return_final_jacobian
- ? &summary->final_jacobian
- : NULL)) {
- summary->termination_type = NUMERICAL_FAILURE;
- summary->error = "Unable to evaluate the final cost.";
- LOG(ERROR) << summary->error;
- return;
- }
-
// Ensure the program state is set to the user parameters on the way out.
original_program->SetParameterBlockStatePtrsToUserStatePtrs();
@@ -377,6 +492,7 @@ void SolverImpl::Solve(const Solver::Options& original_options,
scoped_ptr<LinearSolver>
linear_solver(CreateLinearSolver(&options, &summary->error));
+ event_logger.AddEvent("CreateLinearSolver");
if (linear_solver == NULL) {
return;
}
@@ -396,23 +512,13 @@ void SolverImpl::Solve(const Solver::Options& original_options,
summary->trust_region_strategy_type = options.trust_region_strategy_type;
summary->dogleg_type = options.dogleg_type;
- // Only Schur types require the lexicographic reordering.
- if (IsSchurType(options.linear_solver_type)) {
- const int num_eliminate_blocks =
- options.linear_solver_ordering
- ->group_to_elements().begin()
- ->second.size();
- if (!LexicographicallyOrderResidualBlocks(num_eliminate_blocks,
- reduced_program.get(),
- &summary->error)) {
- return;
- }
- }
-
scoped_ptr<Evaluator> evaluator(CreateEvaluator(options,
problem_impl->parameter_map(),
reduced_program.get(),
&summary->error));
+
+ event_logger.AddEvent("CreateEvaluator");
+
if (evaluator == NULL) {
return;
}
@@ -427,13 +533,14 @@ void SolverImpl::Solve(const Solver::Options& original_options,
CreateInnerIterationMinimizer(original_options,
*reduced_program,
problem_impl->parameter_map(),
- &summary->error));
+ summary));
if (inner_iteration_minimizer == NULL) {
LOG(ERROR) << summary->error;
return;
}
}
}
+ event_logger.AddEvent("CreateInnerIterationMinimizer");
// The optimizer works on contiguous parameter vectors; allocate some.
Vector parameters(reduced_program->NumParameters());
@@ -448,13 +555,16 @@ void SolverImpl::Solve(const Solver::Options& original_options,
minimizer_start_time - solver_start_time;
// Run the optimization.
- Minimize(options,
- reduced_program.get(),
- inner_iteration_minimizer.get(),
- evaluator.get(),
- linear_solver.get(),
- parameters.data(),
- summary);
+ TrustRegionMinimize(options,
+ reduced_program.get(),
+ inner_iteration_minimizer.get(),
+ evaluator.get(),
+ linear_solver.get(),
+ parameters.data(),
+ summary);
+ event_logger.AddEvent("Minimize");
+
+ SetSummaryFinalCost(summary);
// If the user aborted mid-optimization or the optimization
// terminated because of a numerical failure, then return without
@@ -466,48 +576,321 @@ void SolverImpl::Solve(const Solver::Options& original_options,
double post_process_start_time = WallTimeInSeconds();
- // Push the contiguous optimized parameters back to the user's parameters.
+ // Push the contiguous optimized parameters back to the user's
+ // parameters.
reduced_program->StateVectorToParameterBlocks(parameters.data());
reduced_program->CopyParameterBlockStateToUserState();
- // Evaluate the final cost, residual vector and the jacobian
- // matrix if requested by the user.
- if (!Evaluator::Evaluate(original_program,
- options.num_threads,
- &summary->final_cost,
- options.return_final_residuals
- ? &summary->final_residuals
- : NULL,
- options.return_final_gradient
- ? &summary->final_gradient
- : NULL,
- options.return_final_jacobian
- ? &summary->final_jacobian
- : NULL)) {
- // This failure requires careful handling.
- //
- // At this point, we have modified the user's state, but the
- // evaluation failed and we inform him of NUMERICAL_FAILURE. Ceres
- // guarantees that user's state is not modified if the solver
- // returns with NUMERICAL_FAILURE. Thus, we need to restore the
- // user's state to their original values.
+ // Ensure the program state is set to the user parameters on the way
+ // out.
+ original_program->SetParameterBlockStatePtrsToUserStatePtrs();
+
+ const map<string, double>& linear_solver_time_statistics =
+ linear_solver->TimeStatistics();
+ summary->linear_solver_time_in_seconds =
+ FindWithDefault(linear_solver_time_statistics,
+ "LinearSolver::Solve",
+ 0.0);
+
+ const map<string, double>& evaluator_time_statistics =
+ evaluator->TimeStatistics();
+
+ summary->residual_evaluation_time_in_seconds =
+ FindWithDefault(evaluator_time_statistics, "Evaluator::Residual", 0.0);
+ summary->jacobian_evaluation_time_in_seconds =
+ FindWithDefault(evaluator_time_statistics, "Evaluator::Jacobian", 0.0);
+
+ // Stick a fork in it, we're done.
+ summary->postprocessor_time_in_seconds =
+ WallTimeInSeconds() - post_process_start_time;
+ event_logger.AddEvent("PostProcess");
+}
+
+
+#ifndef CERES_NO_LINE_SEARCH_MINIMIZER
+void SolverImpl::LineSearchSolve(const Solver::Options& original_options,
+ ProblemImpl* original_problem_impl,
+ Solver::Summary* summary) {
+ double solver_start_time = WallTimeInSeconds();
- reduced_program->StateVectorToParameterBlocks(original_parameters.data());
- reduced_program->CopyParameterBlockStateToUserState();
+ Program* original_program = original_problem_impl->mutable_program();
+ ProblemImpl* problem_impl = original_problem_impl;
+
+ // Reset the summary object to its default values.
+ *CHECK_NOTNULL(summary) = Solver::Summary();
+
+ summary->minimizer_type = LINE_SEARCH;
+ summary->line_search_direction_type =
+ original_options.line_search_direction_type;
+ summary->max_lbfgs_rank = original_options.max_lbfgs_rank;
+ summary->line_search_type = original_options.line_search_type;
+ summary->line_search_interpolation_type =
+ original_options.line_search_interpolation_type;
+ summary->nonlinear_conjugate_gradient_type =
+ original_options.nonlinear_conjugate_gradient_type;
+
+ summary->num_parameter_blocks = original_program->NumParameterBlocks();
+ summary->num_parameters = original_program->NumParameters();
+ summary->num_residual_blocks = original_program->NumResidualBlocks();
+ summary->num_residuals = original_program->NumResiduals();
+ summary->num_effective_parameters =
+ original_program->NumEffectiveParameters();
+
+ // Validate values for configuration parameters supplied by user.
+ if ((original_options.line_search_direction_type == ceres::BFGS ||
+ original_options.line_search_direction_type == ceres::LBFGS) &&
+ original_options.line_search_type != ceres::WOLFE) {
+ summary->error =
+ string("Invalid configuration: require line_search_type == "
+ "ceres::WOLFE when using (L)BFGS to ensure that underlying "
+ "assumptions are guaranteed to be satisfied.");
+ LOG(ERROR) << summary->error;
+ return;
+ }
+ if (original_options.max_lbfgs_rank <= 0) {
+ summary->error =
+ string("Invalid configuration: require max_lbfgs_rank > 0");
+ LOG(ERROR) << summary->error;
+ return;
+ }
+ if (original_options.min_line_search_step_size <= 0.0) {
+ summary->error = "Invalid configuration: min_line_search_step_size <= 0.0.";
+ LOG(ERROR) << summary->error;
+ return;
+ }
+ if (original_options.line_search_sufficient_function_decrease <= 0.0) {
+ summary->error =
+ string("Invalid configuration: require ") +
+ string("line_search_sufficient_function_decrease <= 0.0.");
+ LOG(ERROR) << summary->error;
+ return;
+ }
+ if (original_options.max_line_search_step_contraction <= 0.0 ||
+ original_options.max_line_search_step_contraction >= 1.0) {
+ summary->error = string("Invalid configuration: require ") +
+ string("0.0 < max_line_search_step_contraction < 1.0.");
+ LOG(ERROR) << summary->error;
+ return;
+ }
+ if (original_options.min_line_search_step_contraction <=
+ original_options.max_line_search_step_contraction ||
+ original_options.min_line_search_step_contraction > 1.0) {
+ summary->error = string("Invalid configuration: require ") +
+ string("max_line_search_step_contraction < ") +
+ string("min_line_search_step_contraction <= 1.0.");
+ LOG(ERROR) << summary->error;
+ return;
+ }
+ // Warn user if they have requested BISECTION interpolation, but constraints
+ // on max/min step size change during line search prevent bisection scaling
+ // from occurring. Warn only, as this is likely a user mistake, but one which
+ // does not prevent us from continuing.
+ LOG_IF(WARNING,
+ (original_options.line_search_interpolation_type == ceres::BISECTION &&
+ (original_options.max_line_search_step_contraction > 0.5 ||
+ original_options.min_line_search_step_contraction < 0.5)))
+ << "Line search interpolation type is BISECTION, but specified "
+ << "max_line_search_step_contraction: "
+ << original_options.max_line_search_step_contraction << ", and "
+ << "min_line_search_step_contraction: "
+ << original_options.min_line_search_step_contraction
+ << ", prevent bisection (0.5) scaling, continuing with solve regardless.";
+ if (original_options.max_num_line_search_step_size_iterations <= 0) {
+ summary->error = string("Invalid configuration: require ") +
+ string("max_num_line_search_step_size_iterations > 0.");
+ LOG(ERROR) << summary->error;
+ return;
+ }
+ if (original_options.line_search_sufficient_curvature_decrease <=
+ original_options.line_search_sufficient_function_decrease ||
+ original_options.line_search_sufficient_curvature_decrease > 1.0) {
+ summary->error = string("Invalid configuration: require ") +
+ string("line_search_sufficient_function_decrease < ") +
+ string("line_search_sufficient_curvature_decrease < 1.0.");
+ LOG(ERROR) << summary->error;
+ return;
+ }
+ if (original_options.max_line_search_step_expansion <= 1.0) {
+ summary->error = string("Invalid configuration: require ") +
+ string("max_line_search_step_expansion > 1.0.");
+ LOG(ERROR) << summary->error;
+ return;
+ }
- summary->termination_type = NUMERICAL_FAILURE;
- summary->error = "Unable to evaluate the final cost.";
+ // Empty programs are usually a user error.
+ if (summary->num_parameter_blocks == 0) {
+ summary->error = "Problem contains no parameter blocks.";
LOG(ERROR) << summary->error;
return;
}
+ if (summary->num_residual_blocks == 0) {
+ summary->error = "Problem contains no residual blocks.";
+ LOG(ERROR) << summary->error;
+ return;
+ }
+
+ Solver::Options options(original_options);
+
+ // This ensures that we get a Block Jacobian Evaluator along with
+ // none of the Schur nonsense. This file will have to be extensively
+ // refactored to deal with the various bits of cleanups related to
+ // line search.
+ options.linear_solver_type = CGNR;
+
+ options.linear_solver_ordering = NULL;
+ options.inner_iteration_ordering = NULL;
+
+#ifndef CERES_USE_OPENMP
+ if (options.num_threads > 1) {
+ LOG(WARNING)
+ << "OpenMP support is not compiled into this binary; "
+ << "only options.num_threads=1 is supported. Switching "
+ << "to single threaded mode.";
+ options.num_threads = 1;
+ }
+#endif // CERES_USE_OPENMP
+
+ summary->num_threads_given = original_options.num_threads;
+ summary->num_threads_used = options.num_threads;
+
+ if (original_options.linear_solver_ordering != NULL) {
+ if (!IsOrderingValid(original_options, problem_impl, &summary->error)) {
+ LOG(ERROR) << summary->error;
+ return;
+ }
+ options.linear_solver_ordering =
+ new ParameterBlockOrdering(*original_options.linear_solver_ordering);
+ } else {
+ options.linear_solver_ordering = new ParameterBlockOrdering;
+ const ProblemImpl::ParameterMap& parameter_map =
+ problem_impl->parameter_map();
+ for (ProblemImpl::ParameterMap::const_iterator it = parameter_map.begin();
+ it != parameter_map.end();
+ ++it) {
+ options.linear_solver_ordering->AddElementToGroup(it->first, 0);
+ }
+ }
+
+ original_program->SetParameterBlockStatePtrsToUserStatePtrs();
+
+ // If the user requests gradient checking, construct a new
+ // ProblemImpl by wrapping the CostFunctions of problem_impl inside
+ // GradientCheckingCostFunction and replacing problem_impl with
+ // gradient_checking_problem_impl.
+ scoped_ptr<ProblemImpl> gradient_checking_problem_impl;
+ if (options.check_gradients) {
+ VLOG(1) << "Checking Gradients";
+ gradient_checking_problem_impl.reset(
+ CreateGradientCheckingProblemImpl(
+ problem_impl,
+ options.numeric_derivative_relative_step_size,
+ options.gradient_check_relative_precision));
+
+ // From here on, problem_impl will point to the gradient checking
+ // version.
+ problem_impl = gradient_checking_problem_impl.get();
+ }
+
+ // Create the three objects needed to minimize: the transformed program, the
+ // evaluator, and the linear solver.
+ scoped_ptr<Program> reduced_program(CreateReducedProgram(&options,
+ problem_impl,
+ &summary->fixed_cost,
+ &summary->error));
+ if (reduced_program == NULL) {
+ return;
+ }
+
+ summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks();
+ summary->num_parameters_reduced = reduced_program->NumParameters();
+ summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks();
+ summary->num_effective_parameters_reduced =
+ reduced_program->NumEffectiveParameters();
+ summary->num_residuals_reduced = reduced_program->NumResiduals();
+
+ if (summary->num_parameter_blocks_reduced == 0) {
+ summary->preprocessor_time_in_seconds =
+ WallTimeInSeconds() - solver_start_time;
+
+ LOG(INFO) << "Terminating: FUNCTION_TOLERANCE reached. "
+ << "No non-constant parameter blocks found.";
+
+ // FUNCTION_TOLERANCE is the right convergence here, as we know
+ // that the objective function is constant and cannot be changed
+ // any further.
+ summary->termination_type = FUNCTION_TOLERANCE;
+
+ const double post_process_start_time = WallTimeInSeconds();
+
+ SetSummaryFinalCost(summary);
+
+ // Ensure the program state is set to the user parameters on the way out.
+ original_program->SetParameterBlockStatePtrsToUserStatePtrs();
+ summary->postprocessor_time_in_seconds =
+ WallTimeInSeconds() - post_process_start_time;
+ return;
+ }
+
+ scoped_ptr<Evaluator> evaluator(CreateEvaluator(options,
+ problem_impl->parameter_map(),
+ reduced_program.get(),
+ &summary->error));
+ if (evaluator == NULL) {
+ return;
+ }
+
+ // The optimizer works on contiguous parameter vectors; allocate some.
+ Vector parameters(reduced_program->NumParameters());
+
+ // Collect the discontiguous parameters into a contiguous state vector.
+ reduced_program->ParameterBlocksToStateVector(parameters.data());
+
+ Vector original_parameters = parameters;
+
+ const double minimizer_start_time = WallTimeInSeconds();
+ summary->preprocessor_time_in_seconds =
+ minimizer_start_time - solver_start_time;
+
+ // Run the optimization.
+ LineSearchMinimize(options,
+ reduced_program.get(),
+ evaluator.get(),
+ parameters.data(),
+ summary);
+
+ // If the user aborted mid-optimization or the optimization
+ // terminated because of a numerical failure, then return without
+ // updating user state.
+ if (summary->termination_type == USER_ABORT ||
+ summary->termination_type == NUMERICAL_FAILURE) {
+ return;
+ }
+
+ const double post_process_start_time = WallTimeInSeconds();
+
+ // Push the contiguous optimized parameters back to the user's parameters.
+ reduced_program->StateVectorToParameterBlocks(parameters.data());
+ reduced_program->CopyParameterBlockStateToUserState();
+
+ SetSummaryFinalCost(summary);
+
// Ensure the program state is set to the user parameters on the way out.
original_program->SetParameterBlockStatePtrsToUserStatePtrs();
+ const map<string, double>& evaluator_time_statistics =
+ evaluator->TimeStatistics();
+
+ summary->residual_evaluation_time_in_seconds =
+ FindWithDefault(evaluator_time_statistics, "Evaluator::Residual", 0.0);
+ summary->jacobian_evaluation_time_in_seconds =
+ FindWithDefault(evaluator_time_statistics, "Evaluator::Jacobian", 0.0);
+
// Stick a fork in it, we're done.
summary->postprocessor_time_in_seconds =
WallTimeInSeconds() - post_process_start_time;
}
+#endif // CERES_NO_LINE_SEARCH_MINIMIZER
bool SolverImpl::IsOrderingValid(const Solver::Options& options,
const ProblemImpl* problem_impl,
@@ -547,8 +930,9 @@ bool SolverImpl::IsOrderingValid(const Solver::Options& options,
return true;
}
-bool SolverImpl::IsParameterBlockSetIndependent(const set<double*>& parameter_block_ptrs,
- const vector<ResidualBlock*>& residual_blocks) {
+bool SolverImpl::IsParameterBlockSetIndependent(
+ const set<double*>& parameter_block_ptrs,
+ const vector<ResidualBlock*>& residual_blocks) {
// Loop over each residual block and ensure that no two parameter
// blocks in the same residual block are part of
// parameter_block_ptrs as that would violate the assumption that it
@@ -620,8 +1004,11 @@ bool SolverImpl::RemoveFixedBlocksFromProgram(Program* program,
// The residual is constant and will be removed, so its cost is
// added to the variable fixed_cost.
double cost = 0.0;
- if (!residual_block->Evaluate(
- &cost, NULL, NULL, residual_block_evaluate_scratch.get())) {
+ if (!residual_block->Evaluate(true,
+ &cost,
+ NULL,
+ NULL,
+ residual_block_evaluate_scratch.get())) {
*error = StringPrintf("Evaluation of the residual %d failed during "
"removal of fixed residual blocks.", i);
return false;
@@ -649,11 +1036,14 @@ bool SolverImpl::RemoveFixedBlocksFromProgram(Program* program,
parameter_blocks->resize(j);
}
- CHECK(((program->NumResidualBlocks() == 0) &&
+ if (!(((program->NumResidualBlocks() == 0) &&
(program->NumParameterBlocks() == 0)) ||
((program->NumResidualBlocks() != 0) &&
- (program->NumParameterBlocks() != 0)))
- << "Congratulations, you found a bug in Ceres. Please report it.";
+ (program->NumParameterBlocks() != 0)))) {
+ *error = "Congratulations, you found a bug in Ceres. Please report it.";
+ return false;
+ }
+
return true;
}
@@ -664,12 +1054,11 @@ Program* SolverImpl::CreateReducedProgram(Solver::Options* options,
CHECK_NOTNULL(options->linear_solver_ordering);
Program* original_program = problem_impl->mutable_program();
scoped_ptr<Program> transformed_program(new Program(*original_program));
+
ParameterBlockOrdering* linear_solver_ordering =
options->linear_solver_ordering;
-
const int min_group_id =
linear_solver_ordering->group_to_elements().begin()->first;
- const int original_num_groups = linear_solver_ordering->NumGroups();
if (!RemoveFixedBlocksFromProgram(transformed_program.get(),
linear_solver_ordering,
@@ -679,87 +1068,52 @@ Program* SolverImpl::CreateReducedProgram(Solver::Options* options,
}
if (transformed_program->NumParameterBlocks() == 0) {
- if (transformed_program->NumResidualBlocks() > 0) {
- *error = "Zero parameter blocks but non-zero residual blocks"
- " in the reduced program. Congratulations, you found a "
- "Ceres bug! Please report this error to the developers.";
- return NULL;
- }
-
LOG(WARNING) << "No varying parameter blocks to optimize; "
<< "bailing early.";
return transformed_program.release();
}
- // If the user supplied an linear_solver_ordering with just one
- // group, it is equivalent to the user supplying NULL as
- // ordering. Ceres is completely free to choose the parameter block
- // ordering as it sees fit. For Schur type solvers, this means that
- // the user wishes for Ceres to identify the e_blocks, which we do
- // by computing a maximal independent set.
- if (original_num_groups == 1 && IsSchurType(options->linear_solver_type)) {
- vector<ParameterBlock*> schur_ordering;
- const int num_eliminate_blocks = ComputeSchurOrdering(*transformed_program,
- &schur_ordering);
- CHECK_EQ(schur_ordering.size(), transformed_program->NumParameterBlocks())
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
-
- for (int i = 0; i < schur_ordering.size(); ++i) {
- linear_solver_ordering->AddElementToGroup(
- schur_ordering[i]->mutable_user_state(),
- (i < num_eliminate_blocks) ? 0 : 1);
- }
+ if (IsSchurType(options->linear_solver_type) &&
+ linear_solver_ordering->GroupSize(min_group_id) == 0) {
+ // If the user requested the use of a Schur type solver, and
+ // supplied a non-NULL linear_solver_ordering object with more than
+ // one elimination group, then it can happen that after all the
+ // parameter blocks which are fixed or unused have been removed from
+ // the program and the ordering, there are no more parameter blocks
+ // in the first elimination group.
+ //
+ // In such a case, the use of a Schur type solver is not possible,
+ // as they assume there is at least one e_block. Thus, we
+ // automatically switch to the closest solver to the one indicated
+ // by the user.
+ AlternateLinearSolverForSchurTypeLinearSolver(options);
}
- if (!ApplyUserOrdering(problem_impl->parameter_map(),
- linear_solver_ordering,
- transformed_program.get(),
- error)) {
- return NULL;
+ if (IsSchurType(options->linear_solver_type)) {
+ if (!ReorderProgramForSchurTypeLinearSolver(
+ options->linear_solver_type,
+ options->sparse_linear_algebra_library,
+ problem_impl->parameter_map(),
+ linear_solver_ordering,
+ transformed_program.get(),
+ error)) {
+ return NULL;
+ }
+ return transformed_program.release();
}
- // If the user requested the use of a Schur type solver, and
- // supplied a non-NULL linear_solver_ordering object with more than
- // one elimination group, then it can happen that after all the
- // parameter blocks which are fixed or unused have been removed from
- // the program and the ordering, there are no more parameter blocks
- // in the first elimination group.
- //
- // In such a case, the use of a Schur type solver is not possible,
- // as they assume there is at least one e_block. Thus, we
- // automatically switch to one of the other solvers, depending on
- // the user's indicated preferences.
- if (IsSchurType(options->linear_solver_type) &&
- original_num_groups > 1 &&
- linear_solver_ordering->GroupSize(min_group_id) == 0) {
- string msg = "No e_blocks remaining. Switching from ";
- if (options->linear_solver_type == SPARSE_SCHUR) {
- options->linear_solver_type = SPARSE_NORMAL_CHOLESKY;
- msg += "SPARSE_SCHUR to SPARSE_NORMAL_CHOLESKY.";
- } else if (options->linear_solver_type == DENSE_SCHUR) {
- // TODO(sameeragarwal): This is probably not a great choice.
- // Ideally, we should have a DENSE_NORMAL_CHOLESKY, that can
- // take a BlockSparseMatrix as input.
- options->linear_solver_type = DENSE_QR;
- msg += "DENSE_SCHUR to DENSE_QR.";
- } else if (options->linear_solver_type == ITERATIVE_SCHUR) {
- msg += StringPrintf("ITERATIVE_SCHUR with %s preconditioner "
- "to CGNR with JACOBI preconditioner.",
- PreconditionerTypeToString(
- options->preconditioner_type));
- options->linear_solver_type = CGNR;
- if (options->preconditioner_type != IDENTITY) {
- // CGNR currently only supports the JACOBI preconditioner.
- options->preconditioner_type = JACOBI;
- }
+ if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY) {
+ if (!ReorderProgramForSparseNormalCholesky(
+ options->sparse_linear_algebra_library,
+ linear_solver_ordering,
+ transformed_program.get(),
+ error)) {
+ return NULL;
}
- LOG(WARNING) << msg;
+ return transformed_program.release();
}
- // Since the transformed program is the "active" program, and it is mutated,
- // update the parameter offsets and indices.
transformed_program->SetParameterOffsetsAndIndex();
return transformed_program.release();
}
@@ -788,12 +1142,6 @@ LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options,
return NULL;
}
- if (options->preconditioner_type == SCHUR_JACOBI) {
- *error = "SCHUR_JACOBI preconditioner not suppored. Please build Ceres "
- "with SuiteSparse support.";
- return NULL;
- }
-
if (options->preconditioner_type == CLUSTER_JACOBI) {
*error = "CLUSTER_JACOBI preconditioner not suppored. Please build Ceres "
"with SuiteSparse support.";
@@ -824,49 +1172,46 @@ LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options,
}
#endif
- if (options->linear_solver_max_num_iterations <= 0) {
- *error = "Solver::Options::linear_solver_max_num_iterations is 0.";
+ if (options->max_linear_solver_iterations <= 0) {
+ *error = "Solver::Options::max_linear_solver_iterations is not positive.";
return NULL;
}
- if (options->linear_solver_min_num_iterations <= 0) {
- *error = "Solver::Options::linear_solver_min_num_iterations is 0.";
+ if (options->min_linear_solver_iterations <= 0) {
+ *error = "Solver::Options::min_linear_solver_iterations is not positive.";
return NULL;
}
- if (options->linear_solver_min_num_iterations >
- options->linear_solver_max_num_iterations) {
- *error = "Solver::Options::linear_solver_min_num_iterations > "
- "Solver::Options::linear_solver_max_num_iterations.";
+ if (options->min_linear_solver_iterations >
+ options->max_linear_solver_iterations) {
+ *error = "Solver::Options::min_linear_solver_iterations > "
+ "Solver::Options::max_linear_solver_iterations.";
return NULL;
}
LinearSolver::Options linear_solver_options;
linear_solver_options.min_num_iterations =
- options->linear_solver_min_num_iterations;
+ options->min_linear_solver_iterations;
linear_solver_options.max_num_iterations =
- options->linear_solver_max_num_iterations;
+ options->max_linear_solver_iterations;
linear_solver_options.type = options->linear_solver_type;
linear_solver_options.preconditioner_type = options->preconditioner_type;
linear_solver_options.sparse_linear_algebra_library =
options->sparse_linear_algebra_library;
+ linear_solver_options.use_postordering = options->use_postordering;
- linear_solver_options.num_threads = options->num_linear_solver_threads;
- // The matrix used for storing the dense Schur complement has a
- // single lock guarding the whole matrix. Running the
- // SchurComplementSolver with multiple threads leads to maximum
- // contention and slowdown. If the problem is large enough to
- // benefit from a multithreaded schur eliminator, you should be
- // using a SPARSE_SCHUR solver anyways.
- if ((linear_solver_options.num_threads > 1) &&
- (linear_solver_options.type == DENSE_SCHUR)) {
- LOG(WARNING) << "Warning: Solver::Options::num_linear_solver_threads = "
- << options->num_linear_solver_threads
- << " with DENSE_SCHUR will result in poor performance; "
- << "switching to single-threaded.";
- linear_solver_options.num_threads = 1;
+ // Ignore user's postordering preferences and force it to be true if
+ // cholmod_camd is not available. This ensures that the linear
+ // solver does not assume that a fill-reducing pre-ordering has been
+ // done.
+#if !defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CAMD)
+ if (IsSchurType(linear_solver_options.type) &&
+ linear_solver_options.sparse_linear_algebra_library == SUITE_SPARSE) {
+ linear_solver_options.use_postordering = true;
}
+#endif
+
+ linear_solver_options.num_threads = options->num_linear_solver_threads;
options->num_linear_solver_threads = linear_solver_options.num_threads;
- linear_solver_options.use_block_amd = options->use_block_amd;
const map<int, set<double*> >& groups =
options->linear_solver_ordering->group_to_elements();
for (map<int, set<double*> >::const_iterator it = groups.begin();
@@ -886,53 +1231,12 @@ LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options,
return LinearSolver::Create(linear_solver_options);
}
-bool SolverImpl::ApplyUserOrdering(const ProblemImpl::ParameterMap& parameter_map,
- const ParameterBlockOrdering* ordering,
- Program* program,
- string* error) {
- if (ordering->NumElements() != program->NumParameterBlocks()) {
- *error = StringPrintf("User specified ordering does not have the same "
- "number of parameters as the problem. The problem"
- "has %d blocks while the ordering has %d blocks.",
- program->NumParameterBlocks(),
- ordering->NumElements());
- return false;
- }
-
- vector<ParameterBlock*>* parameter_blocks =
- program->mutable_parameter_blocks();
- parameter_blocks->clear();
-
- const map<int, set<double*> >& groups =
- ordering->group_to_elements();
-
- for (map<int, set<double*> >::const_iterator group_it = groups.begin();
- group_it != groups.end();
- ++group_it) {
- const set<double*>& group = group_it->second;
- for (set<double*>::const_iterator parameter_block_ptr_it = group.begin();
- parameter_block_ptr_it != group.end();
- ++parameter_block_ptr_it) {
- ProblemImpl::ParameterMap::const_iterator parameter_block_it =
- parameter_map.find(*parameter_block_ptr_it);
- if (parameter_block_it == parameter_map.end()) {
- *error = StringPrintf("User specified ordering contains a pointer "
- "to a double that is not a parameter block in the "
- "problem. The invalid double is in group: %d",
- group_it->first);
- return false;
- }
- parameter_blocks->push_back(parameter_block_it->second);
- }
- }
- return true;
-}
// Find the minimum index of any parameter block to the given residual.
// Parameter blocks that have indices greater than num_eliminate_blocks are
// considered to have an index equal to num_eliminate_blocks.
-int MinParameterBlock(const ResidualBlock* residual_block,
- int num_eliminate_blocks) {
+static int MinParameterBlock(const ResidualBlock* residual_block,
+ int num_eliminate_blocks) {
int min_parameter_block_position = num_eliminate_blocks;
for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) {
ParameterBlock* parameter_block = residual_block->parameter_blocks()[i];
@@ -950,9 +1254,10 @@ int MinParameterBlock(const ResidualBlock* residual_block,
// Reorder the residuals for program, if necessary, so that the residuals
// involving each E block occur together. This is a necessary condition for the
// Schur eliminator, which works on these "row blocks" in the jacobian.
-bool SolverImpl::LexicographicallyOrderResidualBlocks(const int num_eliminate_blocks,
- Program* program,
- string* error) {
+bool SolverImpl::LexicographicallyOrderResidualBlocks(
+ const int num_eliminate_blocks,
+ Program* program,
+ string* error) {
CHECK_GE(num_eliminate_blocks, 1)
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
@@ -1029,10 +1334,11 @@ bool SolverImpl::LexicographicallyOrderResidualBlocks(const int num_eliminate_bl
return true;
}
-Evaluator* SolverImpl::CreateEvaluator(const Solver::Options& options,
- const ProblemImpl::ParameterMap& parameter_map,
- Program* program,
- string* error) {
+Evaluator* SolverImpl::CreateEvaluator(
+ const Solver::Options& options,
+ const ProblemImpl::ParameterMap& parameter_map,
+ Program* program,
+ string* error) {
Evaluator::Options evaluator_options;
evaluator_options.linear_solver_type = options.linear_solver_type;
evaluator_options.num_eliminate_blocks =
@@ -1050,7 +1356,9 @@ CoordinateDescentMinimizer* SolverImpl::CreateInnerIterationMinimizer(
const Solver::Options& options,
const Program& program,
const ProblemImpl::ParameterMap& parameter_map,
- string* error) {
+ Solver::Summary* summary) {
+ summary->inner_iterations_given = true;
+
scoped_ptr<CoordinateDescentMinimizer> inner_iteration_minimizer(
new CoordinateDescentMinimizer);
scoped_ptr<ParameterBlockOrdering> inner_iteration_ordering;
@@ -1073,10 +1381,10 @@ CoordinateDescentMinimizer* SolverImpl::CreateInnerIterationMinimizer(
// Iterate over each group and verify that it is an independent
// set.
map<int, set<double*> >::const_iterator it = group_to_elements.begin();
- for ( ;it != group_to_elements.end(); ++it) {
+ for ( ; it != group_to_elements.end(); ++it) {
if (!IsParameterBlockSetIndependent(it->second,
program.residual_blocks())) {
- *error =
+ summary->error =
StringPrintf("The user-provided "
"parameter_blocks_for_inner_iterations does not "
"form an independent set. Group Id: %d", it->first);
@@ -1089,12 +1397,321 @@ CoordinateDescentMinimizer* SolverImpl::CreateInnerIterationMinimizer(
if (!inner_iteration_minimizer->Init(program,
parameter_map,
*ordering_ptr,
- error)) {
+ &summary->error)) {
return NULL;
}
+ summary->inner_iterations_used = true;
+ summary->inner_iteration_time_in_seconds = 0.0;
+ SummarizeOrdering(ordering_ptr, &(summary->inner_iteration_ordering_used));
return inner_iteration_minimizer.release();
}
+void SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(
+ Solver::Options* options) {
+ if (!IsSchurType(options->linear_solver_type)) {
+ return;
+ }
+
+ string msg = "No e_blocks remaining. Switching from ";
+ if (options->linear_solver_type == SPARSE_SCHUR) {
+ options->linear_solver_type = SPARSE_NORMAL_CHOLESKY;
+ msg += "SPARSE_SCHUR to SPARSE_NORMAL_CHOLESKY.";
+ } else if (options->linear_solver_type == DENSE_SCHUR) {
+ // TODO(sameeragarwal): This is probably not a great choice.
+ // Ideally, we should have a DENSE_NORMAL_CHOLESKY, that can
+ // take a BlockSparseMatrix as input.
+ options->linear_solver_type = DENSE_QR;
+ msg += "DENSE_SCHUR to DENSE_QR.";
+ } else if (options->linear_solver_type == ITERATIVE_SCHUR) {
+ options->linear_solver_type = CGNR;
+ if (options->preconditioner_type != IDENTITY) {
+ msg += StringPrintf("ITERATIVE_SCHUR with %s preconditioner "
+ "to CGNR with JACOBI preconditioner.",
+ PreconditionerTypeToString(
+ options->preconditioner_type));
+ // CGNR currently only supports the JACOBI preconditioner.
+ options->preconditioner_type = JACOBI;
+ } else {
+ msg += "ITERATIVE_SCHUR with IDENTITY preconditioner"
+ "to CGNR with IDENTITY preconditioner.";
+ }
+ }
+ LOG(WARNING) << msg;
+}
+
+bool SolverImpl::ApplyUserOrdering(
+ const ProblemImpl::ParameterMap& parameter_map,
+ const ParameterBlockOrdering* parameter_block_ordering,
+ Program* program,
+ string* error) {
+ const int num_parameter_blocks = program->NumParameterBlocks();
+ if (parameter_block_ordering->NumElements() != num_parameter_blocks) {
+ *error = StringPrintf("User specified ordering does not have the same "
+ "number of parameters as the problem. The problem"
+ "has %d blocks while the ordering has %d blocks.",
+ num_parameter_blocks,
+ parameter_block_ordering->NumElements());
+ return false;
+ }
+
+ vector<ParameterBlock*>* parameter_blocks =
+ program->mutable_parameter_blocks();
+ parameter_blocks->clear();
+
+ const map<int, set<double*> >& groups =
+ parameter_block_ordering->group_to_elements();
+
+ for (map<int, set<double*> >::const_iterator group_it = groups.begin();
+ group_it != groups.end();
+ ++group_it) {
+ const set<double*>& group = group_it->second;
+ for (set<double*>::const_iterator parameter_block_ptr_it = group.begin();
+ parameter_block_ptr_it != group.end();
+ ++parameter_block_ptr_it) {
+ ProblemImpl::ParameterMap::const_iterator parameter_block_it =
+ parameter_map.find(*parameter_block_ptr_it);
+ if (parameter_block_it == parameter_map.end()) {
+ *error = StringPrintf("User specified ordering contains a pointer "
+ "to a double that is not a parameter block in "
+ "the problem. The invalid double is in group: %d",
+ group_it->first);
+ return false;
+ }
+ parameter_blocks->push_back(parameter_block_it->second);
+ }
+ }
+ return true;
+}
+
+
+TripletSparseMatrix* SolverImpl::CreateJacobianBlockSparsityTranspose(
+ const Program* program) {
+
+ // Matrix to store the block sparsity structure of the Jacobian.
+ TripletSparseMatrix* tsm =
+ new TripletSparseMatrix(program->NumParameterBlocks(),
+ program->NumResidualBlocks(),
+ 10 * program->NumResidualBlocks());
+ int num_nonzeros = 0;
+ int* rows = tsm->mutable_rows();
+ int* cols = tsm->mutable_cols();
+ double* values = tsm->mutable_values();
+
+ const vector<ResidualBlock*>& residual_blocks = program->residual_blocks();
+ for (int c = 0; c < residual_blocks.size(); ++c) {
+ const ResidualBlock* residual_block = residual_blocks[c];
+ const int num_parameter_blocks = residual_block->NumParameterBlocks();
+ ParameterBlock* const* parameter_blocks =
+ residual_block->parameter_blocks();
+
+ for (int j = 0; j < num_parameter_blocks; ++j) {
+ if (parameter_blocks[j]->IsConstant()) {
+ continue;
+ }
+
+ // Re-size the matrix if needed.
+ if (num_nonzeros >= tsm->max_num_nonzeros()) {
+ tsm->set_num_nonzeros(num_nonzeros);
+ tsm->Reserve(2 * num_nonzeros);
+ rows = tsm->mutable_rows();
+ cols = tsm->mutable_cols();
+ values = tsm->mutable_values();
+ }
+ CHECK_LT(num_nonzeros, tsm->max_num_nonzeros());
+
+ const int r = parameter_blocks[j]->index();
+ rows[num_nonzeros] = r;
+ cols[num_nonzeros] = c;
+ values[num_nonzeros] = 1.0;
+ ++num_nonzeros;
+ }
+ }
+
+ tsm->set_num_nonzeros(num_nonzeros);
+ return tsm;
+}
+
+bool SolverImpl::ReorderProgramForSchurTypeLinearSolver(
+ const LinearSolverType linear_solver_type,
+ const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
+ const ProblemImpl::ParameterMap& parameter_map,
+ ParameterBlockOrdering* parameter_block_ordering,
+ Program* program,
+ string* error) {
+ if (parameter_block_ordering->NumGroups() == 1) {
+ // If the user supplied an parameter_block_ordering with just one
+ // group, it is equivalent to the user supplying NULL as an
+ // parameter_block_ordering. Ceres is completely free to choose the
+ // parameter block ordering as it sees fit. For Schur type solvers,
+ // this means that the user wishes for Ceres to identify the
+ // e_blocks, which we do by computing a maximal independent set.
+ vector<ParameterBlock*> schur_ordering;
+ const int num_eliminate_blocks =
+ ComputeStableSchurOrdering(*program, &schur_ordering);
+
+ CHECK_EQ(schur_ordering.size(), program->NumParameterBlocks())
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+
+ // Update the parameter_block_ordering object.
+ for (int i = 0; i < schur_ordering.size(); ++i) {
+ double* parameter_block = schur_ordering[i]->mutable_user_state();
+ const int group_id = (i < num_eliminate_blocks) ? 0 : 1;
+ parameter_block_ordering->AddElementToGroup(parameter_block, group_id);
+ }
+
+ // We could call ApplyUserOrdering but this is cheaper and
+ // simpler.
+ swap(*program->mutable_parameter_blocks(), schur_ordering);
+ } else {
+ // The user provided an ordering with more than one elimination
+ // group. Trust the user and apply the ordering.
+ if (!ApplyUserOrdering(parameter_map,
+ parameter_block_ordering,
+ program,
+ error)) {
+ return false;
+ }
+ }
+
+ // Pre-order the columns corresponding to the schur complement if
+ // possible.
+#if !defined(CERES_NO_SUITESPARSE) && !defined(CERES_NO_CAMD)
+ if (linear_solver_type == SPARSE_SCHUR &&
+ sparse_linear_algebra_library_type == SUITE_SPARSE) {
+ vector<int> constraints;
+ vector<ParameterBlock*>& parameter_blocks =
+ *(program->mutable_parameter_blocks());
+
+ for (int i = 0; i < parameter_blocks.size(); ++i) {
+ constraints.push_back(
+ parameter_block_ordering->GroupId(
+ parameter_blocks[i]->mutable_user_state()));
+ }
+
+ // Set the offsets and index for CreateJacobianSparsityTranspose.
+ program->SetParameterOffsetsAndIndex();
+ // Compute a block sparse presentation of J'.
+ scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
+ SolverImpl::CreateJacobianBlockSparsityTranspose(program));
+
+ SuiteSparse ss;
+ cholmod_sparse* block_jacobian_transpose =
+ ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get());
+
+ vector<int> ordering(parameter_blocks.size(), 0);
+ ss.ConstrainedApproximateMinimumDegreeOrdering(block_jacobian_transpose,
+ &constraints[0],
+ &ordering[0]);
+ ss.Free(block_jacobian_transpose);
+
+ const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
+ for (int i = 0; i < program->NumParameterBlocks(); ++i) {
+ parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
+ }
+ }
+#endif
+
+ program->SetParameterOffsetsAndIndex();
+ // Schur type solvers also require that their residual blocks be
+ // lexicographically ordered.
+ const int num_eliminate_blocks =
+ parameter_block_ordering->group_to_elements().begin()->second.size();
+ return LexicographicallyOrderResidualBlocks(num_eliminate_blocks,
+ program,
+ error);
+}
+
+bool SolverImpl::ReorderProgramForSparseNormalCholesky(
+ const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
+ const ParameterBlockOrdering* parameter_block_ordering,
+ Program* program,
+ string* error) {
+ // Set the offsets and index for CreateJacobianSparsityTranspose.
+ program->SetParameterOffsetsAndIndex();
+ // Compute a block sparse presentation of J'.
+ scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
+ SolverImpl::CreateJacobianBlockSparsityTranspose(program));
+
+ vector<int> ordering(program->NumParameterBlocks(), 0);
+ vector<ParameterBlock*>& parameter_blocks =
+ *(program->mutable_parameter_blocks());
+
+ if (sparse_linear_algebra_library_type == SUITE_SPARSE) {
+#ifdef CERES_NO_SUITESPARSE
+ *error = "Can't use SPARSE_NORMAL_CHOLESKY with SUITE_SPARSE because "
+ "SuiteSparse was not enabled when Ceres was built.";
+ return false;
+#else
+ SuiteSparse ss;
+ cholmod_sparse* block_jacobian_transpose =
+ ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get());
+
+# ifdef CERES_NO_CAMD
+ // No cholmod_camd, so ignore user's parameter_block_ordering and
+ // use plain old AMD.
+ ss.ApproximateMinimumDegreeOrdering(block_jacobian_transpose, &ordering[0]);
+# else
+ if (parameter_block_ordering->NumGroups() > 1) {
+ // If the user specified more than one elimination groups use them
+ // to constrain the ordering.
+ vector<int> constraints;
+ for (int i = 0; i < parameter_blocks.size(); ++i) {
+ constraints.push_back(
+ parameter_block_ordering->GroupId(
+ parameter_blocks[i]->mutable_user_state()));
+ }
+ ss.ConstrainedApproximateMinimumDegreeOrdering(
+ block_jacobian_transpose,
+ &constraints[0],
+ &ordering[0]);
+ } else {
+ ss.ApproximateMinimumDegreeOrdering(block_jacobian_transpose,
+ &ordering[0]);
+ }
+# endif // CERES_NO_CAMD
+
+ ss.Free(block_jacobian_transpose);
+#endif // CERES_NO_SUITESPARSE
+
+ } else if (sparse_linear_algebra_library_type == CX_SPARSE) {
+#ifndef CERES_NO_CXSPARSE
+
+ // CXSparse works with J'J instead of J'. So compute the block
+ // sparsity for J'J and compute an approximate minimum degree
+ // ordering.
+ CXSparse cxsparse;
+ cs_di* block_jacobian_transpose;
+ block_jacobian_transpose =
+ cxsparse.CreateSparseMatrix(tsm_block_jacobian_transpose.get());
+ cs_di* block_jacobian = cxsparse.TransposeMatrix(block_jacobian_transpose);
+ cs_di* block_hessian =
+ cxsparse.MatrixMatrixMultiply(block_jacobian_transpose, block_jacobian);
+ cxsparse.Free(block_jacobian);
+ cxsparse.Free(block_jacobian_transpose);
+
+ cxsparse.ApproximateMinimumDegreeOrdering(block_hessian, &ordering[0]);
+ cxsparse.Free(block_hessian);
+#else // CERES_NO_CXSPARSE
+ *error = "Can't use SPARSE_NORMAL_CHOLESKY with CX_SPARSE because "
+ "CXSparse was not enabled when Ceres was built.";
+ return false;
+#endif // CERES_NO_CXSPARSE
+ } else {
+ *error = "Unknown sparse linear algebra library.";
+ return false;
+ }
+
+ // Apply ordering.
+ const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
+ for (int i = 0; i < program->NumParameterBlocks(); ++i) {
+ parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
+ }
+
+ program->SetParameterOffsetsAndIndex();
+ return true;
+}
+
} // namespace internal
} // namespace ceres