aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/solver_impl.cc
diff options
context:
space:
mode:
Diffstat (limited to 'internal/ceres/solver_impl.cc')
-rw-r--r--internal/ceres/solver_impl.cc1100
1 files changed, 1100 insertions, 0 deletions
diff --git a/internal/ceres/solver_impl.cc b/internal/ceres/solver_impl.cc
new file mode 100644
index 0000000..64e0f8e
--- /dev/null
+++ b/internal/ceres/solver_impl.cc
@@ -0,0 +1,1100 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: keir@google.com (Keir Mierle)
+
+#include "ceres/solver_impl.h"
+
+#include <cstdio>
+#include <iostream> // NOLINT
+#include <numeric>
+#include "ceres/coordinate_descent_minimizer.h"
+#include "ceres/evaluator.h"
+#include "ceres/gradient_checking_cost_function.h"
+#include "ceres/iteration_callback.h"
+#include "ceres/levenberg_marquardt_strategy.h"
+#include "ceres/linear_solver.h"
+#include "ceres/map_util.h"
+#include "ceres/minimizer.h"
+#include "ceres/ordered_groups.h"
+#include "ceres/parameter_block.h"
+#include "ceres/parameter_block_ordering.h"
+#include "ceres/problem.h"
+#include "ceres/problem_impl.h"
+#include "ceres/program.h"
+#include "ceres/residual_block.h"
+#include "ceres/stringprintf.h"
+#include "ceres/trust_region_minimizer.h"
+#include "ceres/wall_time.h"
+
+namespace ceres {
+namespace internal {
+namespace {
+
+// Callback for updating the user's parameter blocks. Updates are only
+// done if the step is successful.
+class StateUpdatingCallback : public IterationCallback {
+ public:
+ StateUpdatingCallback(Program* program, double* parameters)
+ : program_(program), parameters_(parameters) {}
+
+ CallbackReturnType operator()(const IterationSummary& summary) {
+ if (summary.step_is_successful) {
+ program_->StateVectorToParameterBlocks(parameters_);
+ program_->CopyParameterBlockStateToUserState();
+ }
+ return SOLVER_CONTINUE;
+ }
+
+ private:
+ Program* program_;
+ double* parameters_;
+};
+
+// Callback for logging the state of the minimizer to STDERR or STDOUT
+// depending on the user's preferences and logging level.
+class LoggingCallback : public IterationCallback {
+ public:
+ explicit LoggingCallback(bool log_to_stdout)
+ : log_to_stdout_(log_to_stdout) {}
+
+ ~LoggingCallback() {}
+
+ CallbackReturnType operator()(const IterationSummary& summary) {
+ const char* kReportRowFormat =
+ "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e "
+ "rho:% 3.2e mu:% 3.2e li:% 3d it:% 3.2e tt:% 3.2e";
+ string output = StringPrintf(kReportRowFormat,
+ summary.iteration,
+ summary.cost,
+ summary.cost_change,
+ summary.gradient_max_norm,
+ summary.step_norm,
+ summary.relative_decrease,
+ summary.trust_region_radius,
+ summary.linear_solver_iterations,
+ summary.iteration_time_in_seconds,
+ summary.cumulative_time_in_seconds);
+ if (log_to_stdout_) {
+ cout << output << endl;
+ } else {
+ VLOG(1) << output;
+ }
+ return SOLVER_CONTINUE;
+ }
+
+ private:
+ const bool log_to_stdout_;
+};
+
+// Basic callback to record the execution of the solver to a file for
+// offline analysis.
+class FileLoggingCallback : public IterationCallback {
+ public:
+ explicit FileLoggingCallback(const string& filename)
+ : fptr_(NULL) {
+ fptr_ = fopen(filename.c_str(), "w");
+ CHECK_NOTNULL(fptr_);
+ }
+
+ virtual ~FileLoggingCallback() {
+ if (fptr_ != NULL) {
+ fclose(fptr_);
+ }
+ }
+
+ virtual CallbackReturnType operator()(const IterationSummary& summary) {
+ fprintf(fptr_,
+ "%4d %e %e\n",
+ summary.iteration,
+ summary.cost,
+ summary.cumulative_time_in_seconds);
+ return SOLVER_CONTINUE;
+ }
+ private:
+ FILE* fptr_;
+};
+
+} // namespace
+
+void SolverImpl::Minimize(const Solver::Options& options,
+ Program* program,
+ CoordinateDescentMinimizer* inner_iteration_minimizer,
+ Evaluator* evaluator,
+ LinearSolver* linear_solver,
+ double* parameters,
+ Solver::Summary* summary) {
+ Minimizer::Options minimizer_options(options);
+
+ // TODO(sameeragarwal): Add support for logging the configuration
+ // and more detailed stats.
+ scoped_ptr<IterationCallback> file_logging_callback;
+ if (!options.solver_log.empty()) {
+ file_logging_callback.reset(new FileLoggingCallback(options.solver_log));
+ minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(),
+ file_logging_callback.get());
+ }
+
+ LoggingCallback logging_callback(options.minimizer_progress_to_stdout);
+ if (options.logging_type != SILENT) {
+ minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(),
+ &logging_callback);
+ }
+
+ StateUpdatingCallback updating_callback(program, parameters);
+ if (options.update_state_every_iteration) {
+ // This must get pushed to the front of the callbacks so that it is run
+ // before any of the user callbacks.
+ minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(),
+ &updating_callback);
+ }
+
+ minimizer_options.evaluator = evaluator;
+ scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian());
+ minimizer_options.jacobian = jacobian.get();
+ minimizer_options.inner_iteration_minimizer = inner_iteration_minimizer;
+
+ TrustRegionStrategy::Options trust_region_strategy_options;
+ trust_region_strategy_options.linear_solver = linear_solver;
+ trust_region_strategy_options.initial_radius =
+ options.initial_trust_region_radius;
+ trust_region_strategy_options.max_radius = options.max_trust_region_radius;
+ trust_region_strategy_options.lm_min_diagonal = options.lm_min_diagonal;
+ trust_region_strategy_options.lm_max_diagonal = options.lm_max_diagonal;
+ trust_region_strategy_options.trust_region_strategy_type =
+ options.trust_region_strategy_type;
+ trust_region_strategy_options.dogleg_type = options.dogleg_type;
+ scoped_ptr<TrustRegionStrategy> strategy(
+ TrustRegionStrategy::Create(trust_region_strategy_options));
+ minimizer_options.trust_region_strategy = strategy.get();
+
+ TrustRegionMinimizer minimizer;
+ double minimizer_start_time = WallTimeInSeconds();
+ minimizer.Minimize(minimizer_options, parameters, summary);
+ summary->minimizer_time_in_seconds =
+ WallTimeInSeconds() - minimizer_start_time;
+}
+
+void SolverImpl::Solve(const Solver::Options& original_options,
+ ProblemImpl* original_problem_impl,
+ Solver::Summary* summary) {
+ double solver_start_time = WallTimeInSeconds();
+
+ Program* original_program = original_problem_impl->mutable_program();
+ ProblemImpl* problem_impl = original_problem_impl;
+
+ // Reset the summary object to its default values.
+ *CHECK_NOTNULL(summary) = Solver::Summary();
+
+ summary->num_parameter_blocks = problem_impl->NumParameterBlocks();
+ summary->num_parameters = problem_impl->NumParameters();
+ summary->num_residual_blocks = problem_impl->NumResidualBlocks();
+ summary->num_residuals = problem_impl->NumResiduals();
+
+ // Empty programs are usually a user error.
+ if (summary->num_parameter_blocks == 0) {
+ summary->error = "Problem contains no parameter blocks.";
+ LOG(ERROR) << summary->error;
+ return;
+ }
+
+ if (summary->num_residual_blocks == 0) {
+ summary->error = "Problem contains no residual blocks.";
+ LOG(ERROR) << summary->error;
+ return;
+ }
+
+ Solver::Options options(original_options);
+ options.linear_solver_ordering = NULL;
+ options.inner_iteration_ordering = NULL;
+
+#ifndef CERES_USE_OPENMP
+ if (options.num_threads > 1) {
+ LOG(WARNING)
+ << "OpenMP support is not compiled into this binary; "
+ << "only options.num_threads=1 is supported. Switching "
+ << "to single threaded mode.";
+ options.num_threads = 1;
+ }
+ if (options.num_linear_solver_threads > 1) {
+ LOG(WARNING)
+ << "OpenMP support is not compiled into this binary; "
+ << "only options.num_linear_solver_threads=1 is supported. Switching "
+ << "to single threaded mode.";
+ options.num_linear_solver_threads = 1;
+ }
+#endif
+
+ summary->num_threads_given = original_options.num_threads;
+ summary->num_threads_used = options.num_threads;
+
+ if (options.lsqp_iterations_to_dump.size() > 0) {
+ LOG(WARNING) << "Dumping linear least squares problems to disk is"
+ " currently broken. Ignoring Solver::Options::lsqp_iterations_to_dump";
+ }
+
+ // Evaluate the initial cost, residual vector and the jacobian
+ // matrix if requested by the user. The initial cost needs to be
+ // computed on the original unpreprocessed problem, as it is used to
+ // determine the value of the "fixed" part of the objective function
+ // after the problem has undergone reduction.
+ if (!Evaluator::Evaluate(original_program,
+ options.num_threads,
+ &(summary->initial_cost),
+ options.return_initial_residuals
+ ? &summary->initial_residuals
+ : NULL,
+ options.return_initial_gradient
+ ? &summary->initial_gradient
+ : NULL,
+ options.return_initial_jacobian
+ ? &summary->initial_jacobian
+ : NULL)) {
+ summary->termination_type = NUMERICAL_FAILURE;
+ summary->error = "Unable to evaluate the initial cost.";
+ LOG(ERROR) << summary->error;
+ return;
+ }
+
+ original_program->SetParameterBlockStatePtrsToUserStatePtrs();
+
+ // If the user requests gradient checking, construct a new
+ // ProblemImpl by wrapping the CostFunctions of problem_impl inside
+ // GradientCheckingCostFunction and replacing problem_impl with
+ // gradient_checking_problem_impl.
+ scoped_ptr<ProblemImpl> gradient_checking_problem_impl;
+ if (options.check_gradients) {
+ VLOG(1) << "Checking Gradients";
+ gradient_checking_problem_impl.reset(
+ CreateGradientCheckingProblemImpl(
+ problem_impl,
+ options.numeric_derivative_relative_step_size,
+ options.gradient_check_relative_precision));
+
+ // From here on, problem_impl will point to the gradient checking
+ // version.
+ problem_impl = gradient_checking_problem_impl.get();
+ }
+
+ if (original_options.linear_solver_ordering != NULL) {
+ if (!IsOrderingValid(original_options, problem_impl, &summary->error)) {
+ LOG(ERROR) << summary->error;
+ return;
+ }
+ options.linear_solver_ordering =
+ new ParameterBlockOrdering(*original_options.linear_solver_ordering);
+ } else {
+ options.linear_solver_ordering = new ParameterBlockOrdering;
+ const ProblemImpl::ParameterMap& parameter_map =
+ problem_impl->parameter_map();
+ for (ProblemImpl::ParameterMap::const_iterator it = parameter_map.begin();
+ it != parameter_map.end();
+ ++it) {
+ options.linear_solver_ordering->AddElementToGroup(it->first, 0);
+ }
+ }
+
+ // Create the three objects needed to minimize: the transformed program, the
+ // evaluator, and the linear solver.
+ scoped_ptr<Program> reduced_program(CreateReducedProgram(&options,
+ problem_impl,
+ &summary->fixed_cost,
+ &summary->error));
+ if (reduced_program == NULL) {
+ return;
+ }
+
+ summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks();
+ summary->num_parameters_reduced = reduced_program->NumParameters();
+ summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks();
+ summary->num_residuals_reduced = reduced_program->NumResiduals();
+
+ if (summary->num_parameter_blocks_reduced == 0) {
+ summary->preprocessor_time_in_seconds =
+ WallTimeInSeconds() - solver_start_time;
+
+ LOG(INFO) << "Terminating: FUNCTION_TOLERANCE reached. "
+ << "No non-constant parameter blocks found.";
+
+ // FUNCTION_TOLERANCE is the right convergence here, as we know
+ // that the objective function is constant and cannot be changed
+ // any further.
+ summary->termination_type = FUNCTION_TOLERANCE;
+
+ double post_process_start_time = WallTimeInSeconds();
+ // Evaluate the final cost, residual vector and the jacobian
+ // matrix if requested by the user.
+ if (!Evaluator::Evaluate(original_program,
+ options.num_threads,
+ &summary->final_cost,
+ options.return_final_residuals
+ ? &summary->final_residuals
+ : NULL,
+ options.return_final_gradient
+ ? &summary->final_gradient
+ : NULL,
+ options.return_final_jacobian
+ ? &summary->final_jacobian
+ : NULL)) {
+ summary->termination_type = NUMERICAL_FAILURE;
+ summary->error = "Unable to evaluate the final cost.";
+ LOG(ERROR) << summary->error;
+ return;
+ }
+
+ // Ensure the program state is set to the user parameters on the way out.
+ original_program->SetParameterBlockStatePtrsToUserStatePtrs();
+
+ summary->postprocessor_time_in_seconds =
+ WallTimeInSeconds() - post_process_start_time;
+ return;
+ }
+
+ scoped_ptr<LinearSolver>
+ linear_solver(CreateLinearSolver(&options, &summary->error));
+ if (linear_solver == NULL) {
+ return;
+ }
+
+ summary->linear_solver_type_given = original_options.linear_solver_type;
+ summary->linear_solver_type_used = options.linear_solver_type;
+
+ summary->preconditioner_type = options.preconditioner_type;
+
+ summary->num_linear_solver_threads_given =
+ original_options.num_linear_solver_threads;
+ summary->num_linear_solver_threads_used = options.num_linear_solver_threads;
+
+ summary->sparse_linear_algebra_library =
+ options.sparse_linear_algebra_library;
+
+ summary->trust_region_strategy_type = options.trust_region_strategy_type;
+ summary->dogleg_type = options.dogleg_type;
+
+ // Only Schur types require the lexicographic reordering.
+ if (IsSchurType(options.linear_solver_type)) {
+ const int num_eliminate_blocks =
+ options.linear_solver_ordering
+ ->group_to_elements().begin()
+ ->second.size();
+ if (!LexicographicallyOrderResidualBlocks(num_eliminate_blocks,
+ reduced_program.get(),
+ &summary->error)) {
+ return;
+ }
+ }
+
+ scoped_ptr<Evaluator> evaluator(CreateEvaluator(options,
+ problem_impl->parameter_map(),
+ reduced_program.get(),
+ &summary->error));
+ if (evaluator == NULL) {
+ return;
+ }
+
+ scoped_ptr<CoordinateDescentMinimizer> inner_iteration_minimizer;
+ if (options.use_inner_iterations) {
+ if (reduced_program->parameter_blocks().size() < 2) {
+ LOG(WARNING) << "Reduced problem only contains one parameter block."
+ << "Disabling inner iterations.";
+ } else {
+ inner_iteration_minimizer.reset(
+ CreateInnerIterationMinimizer(original_options,
+ *reduced_program,
+ problem_impl->parameter_map(),
+ &summary->error));
+ if (inner_iteration_minimizer == NULL) {
+ LOG(ERROR) << summary->error;
+ return;
+ }
+ }
+ }
+
+ // The optimizer works on contiguous parameter vectors; allocate some.
+ Vector parameters(reduced_program->NumParameters());
+
+ // Collect the discontiguous parameters into a contiguous state vector.
+ reduced_program->ParameterBlocksToStateVector(parameters.data());
+
+ Vector original_parameters = parameters;
+
+ double minimizer_start_time = WallTimeInSeconds();
+ summary->preprocessor_time_in_seconds =
+ minimizer_start_time - solver_start_time;
+
+ // Run the optimization.
+ Minimize(options,
+ reduced_program.get(),
+ inner_iteration_minimizer.get(),
+ evaluator.get(),
+ linear_solver.get(),
+ parameters.data(),
+ summary);
+
+ // If the user aborted mid-optimization or the optimization
+ // terminated because of a numerical failure, then return without
+ // updating user state.
+ if (summary->termination_type == USER_ABORT ||
+ summary->termination_type == NUMERICAL_FAILURE) {
+ return;
+ }
+
+ double post_process_start_time = WallTimeInSeconds();
+
+ // Push the contiguous optimized parameters back to the user's parameters.
+ reduced_program->StateVectorToParameterBlocks(parameters.data());
+ reduced_program->CopyParameterBlockStateToUserState();
+
+ // Evaluate the final cost, residual vector and the jacobian
+ // matrix if requested by the user.
+ if (!Evaluator::Evaluate(original_program,
+ options.num_threads,
+ &summary->final_cost,
+ options.return_final_residuals
+ ? &summary->final_residuals
+ : NULL,
+ options.return_final_gradient
+ ? &summary->final_gradient
+ : NULL,
+ options.return_final_jacobian
+ ? &summary->final_jacobian
+ : NULL)) {
+ // This failure requires careful handling.
+ //
+ // At this point, we have modified the user's state, but the
+ // evaluation failed and we inform him of NUMERICAL_FAILURE. Ceres
+ // guarantees that user's state is not modified if the solver
+ // returns with NUMERICAL_FAILURE. Thus, we need to restore the
+ // user's state to their original values.
+
+ reduced_program->StateVectorToParameterBlocks(original_parameters.data());
+ reduced_program->CopyParameterBlockStateToUserState();
+
+ summary->termination_type = NUMERICAL_FAILURE;
+ summary->error = "Unable to evaluate the final cost.";
+ LOG(ERROR) << summary->error;
+ return;
+ }
+
+ // Ensure the program state is set to the user parameters on the way out.
+ original_program->SetParameterBlockStatePtrsToUserStatePtrs();
+
+ // Stick a fork in it, we're done.
+ summary->postprocessor_time_in_seconds =
+ WallTimeInSeconds() - post_process_start_time;
+}
+
+bool SolverImpl::IsOrderingValid(const Solver::Options& options,
+ const ProblemImpl* problem_impl,
+ string* error) {
+ if (options.linear_solver_ordering->NumElements() !=
+ problem_impl->NumParameterBlocks()) {
+ *error = "Number of parameter blocks in user supplied ordering "
+ "does not match the number of parameter blocks in the problem";
+ return false;
+ }
+
+ const Program& program = problem_impl->program();
+ const vector<ParameterBlock*>& parameter_blocks = program.parameter_blocks();
+ for (vector<ParameterBlock*>::const_iterator it = parameter_blocks.begin();
+ it != parameter_blocks.end();
+ ++it) {
+ if (!options.linear_solver_ordering
+ ->IsMember(const_cast<double*>((*it)->user_state()))) {
+ *error = "Problem contains a parameter block that is not in "
+ "the user specified ordering.";
+ return false;
+ }
+ }
+
+ if (IsSchurType(options.linear_solver_type) &&
+ options.linear_solver_ordering->NumGroups() > 1) {
+ const vector<ResidualBlock*>& residual_blocks = program.residual_blocks();
+ const set<double*>& e_blocks =
+ options.linear_solver_ordering->group_to_elements().begin()->second;
+ if (!IsParameterBlockSetIndependent(e_blocks, residual_blocks)) {
+ *error = "The user requested the use of a Schur type solver. "
+ "But the first elimination group in the ordering is not an "
+ "independent set.";
+ return false;
+ }
+ }
+ return true;
+}
+
+bool SolverImpl::IsParameterBlockSetIndependent(const set<double*>& parameter_block_ptrs,
+ const vector<ResidualBlock*>& residual_blocks) {
+ // Loop over each residual block and ensure that no two parameter
+ // blocks in the same residual block are part of
+ // parameter_block_ptrs as that would violate the assumption that it
+ // is an independent set in the Hessian matrix.
+ for (vector<ResidualBlock*>::const_iterator it = residual_blocks.begin();
+ it != residual_blocks.end();
+ ++it) {
+ ParameterBlock* const* parameter_blocks = (*it)->parameter_blocks();
+ const int num_parameter_blocks = (*it)->NumParameterBlocks();
+ int count = 0;
+ for (int i = 0; i < num_parameter_blocks; ++i) {
+ count += parameter_block_ptrs.count(
+ parameter_blocks[i]->mutable_user_state());
+ }
+ if (count > 1) {
+ return false;
+ }
+ }
+ return true;
+}
+
+
+// Strips varying parameters and residuals, maintaining order, and updating
+// num_eliminate_blocks.
+bool SolverImpl::RemoveFixedBlocksFromProgram(Program* program,
+ ParameterBlockOrdering* ordering,
+ double* fixed_cost,
+ string* error) {
+ vector<ParameterBlock*>* parameter_blocks =
+ program->mutable_parameter_blocks();
+
+ scoped_array<double> residual_block_evaluate_scratch;
+ if (fixed_cost != NULL) {
+ residual_block_evaluate_scratch.reset(
+ new double[program->MaxScratchDoublesNeededForEvaluate()]);
+ *fixed_cost = 0.0;
+ }
+
+ // Mark all the parameters as unused. Abuse the index member of the parameter
+ // blocks for the marking.
+ for (int i = 0; i < parameter_blocks->size(); ++i) {
+ (*parameter_blocks)[i]->set_index(-1);
+ }
+
+ // Filter out residual that have all-constant parameters, and mark all the
+ // parameter blocks that appear in residuals.
+ {
+ vector<ResidualBlock*>* residual_blocks =
+ program->mutable_residual_blocks();
+ int j = 0;
+ for (int i = 0; i < residual_blocks->size(); ++i) {
+ ResidualBlock* residual_block = (*residual_blocks)[i];
+ int num_parameter_blocks = residual_block->NumParameterBlocks();
+
+ // Determine if the residual block is fixed, and also mark varying
+ // parameters that appear in the residual block.
+ bool all_constant = true;
+ for (int k = 0; k < num_parameter_blocks; k++) {
+ ParameterBlock* parameter_block = residual_block->parameter_blocks()[k];
+ if (!parameter_block->IsConstant()) {
+ all_constant = false;
+ parameter_block->set_index(1);
+ }
+ }
+
+ if (!all_constant) {
+ (*residual_blocks)[j++] = (*residual_blocks)[i];
+ } else if (fixed_cost != NULL) {
+ // The residual is constant and will be removed, so its cost is
+ // added to the variable fixed_cost.
+ double cost = 0.0;
+ if (!residual_block->Evaluate(
+ &cost, NULL, NULL, residual_block_evaluate_scratch.get())) {
+ *error = StringPrintf("Evaluation of the residual %d failed during "
+ "removal of fixed residual blocks.", i);
+ return false;
+ }
+ *fixed_cost += cost;
+ }
+ }
+ residual_blocks->resize(j);
+ }
+
+ // Filter out unused or fixed parameter blocks, and update
+ // the ordering.
+ {
+ vector<ParameterBlock*>* parameter_blocks =
+ program->mutable_parameter_blocks();
+ int j = 0;
+ for (int i = 0; i < parameter_blocks->size(); ++i) {
+ ParameterBlock* parameter_block = (*parameter_blocks)[i];
+ if (parameter_block->index() == 1) {
+ (*parameter_blocks)[j++] = parameter_block;
+ } else {
+ ordering->Remove(parameter_block->mutable_user_state());
+ }
+ }
+ parameter_blocks->resize(j);
+ }
+
+ CHECK(((program->NumResidualBlocks() == 0) &&
+ (program->NumParameterBlocks() == 0)) ||
+ ((program->NumResidualBlocks() != 0) &&
+ (program->NumParameterBlocks() != 0)))
+ << "Congratulations, you found a bug in Ceres. Please report it.";
+ return true;
+}
+
+Program* SolverImpl::CreateReducedProgram(Solver::Options* options,
+ ProblemImpl* problem_impl,
+ double* fixed_cost,
+ string* error) {
+ CHECK_NOTNULL(options->linear_solver_ordering);
+ Program* original_program = problem_impl->mutable_program();
+ scoped_ptr<Program> transformed_program(new Program(*original_program));
+ ParameterBlockOrdering* linear_solver_ordering =
+ options->linear_solver_ordering;
+
+ const int min_group_id =
+ linear_solver_ordering->group_to_elements().begin()->first;
+ const int original_num_groups = linear_solver_ordering->NumGroups();
+
+ if (!RemoveFixedBlocksFromProgram(transformed_program.get(),
+ linear_solver_ordering,
+ fixed_cost,
+ error)) {
+ return NULL;
+ }
+
+ if (transformed_program->NumParameterBlocks() == 0) {
+ if (transformed_program->NumResidualBlocks() > 0) {
+ *error = "Zero parameter blocks but non-zero residual blocks"
+ " in the reduced program. Congratulations, you found a "
+ "Ceres bug! Please report this error to the developers.";
+ return NULL;
+ }
+
+ LOG(WARNING) << "No varying parameter blocks to optimize; "
+ << "bailing early.";
+ return transformed_program.release();
+ }
+
+ // If the user supplied an linear_solver_ordering with just one
+ // group, it is equivalent to the user supplying NULL as
+ // ordering. Ceres is completely free to choose the parameter block
+ // ordering as it sees fit. For Schur type solvers, this means that
+ // the user wishes for Ceres to identify the e_blocks, which we do
+ // by computing a maximal independent set.
+ if (original_num_groups == 1 && IsSchurType(options->linear_solver_type)) {
+ vector<ParameterBlock*> schur_ordering;
+ const int num_eliminate_blocks = ComputeSchurOrdering(*transformed_program,
+ &schur_ordering);
+ CHECK_EQ(schur_ordering.size(), transformed_program->NumParameterBlocks())
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+
+ for (int i = 0; i < schur_ordering.size(); ++i) {
+ linear_solver_ordering->AddElementToGroup(
+ schur_ordering[i]->mutable_user_state(),
+ (i < num_eliminate_blocks) ? 0 : 1);
+ }
+ }
+
+ if (!ApplyUserOrdering(problem_impl->parameter_map(),
+ linear_solver_ordering,
+ transformed_program.get(),
+ error)) {
+ return NULL;
+ }
+
+ // If the user requested the use of a Schur type solver, and
+ // supplied a non-NULL linear_solver_ordering object with more than
+ // one elimination group, then it can happen that after all the
+ // parameter blocks which are fixed or unused have been removed from
+ // the program and the ordering, there are no more parameter blocks
+ // in the first elimination group.
+ //
+ // In such a case, the use of a Schur type solver is not possible,
+ // as they assume there is at least one e_block. Thus, we
+ // automatically switch to one of the other solvers, depending on
+ // the user's indicated preferences.
+ if (IsSchurType(options->linear_solver_type) &&
+ original_num_groups > 1 &&
+ linear_solver_ordering->GroupSize(min_group_id) == 0) {
+ string msg = "No e_blocks remaining. Switching from ";
+ if (options->linear_solver_type == SPARSE_SCHUR) {
+ options->linear_solver_type = SPARSE_NORMAL_CHOLESKY;
+ msg += "SPARSE_SCHUR to SPARSE_NORMAL_CHOLESKY.";
+ } else if (options->linear_solver_type == DENSE_SCHUR) {
+ // TODO(sameeragarwal): This is probably not a great choice.
+ // Ideally, we should have a DENSE_NORMAL_CHOLESKY, that can
+ // take a BlockSparseMatrix as input.
+ options->linear_solver_type = DENSE_QR;
+ msg += "DENSE_SCHUR to DENSE_QR.";
+ } else if (options->linear_solver_type == ITERATIVE_SCHUR) {
+ msg += StringPrintf("ITERATIVE_SCHUR with %s preconditioner "
+ "to CGNR with JACOBI preconditioner.",
+ PreconditionerTypeToString(
+ options->preconditioner_type));
+ options->linear_solver_type = CGNR;
+ if (options->preconditioner_type != IDENTITY) {
+ // CGNR currently only supports the JACOBI preconditioner.
+ options->preconditioner_type = JACOBI;
+ }
+ }
+
+ LOG(WARNING) << msg;
+ }
+
+ // Since the transformed program is the "active" program, and it is mutated,
+ // update the parameter offsets and indices.
+ transformed_program->SetParameterOffsetsAndIndex();
+ return transformed_program.release();
+}
+
+LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options,
+ string* error) {
+ CHECK_NOTNULL(options);
+ CHECK_NOTNULL(options->linear_solver_ordering);
+ CHECK_NOTNULL(error);
+
+ if (options->trust_region_strategy_type == DOGLEG) {
+ if (options->linear_solver_type == ITERATIVE_SCHUR ||
+ options->linear_solver_type == CGNR) {
+ *error = "DOGLEG only supports exact factorization based linear "
+ "solvers. If you want to use an iterative solver please "
+ "use LEVENBERG_MARQUARDT as the trust_region_strategy_type";
+ return NULL;
+ }
+ }
+
+#ifdef CERES_NO_SUITESPARSE
+ if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY &&
+ options->sparse_linear_algebra_library == SUITE_SPARSE) {
+ *error = "Can't use SPARSE_NORMAL_CHOLESKY with SUITESPARSE because "
+ "SuiteSparse was not enabled when Ceres was built.";
+ return NULL;
+ }
+
+ if (options->preconditioner_type == SCHUR_JACOBI) {
+ *error = "SCHUR_JACOBI preconditioner not suppored. Please build Ceres "
+ "with SuiteSparse support.";
+ return NULL;
+ }
+
+ if (options->preconditioner_type == CLUSTER_JACOBI) {
+ *error = "CLUSTER_JACOBI preconditioner not suppored. Please build Ceres "
+ "with SuiteSparse support.";
+ return NULL;
+ }
+
+ if (options->preconditioner_type == CLUSTER_TRIDIAGONAL) {
+ *error = "CLUSTER_TRIDIAGONAL preconditioner not suppored. Please build "
+ "Ceres with SuiteSparse support.";
+ return NULL;
+ }
+#endif
+
+#ifdef CERES_NO_CXSPARSE
+ if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY &&
+ options->sparse_linear_algebra_library == CX_SPARSE) {
+ *error = "Can't use SPARSE_NORMAL_CHOLESKY with CXSPARSE because "
+ "CXSparse was not enabled when Ceres was built.";
+ return NULL;
+ }
+#endif
+
+#if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE)
+ if (options->linear_solver_type == SPARSE_SCHUR) {
+ *error = "Can't use SPARSE_SCHUR because neither SuiteSparse nor"
+ "CXSparse was enabled when Ceres was compiled.";
+ return NULL;
+ }
+#endif
+
+ if (options->linear_solver_max_num_iterations <= 0) {
+ *error = "Solver::Options::linear_solver_max_num_iterations is 0.";
+ return NULL;
+ }
+ if (options->linear_solver_min_num_iterations <= 0) {
+ *error = "Solver::Options::linear_solver_min_num_iterations is 0.";
+ return NULL;
+ }
+ if (options->linear_solver_min_num_iterations >
+ options->linear_solver_max_num_iterations) {
+ *error = "Solver::Options::linear_solver_min_num_iterations > "
+ "Solver::Options::linear_solver_max_num_iterations.";
+ return NULL;
+ }
+
+ LinearSolver::Options linear_solver_options;
+ linear_solver_options.min_num_iterations =
+ options->linear_solver_min_num_iterations;
+ linear_solver_options.max_num_iterations =
+ options->linear_solver_max_num_iterations;
+ linear_solver_options.type = options->linear_solver_type;
+ linear_solver_options.preconditioner_type = options->preconditioner_type;
+ linear_solver_options.sparse_linear_algebra_library =
+ options->sparse_linear_algebra_library;
+
+ linear_solver_options.num_threads = options->num_linear_solver_threads;
+ // The matrix used for storing the dense Schur complement has a
+ // single lock guarding the whole matrix. Running the
+ // SchurComplementSolver with multiple threads leads to maximum
+ // contention and slowdown. If the problem is large enough to
+ // benefit from a multithreaded schur eliminator, you should be
+ // using a SPARSE_SCHUR solver anyways.
+ if ((linear_solver_options.num_threads > 1) &&
+ (linear_solver_options.type == DENSE_SCHUR)) {
+ LOG(WARNING) << "Warning: Solver::Options::num_linear_solver_threads = "
+ << options->num_linear_solver_threads
+ << " with DENSE_SCHUR will result in poor performance; "
+ << "switching to single-threaded.";
+ linear_solver_options.num_threads = 1;
+ }
+ options->num_linear_solver_threads = linear_solver_options.num_threads;
+
+ linear_solver_options.use_block_amd = options->use_block_amd;
+ const map<int, set<double*> >& groups =
+ options->linear_solver_ordering->group_to_elements();
+ for (map<int, set<double*> >::const_iterator it = groups.begin();
+ it != groups.end();
+ ++it) {
+ linear_solver_options.elimination_groups.push_back(it->second.size());
+ }
+ // Schur type solvers, expect at least two elimination groups. If
+ // there is only one elimination group, then CreateReducedProgram
+ // guarantees that this group only contains e_blocks. Thus we add a
+ // dummy elimination group with zero blocks in it.
+ if (IsSchurType(linear_solver_options.type) &&
+ linear_solver_options.elimination_groups.size() == 1) {
+ linear_solver_options.elimination_groups.push_back(0);
+ }
+
+ return LinearSolver::Create(linear_solver_options);
+}
+
+bool SolverImpl::ApplyUserOrdering(const ProblemImpl::ParameterMap& parameter_map,
+ const ParameterBlockOrdering* ordering,
+ Program* program,
+ string* error) {
+ if (ordering->NumElements() != program->NumParameterBlocks()) {
+ *error = StringPrintf("User specified ordering does not have the same "
+ "number of parameters as the problem. The problem"
+ "has %d blocks while the ordering has %d blocks.",
+ program->NumParameterBlocks(),
+ ordering->NumElements());
+ return false;
+ }
+
+ vector<ParameterBlock*>* parameter_blocks =
+ program->mutable_parameter_blocks();
+ parameter_blocks->clear();
+
+ const map<int, set<double*> >& groups =
+ ordering->group_to_elements();
+
+ for (map<int, set<double*> >::const_iterator group_it = groups.begin();
+ group_it != groups.end();
+ ++group_it) {
+ const set<double*>& group = group_it->second;
+ for (set<double*>::const_iterator parameter_block_ptr_it = group.begin();
+ parameter_block_ptr_it != group.end();
+ ++parameter_block_ptr_it) {
+ ProblemImpl::ParameterMap::const_iterator parameter_block_it =
+ parameter_map.find(*parameter_block_ptr_it);
+ if (parameter_block_it == parameter_map.end()) {
+ *error = StringPrintf("User specified ordering contains a pointer "
+ "to a double that is not a parameter block in the "
+ "problem. The invalid double is in group: %d",
+ group_it->first);
+ return false;
+ }
+ parameter_blocks->push_back(parameter_block_it->second);
+ }
+ }
+ return true;
+}
+
+// Find the minimum index of any parameter block to the given residual.
+// Parameter blocks that have indices greater than num_eliminate_blocks are
+// considered to have an index equal to num_eliminate_blocks.
+int MinParameterBlock(const ResidualBlock* residual_block,
+ int num_eliminate_blocks) {
+ int min_parameter_block_position = num_eliminate_blocks;
+ for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) {
+ ParameterBlock* parameter_block = residual_block->parameter_blocks()[i];
+ if (!parameter_block->IsConstant()) {
+ CHECK_NE(parameter_block->index(), -1)
+ << "Did you forget to call Program::SetParameterOffsetsAndIndex()? "
+ << "This is a Ceres bug; please contact the developers!";
+ min_parameter_block_position = std::min(parameter_block->index(),
+ min_parameter_block_position);
+ }
+ }
+ return min_parameter_block_position;
+}
+
+// Reorder the residuals for program, if necessary, so that the residuals
+// involving each E block occur together. This is a necessary condition for the
+// Schur eliminator, which works on these "row blocks" in the jacobian.
+bool SolverImpl::LexicographicallyOrderResidualBlocks(const int num_eliminate_blocks,
+ Program* program,
+ string* error) {
+ CHECK_GE(num_eliminate_blocks, 1)
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+
+ // Create a histogram of the number of residuals for each E block. There is an
+ // extra bucket at the end to catch all non-eliminated F blocks.
+ vector<int> residual_blocks_per_e_block(num_eliminate_blocks + 1);
+ vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks();
+ vector<int> min_position_per_residual(residual_blocks->size());
+ for (int i = 0; i < residual_blocks->size(); ++i) {
+ ResidualBlock* residual_block = (*residual_blocks)[i];
+ int position = MinParameterBlock(residual_block, num_eliminate_blocks);
+ min_position_per_residual[i] = position;
+ DCHECK_LE(position, num_eliminate_blocks);
+ residual_blocks_per_e_block[position]++;
+ }
+
+ // Run a cumulative sum on the histogram, to obtain offsets to the start of
+ // each histogram bucket (where each bucket is for the residuals for that
+ // E-block).
+ vector<int> offsets(num_eliminate_blocks + 1);
+ std::partial_sum(residual_blocks_per_e_block.begin(),
+ residual_blocks_per_e_block.end(),
+ offsets.begin());
+ CHECK_EQ(offsets.back(), residual_blocks->size())
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+
+ CHECK(find(residual_blocks_per_e_block.begin(),
+ residual_blocks_per_e_block.end() - 1, 0) !=
+ residual_blocks_per_e_block.end())
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+
+ // Fill in each bucket with the residual blocks for its corresponding E block.
+ // Each bucket is individually filled from the back of the bucket to the front
+ // of the bucket. The filling order among the buckets is dictated by the
+ // residual blocks. This loop uses the offsets as counters; subtracting one
+ // from each offset as a residual block is placed in the bucket. When the
+ // filling is finished, the offset pointerts should have shifted down one
+ // entry (this is verified below).
+ vector<ResidualBlock*> reordered_residual_blocks(
+ (*residual_blocks).size(), static_cast<ResidualBlock*>(NULL));
+ for (int i = 0; i < residual_blocks->size(); ++i) {
+ int bucket = min_position_per_residual[i];
+
+ // Decrement the cursor, which should now point at the next empty position.
+ offsets[bucket]--;
+
+ // Sanity.
+ CHECK(reordered_residual_blocks[offsets[bucket]] == NULL)
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+
+ reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i];
+ }
+
+ // Sanity check #1: The difference in bucket offsets should match the
+ // histogram sizes.
+ for (int i = 0; i < num_eliminate_blocks; ++i) {
+ CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i])
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+ }
+ // Sanity check #2: No NULL's left behind.
+ for (int i = 0; i < reordered_residual_blocks.size(); ++i) {
+ CHECK(reordered_residual_blocks[i] != NULL)
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+ }
+
+ // Now that the residuals are collected by E block, swap them in place.
+ swap(*program->mutable_residual_blocks(), reordered_residual_blocks);
+ return true;
+}
+
+Evaluator* SolverImpl::CreateEvaluator(const Solver::Options& options,
+ const ProblemImpl::ParameterMap& parameter_map,
+ Program* program,
+ string* error) {
+ Evaluator::Options evaluator_options;
+ evaluator_options.linear_solver_type = options.linear_solver_type;
+ evaluator_options.num_eliminate_blocks =
+ (options.linear_solver_ordering->NumGroups() > 0 &&
+ IsSchurType(options.linear_solver_type))
+ ? (options.linear_solver_ordering
+ ->group_to_elements().begin()
+ ->second.size())
+ : 0;
+ evaluator_options.num_threads = options.num_threads;
+ return Evaluator::Create(evaluator_options, program, error);
+}
+
+CoordinateDescentMinimizer* SolverImpl::CreateInnerIterationMinimizer(
+ const Solver::Options& options,
+ const Program& program,
+ const ProblemImpl::ParameterMap& parameter_map,
+ string* error) {
+ scoped_ptr<CoordinateDescentMinimizer> inner_iteration_minimizer(
+ new CoordinateDescentMinimizer);
+ scoped_ptr<ParameterBlockOrdering> inner_iteration_ordering;
+ ParameterBlockOrdering* ordering_ptr = NULL;
+
+ if (options.inner_iteration_ordering == NULL) {
+ // Find a recursive decomposition of the Hessian matrix as a set
+ // of independent sets of decreasing size and invert it. This
+ // seems to work better in practice, i.e., Cameras before
+ // points.
+ inner_iteration_ordering.reset(new ParameterBlockOrdering);
+ ComputeRecursiveIndependentSetOrdering(program,
+ inner_iteration_ordering.get());
+ inner_iteration_ordering->Reverse();
+ ordering_ptr = inner_iteration_ordering.get();
+ } else {
+ const map<int, set<double*> >& group_to_elements =
+ options.inner_iteration_ordering->group_to_elements();
+
+ // Iterate over each group and verify that it is an independent
+ // set.
+ map<int, set<double*> >::const_iterator it = group_to_elements.begin();
+ for ( ;it != group_to_elements.end(); ++it) {
+ if (!IsParameterBlockSetIndependent(it->second,
+ program.residual_blocks())) {
+ *error =
+ StringPrintf("The user-provided "
+ "parameter_blocks_for_inner_iterations does not "
+ "form an independent set. Group Id: %d", it->first);
+ return NULL;
+ }
+ }
+ ordering_ptr = options.inner_iteration_ordering;
+ }
+
+ if (!inner_iteration_minimizer->Init(program,
+ parameter_map,
+ *ordering_ptr,
+ error)) {
+ return NULL;
+ }
+
+ return inner_iteration_minimizer.release();
+}
+
+} // namespace internal
+} // namespace ceres