aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/solver_impl.cc
diff options
context:
space:
mode:
Diffstat (limited to 'internal/ceres/solver_impl.cc')
-rw-r--r--internal/ceres/solver_impl.cc1187
1 files changed, 175 insertions, 1012 deletions
diff --git a/internal/ceres/solver_impl.cc b/internal/ceres/solver_impl.cc
index 83faa05..a1cf4ca 100644
--- a/internal/ceres/solver_impl.cc
+++ b/internal/ceres/solver_impl.cc
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// Copyright 2014 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
@@ -34,6 +34,8 @@
#include <iostream> // NOLINT
#include <numeric>
#include <string>
+#include "ceres/array_utils.h"
+#include "ceres/callbacks.h"
#include "ceres/coordinate_descent_minimizer.h"
#include "ceres/cxsparse.h"
#include "ceres/evaluator.h"
@@ -47,168 +49,20 @@
#include "ceres/ordered_groups.h"
#include "ceres/parameter_block.h"
#include "ceres/parameter_block_ordering.h"
+#include "ceres/preconditioner.h"
#include "ceres/problem.h"
#include "ceres/problem_impl.h"
#include "ceres/program.h"
+#include "ceres/reorder_program.h"
#include "ceres/residual_block.h"
#include "ceres/stringprintf.h"
#include "ceres/suitesparse.h"
+#include "ceres/summary_utils.h"
#include "ceres/trust_region_minimizer.h"
#include "ceres/wall_time.h"
namespace ceres {
namespace internal {
-namespace {
-
-// Callback for updating the user's parameter blocks. Updates are only
-// done if the step is successful.
-class StateUpdatingCallback : public IterationCallback {
- public:
- StateUpdatingCallback(Program* program, double* parameters)
- : program_(program), parameters_(parameters) {}
-
- CallbackReturnType operator()(const IterationSummary& summary) {
- if (summary.step_is_successful) {
- program_->StateVectorToParameterBlocks(parameters_);
- program_->CopyParameterBlockStateToUserState();
- }
- return SOLVER_CONTINUE;
- }
-
- private:
- Program* program_;
- double* parameters_;
-};
-
-void SetSummaryFinalCost(Solver::Summary* summary) {
- summary->final_cost = summary->initial_cost;
- // We need the loop here, instead of just looking at the last
- // iteration because the minimizer maybe making non-monotonic steps.
- for (int i = 0; i < summary->iterations.size(); ++i) {
- const IterationSummary& iteration_summary = summary->iterations[i];
- summary->final_cost = min(iteration_summary.cost, summary->final_cost);
- }
-}
-
-// Callback for logging the state of the minimizer to STDERR or STDOUT
-// depending on the user's preferences and logging level.
-class TrustRegionLoggingCallback : public IterationCallback {
- public:
- explicit TrustRegionLoggingCallback(bool log_to_stdout)
- : log_to_stdout_(log_to_stdout) {}
-
- ~TrustRegionLoggingCallback() {}
-
- CallbackReturnType operator()(const IterationSummary& summary) {
- const char* kReportRowFormat =
- "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e "
- "rho:% 3.2e mu:% 3.2e li:% 3d it:% 3.2e tt:% 3.2e";
- string output = StringPrintf(kReportRowFormat,
- summary.iteration,
- summary.cost,
- summary.cost_change,
- summary.gradient_max_norm,
- summary.step_norm,
- summary.relative_decrease,
- summary.trust_region_radius,
- summary.linear_solver_iterations,
- summary.iteration_time_in_seconds,
- summary.cumulative_time_in_seconds);
- if (log_to_stdout_) {
- cout << output << endl;
- } else {
- VLOG(1) << output;
- }
- return SOLVER_CONTINUE;
- }
-
- private:
- const bool log_to_stdout_;
-};
-
-// Callback for logging the state of the minimizer to STDERR or STDOUT
-// depending on the user's preferences and logging level.
-class LineSearchLoggingCallback : public IterationCallback {
- public:
- explicit LineSearchLoggingCallback(bool log_to_stdout)
- : log_to_stdout_(log_to_stdout) {}
-
- ~LineSearchLoggingCallback() {}
-
- CallbackReturnType operator()(const IterationSummary& summary) {
- const char* kReportRowFormat =
- "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e "
- "s:% 3.2e e:% 3d it:% 3.2e tt:% 3.2e";
- string output = StringPrintf(kReportRowFormat,
- summary.iteration,
- summary.cost,
- summary.cost_change,
- summary.gradient_max_norm,
- summary.step_norm,
- summary.step_size,
- summary.line_search_function_evaluations,
- summary.iteration_time_in_seconds,
- summary.cumulative_time_in_seconds);
- if (log_to_stdout_) {
- cout << output << endl;
- } else {
- VLOG(1) << output;
- }
- return SOLVER_CONTINUE;
- }
-
- private:
- const bool log_to_stdout_;
-};
-
-
-// Basic callback to record the execution of the solver to a file for
-// offline analysis.
-class FileLoggingCallback : public IterationCallback {
- public:
- explicit FileLoggingCallback(const string& filename)
- : fptr_(NULL) {
- fptr_ = fopen(filename.c_str(), "w");
- CHECK_NOTNULL(fptr_);
- }
-
- virtual ~FileLoggingCallback() {
- if (fptr_ != NULL) {
- fclose(fptr_);
- }
- }
-
- virtual CallbackReturnType operator()(const IterationSummary& summary) {
- fprintf(fptr_,
- "%4d %e %e\n",
- summary.iteration,
- summary.cost,
- summary.cumulative_time_in_seconds);
- return SOLVER_CONTINUE;
- }
- private:
- FILE* fptr_;
-};
-
-// Iterate over each of the groups in order of their priority and fill
-// summary with their sizes.
-void SummarizeOrdering(ParameterBlockOrdering* ordering,
- vector<int>* summary) {
- CHECK_NOTNULL(summary)->clear();
- if (ordering == NULL) {
- return;
- }
-
- const map<int, set<double*> >& group_to_elements =
- ordering->group_to_elements();
- for (map<int, set<double*> >::const_iterator it = group_to_elements.begin();
- it != group_to_elements.end();
- ++it) {
- summary->push_back(it->second.size());
- }
-}
-
-} // namespace
void SolverImpl::TrustRegionMinimize(
const Solver::Options& options,
@@ -216,27 +70,26 @@ void SolverImpl::TrustRegionMinimize(
CoordinateDescentMinimizer* inner_iteration_minimizer,
Evaluator* evaluator,
LinearSolver* linear_solver,
- double* parameters,
Solver::Summary* summary) {
Minimizer::Options minimizer_options(options);
+ minimizer_options.is_constrained = program->IsBoundsConstrained();
- // TODO(sameeragarwal): Add support for logging the configuration
- // and more detailed stats.
- scoped_ptr<IterationCallback> file_logging_callback;
- if (!options.solver_log.empty()) {
- file_logging_callback.reset(new FileLoggingCallback(options.solver_log));
- minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(),
- file_logging_callback.get());
- }
+ // The optimizer works on contiguous parameter vectors; allocate
+ // some.
+ Vector parameters(program->NumParameters());
+
+ // Collect the discontiguous parameters into a contiguous state
+ // vector.
+ program->ParameterBlocksToStateVector(parameters.data());
- TrustRegionLoggingCallback logging_callback(
- options.minimizer_progress_to_stdout);
+ LoggingCallback logging_callback(TRUST_REGION,
+ options.minimizer_progress_to_stdout);
if (options.logging_type != SILENT) {
minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(),
&logging_callback);
}
- StateUpdatingCallback updating_callback(program, parameters);
+ StateUpdatingCallback updating_callback(program, parameters.data());
if (options.update_state_every_iteration) {
// This must get pushed to the front of the callbacks so that it is run
// before any of the user callbacks.
@@ -266,37 +119,42 @@ void SolverImpl::TrustRegionMinimize(
TrustRegionMinimizer minimizer;
double minimizer_start_time = WallTimeInSeconds();
- minimizer.Minimize(minimizer_options, parameters, summary);
+ minimizer.Minimize(minimizer_options, parameters.data(), summary);
+
+ // If the user aborted mid-optimization or the optimization
+ // terminated because of a numerical failure, then do not update
+ // user state.
+ if (summary->termination_type != USER_FAILURE &&
+ summary->termination_type != FAILURE) {
+ program->StateVectorToParameterBlocks(parameters.data());
+ program->CopyParameterBlockStateToUserState();
+ }
+
summary->minimizer_time_in_seconds =
WallTimeInSeconds() - minimizer_start_time;
}
-#ifndef CERES_NO_LINE_SEARCH_MINIMIZER
void SolverImpl::LineSearchMinimize(
const Solver::Options& options,
Program* program,
Evaluator* evaluator,
- double* parameters,
Solver::Summary* summary) {
Minimizer::Options minimizer_options(options);
- // TODO(sameeragarwal): Add support for logging the configuration
- // and more detailed stats.
- scoped_ptr<IterationCallback> file_logging_callback;
- if (!options.solver_log.empty()) {
- file_logging_callback.reset(new FileLoggingCallback(options.solver_log));
- minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(),
- file_logging_callback.get());
- }
+ // The optimizer works on contiguous parameter vectors; allocate some.
+ Vector parameters(program->NumParameters());
+
+ // Collect the discontiguous parameters into a contiguous state vector.
+ program->ParameterBlocksToStateVector(parameters.data());
- LineSearchLoggingCallback logging_callback(
- options.minimizer_progress_to_stdout);
+ LoggingCallback logging_callback(LINE_SEARCH,
+ options.minimizer_progress_to_stdout);
if (options.logging_type != SILENT) {
minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(),
&logging_callback);
}
- StateUpdatingCallback updating_callback(program, parameters);
+ StateUpdatingCallback updating_callback(program, parameters.data());
if (options.update_state_every_iteration) {
// This must get pushed to the front of the callbacks so that it is run
// before any of the user callbacks.
@@ -308,11 +166,20 @@ void SolverImpl::LineSearchMinimize(
LineSearchMinimizer minimizer;
double minimizer_start_time = WallTimeInSeconds();
- minimizer.Minimize(minimizer_options, parameters, summary);
+ minimizer.Minimize(minimizer_options, parameters.data(), summary);
+
+ // If the user aborted mid-optimization or the optimization
+ // terminated because of a numerical failure, then do not update
+ // user state.
+ if (summary->termination_type != USER_FAILURE &&
+ summary->termination_type != FAILURE) {
+ program->StateVectorToParameterBlocks(parameters.data());
+ program->CopyParameterBlockStateToUserState();
+ }
+
summary->minimizer_time_in_seconds =
WallTimeInSeconds() - minimizer_start_time;
}
-#endif // CERES_NO_LINE_SEARCH_MINIMIZER
void SolverImpl::Solve(const Solver::Options& options,
ProblemImpl* problem_impl,
@@ -326,15 +193,10 @@ void SolverImpl::Solve(const Solver::Options& options,
<< " residual blocks, "
<< problem_impl->NumResiduals()
<< " residuals.";
-
if (options.minimizer_type == TRUST_REGION) {
TrustRegionSolve(options, problem_impl, summary);
} else {
-#ifndef CERES_NO_LINE_SEARCH_MINIMIZER
LineSearchSolve(options, problem_impl, summary);
-#else
- LOG(FATAL) << "Ceres Solver was compiled with -DLINE_SEARCH_MINIMIZER=OFF";
-#endif
}
}
@@ -347,39 +209,15 @@ void SolverImpl::TrustRegionSolve(const Solver::Options& original_options,
Program* original_program = original_problem_impl->mutable_program();
ProblemImpl* problem_impl = original_problem_impl;
- // Reset the summary object to its default values.
- *CHECK_NOTNULL(summary) = Solver::Summary();
-
summary->minimizer_type = TRUST_REGION;
- summary->num_parameter_blocks = problem_impl->NumParameterBlocks();
- summary->num_parameters = problem_impl->NumParameters();
- summary->num_effective_parameters =
- original_program->NumEffectiveParameters();
- summary->num_residual_blocks = problem_impl->NumResidualBlocks();
- summary->num_residuals = problem_impl->NumResiduals();
-
- // Empty programs are usually a user error.
- if (summary->num_parameter_blocks == 0) {
- summary->error = "Problem contains no parameter blocks.";
- LOG(ERROR) << summary->error;
- return;
- }
-
- if (summary->num_residual_blocks == 0) {
- summary->error = "Problem contains no residual blocks.";
- LOG(ERROR) << summary->error;
- return;
- }
-
- SummarizeOrdering(original_options.linear_solver_ordering,
- &(summary->linear_solver_ordering_given));
- SummarizeOrdering(original_options.inner_iteration_ordering,
- &(summary->inner_iteration_ordering_given));
+ SummarizeGivenProgram(*original_program, summary);
+ OrderingToGroupSizes(original_options.linear_solver_ordering.get(),
+ &(summary->linear_solver_ordering_given));
+ OrderingToGroupSizes(original_options.inner_iteration_ordering.get(),
+ &(summary->inner_iteration_ordering_given));
Solver::Options options(original_options);
- options.linear_solver_ordering = NULL;
- options.inner_iteration_ordering = NULL;
#ifndef CERES_USE_OPENMP
if (options.num_threads > 1) {
@@ -404,9 +242,19 @@ void SolverImpl::TrustRegionSolve(const Solver::Options& original_options,
if (options.trust_region_minimizer_iterations_to_dump.size() > 0 &&
options.trust_region_problem_dump_format_type != CONSOLE &&
options.trust_region_problem_dump_directory.empty()) {
- summary->error =
+ summary->message =
"Solver::Options::trust_region_problem_dump_directory is empty.";
- LOG(ERROR) << summary->error;
+ LOG(ERROR) << summary->message;
+ return;
+ }
+
+ if (!original_program->ParameterBlocksAreFinite(&summary->message)) {
+ LOG(ERROR) << "Terminating: " << summary->message;
+ return;
+ }
+
+ if (!original_program->IsFeasible(&summary->message)) {
+ LOG(ERROR) << "Terminating: " << summary->message;
return;
}
@@ -433,17 +281,14 @@ void SolverImpl::TrustRegionSolve(const Solver::Options& original_options,
problem_impl = gradient_checking_problem_impl.get();
}
- if (original_options.linear_solver_ordering != NULL) {
- if (!IsOrderingValid(original_options, problem_impl, &summary->error)) {
- LOG(ERROR) << summary->error;
+ if (options.linear_solver_ordering.get() != NULL) {
+ if (!IsOrderingValid(options, problem_impl, &summary->message)) {
+ LOG(ERROR) << summary->message;
return;
}
event_logger.AddEvent("CheckOrdering");
- options.linear_solver_ordering =
- new ParameterBlockOrdering(*original_options.linear_solver_ordering);
- event_logger.AddEvent("CopyOrdering");
} else {
- options.linear_solver_ordering = new ParameterBlockOrdering;
+ options.linear_solver_ordering.reset(new ParameterBlockOrdering);
const ProblemImpl::ParameterMap& parameter_map =
problem_impl->parameter_map();
for (ProblemImpl::ParameterMap::const_iterator it = parameter_map.begin();
@@ -459,41 +304,35 @@ void SolverImpl::TrustRegionSolve(const Solver::Options& original_options,
scoped_ptr<Program> reduced_program(CreateReducedProgram(&options,
problem_impl,
&summary->fixed_cost,
- &summary->error));
+ &summary->message));
event_logger.AddEvent("CreateReducedProgram");
if (reduced_program == NULL) {
return;
}
- SummarizeOrdering(options.linear_solver_ordering,
- &(summary->linear_solver_ordering_used));
-
- summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks();
- summary->num_parameters_reduced = reduced_program->NumParameters();
- summary->num_effective_parameters_reduced =
- reduced_program->NumEffectiveParameters();
- summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks();
- summary->num_residuals_reduced = reduced_program->NumResiduals();
+ OrderingToGroupSizes(options.linear_solver_ordering.get(),
+ &(summary->linear_solver_ordering_used));
+ SummarizeReducedProgram(*reduced_program, summary);
if (summary->num_parameter_blocks_reduced == 0) {
summary->preprocessor_time_in_seconds =
WallTimeInSeconds() - solver_start_time;
double post_process_start_time = WallTimeInSeconds();
- LOG(INFO) << "Terminating: FUNCTION_TOLERANCE reached. "
- << "No non-constant parameter blocks found.";
+
+ summary->message =
+ "Function tolerance reached. "
+ "No non-constant parameter blocks found.";
+ summary->termination_type = CONVERGENCE;
+ VLOG_IF(1, options.logging_type != SILENT) << summary->message;
summary->initial_cost = summary->fixed_cost;
summary->final_cost = summary->fixed_cost;
- // FUNCTION_TOLERANCE is the right convergence here, as we know
- // that the objective function is constant and cannot be changed
- // any further.
- summary->termination_type = FUNCTION_TOLERANCE;
-
// Ensure the program state is set to the user parameters on the way out.
original_program->SetParameterBlockStatePtrsToUserStatePtrs();
+ original_program->SetParameterOffsetsAndIndex();
summary->postprocessor_time_in_seconds =
WallTimeInSeconds() - post_process_start_time;
@@ -501,7 +340,7 @@ void SolverImpl::TrustRegionSolve(const Solver::Options& original_options,
}
scoped_ptr<LinearSolver>
- linear_solver(CreateLinearSolver(&options, &summary->error));
+ linear_solver(CreateLinearSolver(&options, &summary->message));
event_logger.AddEvent("CreateLinearSolver");
if (linear_solver == NULL) {
return;
@@ -511,6 +350,7 @@ void SolverImpl::TrustRegionSolve(const Solver::Options& original_options,
summary->linear_solver_type_used = options.linear_solver_type;
summary->preconditioner_type = options.preconditioner_type;
+ summary->visibility_clustering_type = options.visibility_clustering_type;
summary->num_linear_solver_threads_given =
original_options.num_linear_solver_threads;
@@ -527,7 +367,7 @@ void SolverImpl::TrustRegionSolve(const Solver::Options& original_options,
scoped_ptr<Evaluator> evaluator(CreateEvaluator(options,
problem_impl->parameter_map(),
reduced_program.get(),
- &summary->error));
+ &summary->message));
event_logger.AddEvent("CreateEvaluator");
@@ -542,26 +382,18 @@ void SolverImpl::TrustRegionSolve(const Solver::Options& original_options,
<< "Disabling inner iterations.";
} else {
inner_iteration_minimizer.reset(
- CreateInnerIterationMinimizer(original_options,
+ CreateInnerIterationMinimizer(options,
*reduced_program,
problem_impl->parameter_map(),
summary));
if (inner_iteration_minimizer == NULL) {
- LOG(ERROR) << summary->error;
+ LOG(ERROR) << summary->message;
return;
}
}
}
event_logger.AddEvent("CreateInnerIterationMinimizer");
- // The optimizer works on contiguous parameter vectors; allocate some.
- Vector parameters(reduced_program->NumParameters());
-
- // Collect the discontiguous parameters into a contiguous state vector.
- reduced_program->ParameterBlocksToStateVector(parameters.data());
-
- Vector original_parameters = parameters;
-
double minimizer_start_time = WallTimeInSeconds();
summary->preprocessor_time_in_seconds =
minimizer_start_time - solver_start_time;
@@ -572,30 +404,17 @@ void SolverImpl::TrustRegionSolve(const Solver::Options& original_options,
inner_iteration_minimizer.get(),
evaluator.get(),
linear_solver.get(),
- parameters.data(),
summary);
event_logger.AddEvent("Minimize");
- SetSummaryFinalCost(summary);
-
- // If the user aborted mid-optimization or the optimization
- // terminated because of a numerical failure, then return without
- // updating user state.
- if (summary->termination_type == USER_ABORT ||
- summary->termination_type == NUMERICAL_FAILURE) {
- return;
- }
-
double post_process_start_time = WallTimeInSeconds();
- // Push the contiguous optimized parameters back to the user's
- // parameters.
- reduced_program->StateVectorToParameterBlocks(parameters.data());
- reduced_program->CopyParameterBlockStateToUserState();
+ SetSummaryFinalCost(summary);
// Ensure the program state is set to the user parameters on the way
// out.
original_program->SetParameterBlockStatePtrsToUserStatePtrs();
+ original_program->SetParameterOffsetsAndIndex();
const map<string, double>& linear_solver_time_statistics =
linear_solver->TimeStatistics();
@@ -618,8 +437,6 @@ void SolverImpl::TrustRegionSolve(const Solver::Options& original_options,
event_logger.AddEvent("PostProcess");
}
-
-#ifndef CERES_NO_LINE_SEARCH_MINIMIZER
void SolverImpl::LineSearchSolve(const Solver::Options& original_options,
ProblemImpl* original_problem_impl,
Solver::Summary* summary) {
@@ -628,9 +445,7 @@ void SolverImpl::LineSearchSolve(const Solver::Options& original_options,
Program* original_program = original_problem_impl->mutable_program();
ProblemImpl* problem_impl = original_problem_impl;
- // Reset the summary object to its default values.
- *CHECK_NOTNULL(summary) = Solver::Summary();
-
+ SummarizeGivenProgram(*original_program, summary);
summary->minimizer_type = LINE_SEARCH;
summary->line_search_direction_type =
original_options.line_search_direction_type;
@@ -641,104 +456,9 @@ void SolverImpl::LineSearchSolve(const Solver::Options& original_options,
summary->nonlinear_conjugate_gradient_type =
original_options.nonlinear_conjugate_gradient_type;
- summary->num_parameter_blocks = original_program->NumParameterBlocks();
- summary->num_parameters = original_program->NumParameters();
- summary->num_residual_blocks = original_program->NumResidualBlocks();
- summary->num_residuals = original_program->NumResiduals();
- summary->num_effective_parameters =
- original_program->NumEffectiveParameters();
-
- // Validate values for configuration parameters supplied by user.
- if ((original_options.line_search_direction_type == ceres::BFGS ||
- original_options.line_search_direction_type == ceres::LBFGS) &&
- original_options.line_search_type != ceres::WOLFE) {
- summary->error =
- string("Invalid configuration: require line_search_type == "
- "ceres::WOLFE when using (L)BFGS to ensure that underlying "
- "assumptions are guaranteed to be satisfied.");
- LOG(ERROR) << summary->error;
- return;
- }
- if (original_options.max_lbfgs_rank <= 0) {
- summary->error =
- string("Invalid configuration: require max_lbfgs_rank > 0");
- LOG(ERROR) << summary->error;
- return;
- }
- if (original_options.min_line_search_step_size <= 0.0) {
- summary->error = "Invalid configuration: min_line_search_step_size <= 0.0.";
- LOG(ERROR) << summary->error;
- return;
- }
- if (original_options.line_search_sufficient_function_decrease <= 0.0) {
- summary->error =
- string("Invalid configuration: require ") +
- string("line_search_sufficient_function_decrease <= 0.0.");
- LOG(ERROR) << summary->error;
- return;
- }
- if (original_options.max_line_search_step_contraction <= 0.0 ||
- original_options.max_line_search_step_contraction >= 1.0) {
- summary->error = string("Invalid configuration: require ") +
- string("0.0 < max_line_search_step_contraction < 1.0.");
- LOG(ERROR) << summary->error;
- return;
- }
- if (original_options.min_line_search_step_contraction <=
- original_options.max_line_search_step_contraction ||
- original_options.min_line_search_step_contraction > 1.0) {
- summary->error = string("Invalid configuration: require ") +
- string("max_line_search_step_contraction < ") +
- string("min_line_search_step_contraction <= 1.0.");
- LOG(ERROR) << summary->error;
- return;
- }
- // Warn user if they have requested BISECTION interpolation, but constraints
- // on max/min step size change during line search prevent bisection scaling
- // from occurring. Warn only, as this is likely a user mistake, but one which
- // does not prevent us from continuing.
- LOG_IF(WARNING,
- (original_options.line_search_interpolation_type == ceres::BISECTION &&
- (original_options.max_line_search_step_contraction > 0.5 ||
- original_options.min_line_search_step_contraction < 0.5)))
- << "Line search interpolation type is BISECTION, but specified "
- << "max_line_search_step_contraction: "
- << original_options.max_line_search_step_contraction << ", and "
- << "min_line_search_step_contraction: "
- << original_options.min_line_search_step_contraction
- << ", prevent bisection (0.5) scaling, continuing with solve regardless.";
- if (original_options.max_num_line_search_step_size_iterations <= 0) {
- summary->error = string("Invalid configuration: require ") +
- string("max_num_line_search_step_size_iterations > 0.");
- LOG(ERROR) << summary->error;
- return;
- }
- if (original_options.line_search_sufficient_curvature_decrease <=
- original_options.line_search_sufficient_function_decrease ||
- original_options.line_search_sufficient_curvature_decrease > 1.0) {
- summary->error = string("Invalid configuration: require ") +
- string("line_search_sufficient_function_decrease < ") +
- string("line_search_sufficient_curvature_decrease < 1.0.");
- LOG(ERROR) << summary->error;
- return;
- }
- if (original_options.max_line_search_step_expansion <= 1.0) {
- summary->error = string("Invalid configuration: require ") +
- string("max_line_search_step_expansion > 1.0.");
- LOG(ERROR) << summary->error;
- return;
- }
-
- // Empty programs are usually a user error.
- if (summary->num_parameter_blocks == 0) {
- summary->error = "Problem contains no parameter blocks.";
- LOG(ERROR) << summary->error;
- return;
- }
-
- if (summary->num_residual_blocks == 0) {
- summary->error = "Problem contains no residual blocks.";
- LOG(ERROR) << summary->error;
+ if (original_program->IsBoundsConstrained()) {
+ summary->message = "LINE_SEARCH Minimizer does not support bounds.";
+ LOG(ERROR) << "Terminating: " << summary->message;
return;
}
@@ -750,8 +470,6 @@ void SolverImpl::LineSearchSolve(const Solver::Options& original_options,
// line search.
options.linear_solver_type = CGNR;
- options.linear_solver_ordering = NULL;
- options.inner_iteration_ordering = NULL;
#ifndef CERES_USE_OPENMP
if (options.num_threads > 1) {
@@ -766,15 +484,18 @@ void SolverImpl::LineSearchSolve(const Solver::Options& original_options,
summary->num_threads_given = original_options.num_threads;
summary->num_threads_used = options.num_threads;
- if (original_options.linear_solver_ordering != NULL) {
- if (!IsOrderingValid(original_options, problem_impl, &summary->error)) {
- LOG(ERROR) << summary->error;
+ if (!original_program->ParameterBlocksAreFinite(&summary->message)) {
+ LOG(ERROR) << "Terminating: " << summary->message;
+ return;
+ }
+
+ if (options.linear_solver_ordering.get() != NULL) {
+ if (!IsOrderingValid(options, problem_impl, &summary->message)) {
+ LOG(ERROR) << summary->message;
return;
}
- options.linear_solver_ordering =
- new ParameterBlockOrdering(*original_options.linear_solver_ordering);
} else {
- options.linear_solver_ordering = new ParameterBlockOrdering;
+ options.linear_solver_ordering.reset(new ParameterBlockOrdering);
const ProblemImpl::ParameterMap& parameter_map =
problem_impl->parameter_map();
for (ProblemImpl::ParameterMap::const_iterator it = parameter_map.begin();
@@ -784,6 +505,7 @@ void SolverImpl::LineSearchSolve(const Solver::Options& original_options,
}
}
+
original_program->SetParameterBlockStatePtrsToUserStatePtrs();
// If the user requests gradient checking, construct a new
@@ -809,36 +531,31 @@ void SolverImpl::LineSearchSolve(const Solver::Options& original_options,
scoped_ptr<Program> reduced_program(CreateReducedProgram(&options,
problem_impl,
&summary->fixed_cost,
- &summary->error));
+ &summary->message));
if (reduced_program == NULL) {
return;
}
- summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks();
- summary->num_parameters_reduced = reduced_program->NumParameters();
- summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks();
- summary->num_effective_parameters_reduced =
- reduced_program->NumEffectiveParameters();
- summary->num_residuals_reduced = reduced_program->NumResiduals();
-
+ SummarizeReducedProgram(*reduced_program, summary);
if (summary->num_parameter_blocks_reduced == 0) {
summary->preprocessor_time_in_seconds =
WallTimeInSeconds() - solver_start_time;
- LOG(INFO) << "Terminating: FUNCTION_TOLERANCE reached. "
- << "No non-constant parameter blocks found.";
-
- // FUNCTION_TOLERANCE is the right convergence here, as we know
- // that the objective function is constant and cannot be changed
- // any further.
- summary->termination_type = FUNCTION_TOLERANCE;
+ summary->message =
+ "Function tolerance reached. "
+ "No non-constant parameter blocks found.";
+ summary->termination_type = CONVERGENCE;
+ VLOG_IF(1, options.logging_type != SILENT) << summary->message;
+ summary->initial_cost = summary->fixed_cost;
+ summary->final_cost = summary->fixed_cost;
const double post_process_start_time = WallTimeInSeconds();
-
SetSummaryFinalCost(summary);
// Ensure the program state is set to the user parameters on the way out.
original_program->SetParameterBlockStatePtrsToUserStatePtrs();
+ original_program->SetParameterOffsetsAndIndex();
+
summary->postprocessor_time_in_seconds =
WallTimeInSeconds() - post_process_start_time;
return;
@@ -847,48 +564,25 @@ void SolverImpl::LineSearchSolve(const Solver::Options& original_options,
scoped_ptr<Evaluator> evaluator(CreateEvaluator(options,
problem_impl->parameter_map(),
reduced_program.get(),
- &summary->error));
+ &summary->message));
if (evaluator == NULL) {
return;
}
- // The optimizer works on contiguous parameter vectors; allocate some.
- Vector parameters(reduced_program->NumParameters());
-
- // Collect the discontiguous parameters into a contiguous state vector.
- reduced_program->ParameterBlocksToStateVector(parameters.data());
-
- Vector original_parameters = parameters;
-
const double minimizer_start_time = WallTimeInSeconds();
summary->preprocessor_time_in_seconds =
minimizer_start_time - solver_start_time;
// Run the optimization.
- LineSearchMinimize(options,
- reduced_program.get(),
- evaluator.get(),
- parameters.data(),
- summary);
-
- // If the user aborted mid-optimization or the optimization
- // terminated because of a numerical failure, then return without
- // updating user state.
- if (summary->termination_type == USER_ABORT ||
- summary->termination_type == NUMERICAL_FAILURE) {
- return;
- }
+ LineSearchMinimize(options, reduced_program.get(), evaluator.get(), summary);
const double post_process_start_time = WallTimeInSeconds();
- // Push the contiguous optimized parameters back to the user's parameters.
- reduced_program->StateVectorToParameterBlocks(parameters.data());
- reduced_program->CopyParameterBlockStateToUserState();
-
SetSummaryFinalCost(summary);
// Ensure the program state is set to the user parameters on the way out.
original_program->SetParameterBlockStatePtrsToUserStatePtrs();
+ original_program->SetParameterOffsetsAndIndex();
const map<string, double>& evaluator_time_statistics =
evaluator->TimeStatistics();
@@ -902,7 +596,6 @@ void SolverImpl::LineSearchSolve(const Solver::Options& original_options,
summary->postprocessor_time_in_seconds =
WallTimeInSeconds() - post_process_start_time;
}
-#endif // CERES_NO_LINE_SEARCH_MINIMIZER
bool SolverImpl::IsOrderingValid(const Solver::Options& options,
const ProblemImpl* problem_impl,
@@ -966,133 +659,48 @@ bool SolverImpl::IsParameterBlockSetIndependent(
return true;
}
-
-// Strips varying parameters and residuals, maintaining order, and updating
-// num_eliminate_blocks.
-bool SolverImpl::RemoveFixedBlocksFromProgram(Program* program,
- ParameterBlockOrdering* ordering,
- double* fixed_cost,
- string* error) {
- vector<ParameterBlock*>* parameter_blocks =
- program->mutable_parameter_blocks();
-
- scoped_array<double> residual_block_evaluate_scratch;
- if (fixed_cost != NULL) {
- residual_block_evaluate_scratch.reset(
- new double[program->MaxScratchDoublesNeededForEvaluate()]);
- *fixed_cost = 0.0;
- }
-
- // Mark all the parameters as unused. Abuse the index member of the parameter
- // blocks for the marking.
- for (int i = 0; i < parameter_blocks->size(); ++i) {
- (*parameter_blocks)[i]->set_index(-1);
- }
-
- // Filter out residual that have all-constant parameters, and mark all the
- // parameter blocks that appear in residuals.
- {
- vector<ResidualBlock*>* residual_blocks =
- program->mutable_residual_blocks();
- int j = 0;
- for (int i = 0; i < residual_blocks->size(); ++i) {
- ResidualBlock* residual_block = (*residual_blocks)[i];
- int num_parameter_blocks = residual_block->NumParameterBlocks();
-
- // Determine if the residual block is fixed, and also mark varying
- // parameters that appear in the residual block.
- bool all_constant = true;
- for (int k = 0; k < num_parameter_blocks; k++) {
- ParameterBlock* parameter_block = residual_block->parameter_blocks()[k];
- if (!parameter_block->IsConstant()) {
- all_constant = false;
- parameter_block->set_index(1);
- }
- }
-
- if (!all_constant) {
- (*residual_blocks)[j++] = (*residual_blocks)[i];
- } else if (fixed_cost != NULL) {
- // The residual is constant and will be removed, so its cost is
- // added to the variable fixed_cost.
- double cost = 0.0;
- if (!residual_block->Evaluate(true,
- &cost,
- NULL,
- NULL,
- residual_block_evaluate_scratch.get())) {
- *error = StringPrintf("Evaluation of the residual %d failed during "
- "removal of fixed residual blocks.", i);
- return false;
- }
- *fixed_cost += cost;
- }
- }
- residual_blocks->resize(j);
- }
-
- // Filter out unused or fixed parameter blocks, and update
- // the ordering.
- {
- vector<ParameterBlock*>* parameter_blocks =
- program->mutable_parameter_blocks();
- int j = 0;
- for (int i = 0; i < parameter_blocks->size(); ++i) {
- ParameterBlock* parameter_block = (*parameter_blocks)[i];
- if (parameter_block->index() == 1) {
- (*parameter_blocks)[j++] = parameter_block;
- } else {
- ordering->Remove(parameter_block->mutable_user_state());
- }
- }
- parameter_blocks->resize(j);
- }
-
- if (!(((program->NumResidualBlocks() == 0) &&
- (program->NumParameterBlocks() == 0)) ||
- ((program->NumResidualBlocks() != 0) &&
- (program->NumParameterBlocks() != 0)))) {
- *error = "Congratulations, you found a bug in Ceres. Please report it.";
- return false;
- }
-
- return true;
-}
-
Program* SolverImpl::CreateReducedProgram(Solver::Options* options,
ProblemImpl* problem_impl,
double* fixed_cost,
string* error) {
- CHECK_NOTNULL(options->linear_solver_ordering);
+ CHECK_NOTNULL(options->linear_solver_ordering.get());
Program* original_program = problem_impl->mutable_program();
- scoped_ptr<Program> transformed_program(new Program(*original_program));
-
- ParameterBlockOrdering* linear_solver_ordering =
- options->linear_solver_ordering;
- const int min_group_id =
- linear_solver_ordering->group_to_elements().begin()->first;
- if (!RemoveFixedBlocksFromProgram(transformed_program.get(),
- linear_solver_ordering,
- fixed_cost,
- error)) {
+ vector<double*> removed_parameter_blocks;
+ scoped_ptr<Program> reduced_program(
+ original_program->CreateReducedProgram(&removed_parameter_blocks,
+ fixed_cost,
+ error));
+ if (reduced_program.get() == NULL) {
return NULL;
}
VLOG(2) << "Reduced problem: "
- << transformed_program->NumParameterBlocks()
+ << reduced_program->NumParameterBlocks()
<< " parameter blocks, "
- << transformed_program->NumParameters()
+ << reduced_program->NumParameters()
<< " parameters, "
- << transformed_program->NumResidualBlocks()
+ << reduced_program->NumResidualBlocks()
<< " residual blocks, "
- << transformed_program->NumResiduals()
+ << reduced_program->NumResiduals()
<< " residuals.";
- if (transformed_program->NumParameterBlocks() == 0) {
+ if (reduced_program->NumParameterBlocks() == 0) {
LOG(WARNING) << "No varying parameter blocks to optimize; "
<< "bailing early.";
- return transformed_program.release();
+ return reduced_program.release();
+ }
+
+ ParameterBlockOrdering* linear_solver_ordering =
+ options->linear_solver_ordering.get();
+ const int min_group_id =
+ linear_solver_ordering->MinNonZeroGroup();
+ linear_solver_ordering->Remove(removed_parameter_blocks);
+
+ ParameterBlockOrdering* inner_iteration_ordering =
+ options->inner_iteration_ordering.get();
+ if (inner_iteration_ordering != NULL) {
+ inner_iteration_ordering->Remove(removed_parameter_blocks);
}
if (IsSchurType(options->linear_solver_type) &&
@@ -1108,7 +716,15 @@ Program* SolverImpl::CreateReducedProgram(Solver::Options* options,
// as they assume there is at least one e_block. Thus, we
// automatically switch to the closest solver to the one indicated
// by the user.
- AlternateLinearSolverForSchurTypeLinearSolver(options);
+ if (options->linear_solver_type == ITERATIVE_SCHUR) {
+ options->preconditioner_type =
+ Preconditioner::PreconditionerForZeroEBlocks(
+ options->preconditioner_type);
+ }
+
+ options->linear_solver_type =
+ LinearSolver::LinearSolverForZeroEBlocks(
+ options->linear_solver_type);
}
if (IsSchurType(options->linear_solver_type)) {
@@ -1117,33 +733,34 @@ Program* SolverImpl::CreateReducedProgram(Solver::Options* options,
options->sparse_linear_algebra_library_type,
problem_impl->parameter_map(),
linear_solver_ordering,
- transformed_program.get(),
+ reduced_program.get(),
error)) {
return NULL;
}
- return transformed_program.release();
+ return reduced_program.release();
}
- if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY) {
+ if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY &&
+ !options->dynamic_sparsity) {
if (!ReorderProgramForSparseNormalCholesky(
options->sparse_linear_algebra_library_type,
- linear_solver_ordering,
- transformed_program.get(),
+ *linear_solver_ordering,
+ reduced_program.get(),
error)) {
return NULL;
}
- return transformed_program.release();
+ return reduced_program.release();
}
- transformed_program->SetParameterOffsetsAndIndex();
- return transformed_program.release();
+ reduced_program->SetParameterOffsetsAndIndex();
+ return reduced_program.release();
}
LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options,
string* error) {
CHECK_NOTNULL(options);
- CHECK_NOTNULL(options->linear_solver_ordering);
+ CHECK_NOTNULL(options->linear_solver_ordering.get());
CHECK_NOTNULL(error);
if (options->trust_region_strategy_type == DOGLEG) {
@@ -1209,14 +826,6 @@ LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options,
}
#endif
-#if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE)
- if (options->linear_solver_type == SPARSE_SCHUR) {
- *error = "Can't use SPARSE_SCHUR because neither SuiteSparse nor"
- "CXSparse was enabled when Ceres was compiled.";
- return NULL;
- }
-#endif
-
if (options->max_linear_solver_iterations <= 0) {
*error = "Solver::Options::max_linear_solver_iterations is not positive.";
return NULL;
@@ -1239,11 +848,14 @@ LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options,
options->max_linear_solver_iterations;
linear_solver_options.type = options->linear_solver_type;
linear_solver_options.preconditioner_type = options->preconditioner_type;
+ linear_solver_options.visibility_clustering_type =
+ options->visibility_clustering_type;
linear_solver_options.sparse_linear_algebra_library_type =
options->sparse_linear_algebra_library_type;
linear_solver_options.dense_linear_algebra_library_type =
options->dense_linear_algebra_library_type;
linear_solver_options.use_postordering = options->use_postordering;
+ linear_solver_options.dynamic_sparsity = options->dynamic_sparsity;
// Ignore user's postordering preferences and force it to be true if
// cholmod_camd is not available. This ensures that the linear
@@ -1259,13 +871,8 @@ LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options,
linear_solver_options.num_threads = options->num_linear_solver_threads;
options->num_linear_solver_threads = linear_solver_options.num_threads;
- const map<int, set<double*> >& groups =
- options->linear_solver_ordering->group_to_elements();
- for (map<int, set<double*> >::const_iterator it = groups.begin();
- it != groups.end();
- ++it) {
- linear_solver_options.elimination_groups.push_back(it->second.size());
- }
+ OrderingToGroupSizes(options->linear_solver_ordering.get(),
+ &linear_solver_options.elimination_groups);
// Schur type solvers, expect at least two elimination groups. If
// there is only one elimination group, then CreateReducedProgram
// guarantees that this group only contains e_blocks. Thus we add a
@@ -1278,109 +885,6 @@ LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options,
return LinearSolver::Create(linear_solver_options);
}
-
-// Find the minimum index of any parameter block to the given residual.
-// Parameter blocks that have indices greater than num_eliminate_blocks are
-// considered to have an index equal to num_eliminate_blocks.
-static int MinParameterBlock(const ResidualBlock* residual_block,
- int num_eliminate_blocks) {
- int min_parameter_block_position = num_eliminate_blocks;
- for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) {
- ParameterBlock* parameter_block = residual_block->parameter_blocks()[i];
- if (!parameter_block->IsConstant()) {
- CHECK_NE(parameter_block->index(), -1)
- << "Did you forget to call Program::SetParameterOffsetsAndIndex()? "
- << "This is a Ceres bug; please contact the developers!";
- min_parameter_block_position = std::min(parameter_block->index(),
- min_parameter_block_position);
- }
- }
- return min_parameter_block_position;
-}
-
-// Reorder the residuals for program, if necessary, so that the residuals
-// involving each E block occur together. This is a necessary condition for the
-// Schur eliminator, which works on these "row blocks" in the jacobian.
-bool SolverImpl::LexicographicallyOrderResidualBlocks(
- const int num_eliminate_blocks,
- Program* program,
- string* error) {
- CHECK_GE(num_eliminate_blocks, 1)
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
-
- // Create a histogram of the number of residuals for each E block. There is an
- // extra bucket at the end to catch all non-eliminated F blocks.
- vector<int> residual_blocks_per_e_block(num_eliminate_blocks + 1);
- vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks();
- vector<int> min_position_per_residual(residual_blocks->size());
- for (int i = 0; i < residual_blocks->size(); ++i) {
- ResidualBlock* residual_block = (*residual_blocks)[i];
- int position = MinParameterBlock(residual_block, num_eliminate_blocks);
- min_position_per_residual[i] = position;
- DCHECK_LE(position, num_eliminate_blocks);
- residual_blocks_per_e_block[position]++;
- }
-
- // Run a cumulative sum on the histogram, to obtain offsets to the start of
- // each histogram bucket (where each bucket is for the residuals for that
- // E-block).
- vector<int> offsets(num_eliminate_blocks + 1);
- std::partial_sum(residual_blocks_per_e_block.begin(),
- residual_blocks_per_e_block.end(),
- offsets.begin());
- CHECK_EQ(offsets.back(), residual_blocks->size())
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
-
- CHECK(find(residual_blocks_per_e_block.begin(),
- residual_blocks_per_e_block.end() - 1, 0) !=
- residual_blocks_per_e_block.end())
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
-
- // Fill in each bucket with the residual blocks for its corresponding E block.
- // Each bucket is individually filled from the back of the bucket to the front
- // of the bucket. The filling order among the buckets is dictated by the
- // residual blocks. This loop uses the offsets as counters; subtracting one
- // from each offset as a residual block is placed in the bucket. When the
- // filling is finished, the offset pointerts should have shifted down one
- // entry (this is verified below).
- vector<ResidualBlock*> reordered_residual_blocks(
- (*residual_blocks).size(), static_cast<ResidualBlock*>(NULL));
- for (int i = 0; i < residual_blocks->size(); ++i) {
- int bucket = min_position_per_residual[i];
-
- // Decrement the cursor, which should now point at the next empty position.
- offsets[bucket]--;
-
- // Sanity.
- CHECK(reordered_residual_blocks[offsets[bucket]] == NULL)
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
-
- reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i];
- }
-
- // Sanity check #1: The difference in bucket offsets should match the
- // histogram sizes.
- for (int i = 0; i < num_eliminate_blocks; ++i) {
- CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i])
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
- }
- // Sanity check #2: No NULL's left behind.
- for (int i = 0; i < reordered_residual_blocks.size(); ++i) {
- CHECK(reordered_residual_blocks[i] != NULL)
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
- }
-
- // Now that the residuals are collected by E block, swap them in place.
- swap(*program->mutable_residual_blocks(), reordered_residual_blocks);
- return true;
-}
-
Evaluator* SolverImpl::CreateEvaluator(
const Solver::Options& options,
const ProblemImpl::ParameterMap& parameter_map,
@@ -1396,6 +900,7 @@ Evaluator* SolverImpl::CreateEvaluator(
->second.size())
: 0;
evaluator_options.num_threads = options.num_threads;
+ evaluator_options.dynamic_sparsity = options.dynamic_sparsity;
return Evaluator::Create(evaluator_options, program, error);
}
@@ -1411,374 +916,32 @@ CoordinateDescentMinimizer* SolverImpl::CreateInnerIterationMinimizer(
scoped_ptr<ParameterBlockOrdering> inner_iteration_ordering;
ParameterBlockOrdering* ordering_ptr = NULL;
- if (options.inner_iteration_ordering == NULL) {
- // Find a recursive decomposition of the Hessian matrix as a set
- // of independent sets of decreasing size and invert it. This
- // seems to work better in practice, i.e., Cameras before
- // points.
- inner_iteration_ordering.reset(new ParameterBlockOrdering);
- ComputeRecursiveIndependentSetOrdering(program,
- inner_iteration_ordering.get());
- inner_iteration_ordering->Reverse();
+ if (options.inner_iteration_ordering.get() == NULL) {
+ inner_iteration_ordering.reset(
+ CoordinateDescentMinimizer::CreateOrdering(program));
ordering_ptr = inner_iteration_ordering.get();
} else {
- const map<int, set<double*> >& group_to_elements =
- options.inner_iteration_ordering->group_to_elements();
-
- // Iterate over each group and verify that it is an independent
- // set.
- map<int, set<double*> >::const_iterator it = group_to_elements.begin();
- for ( ; it != group_to_elements.end(); ++it) {
- if (!IsParameterBlockSetIndependent(it->second,
- program.residual_blocks())) {
- summary->error =
- StringPrintf("The user-provided "
- "parameter_blocks_for_inner_iterations does not "
- "form an independent set. Group Id: %d", it->first);
- return NULL;
- }
+ ordering_ptr = options.inner_iteration_ordering.get();
+ if (!CoordinateDescentMinimizer::IsOrderingValid(program,
+ *ordering_ptr,
+ &summary->message)) {
+ return NULL;
}
- ordering_ptr = options.inner_iteration_ordering;
}
if (!inner_iteration_minimizer->Init(program,
parameter_map,
*ordering_ptr,
- &summary->error)) {
+ &summary->message)) {
return NULL;
}
summary->inner_iterations_used = true;
summary->inner_iteration_time_in_seconds = 0.0;
- SummarizeOrdering(ordering_ptr, &(summary->inner_iteration_ordering_used));
+ OrderingToGroupSizes(ordering_ptr,
+ &(summary->inner_iteration_ordering_used));
return inner_iteration_minimizer.release();
}
-void SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(
- Solver::Options* options) {
- if (!IsSchurType(options->linear_solver_type)) {
- return;
- }
-
- string msg = "No e_blocks remaining. Switching from ";
- if (options->linear_solver_type == SPARSE_SCHUR) {
- options->linear_solver_type = SPARSE_NORMAL_CHOLESKY;
- msg += "SPARSE_SCHUR to SPARSE_NORMAL_CHOLESKY.";
- } else if (options->linear_solver_type == DENSE_SCHUR) {
- // TODO(sameeragarwal): This is probably not a great choice.
- // Ideally, we should have a DENSE_NORMAL_CHOLESKY, that can
- // take a BlockSparseMatrix as input.
- options->linear_solver_type = DENSE_QR;
- msg += "DENSE_SCHUR to DENSE_QR.";
- } else if (options->linear_solver_type == ITERATIVE_SCHUR) {
- options->linear_solver_type = CGNR;
- if (options->preconditioner_type != IDENTITY) {
- msg += StringPrintf("ITERATIVE_SCHUR with %s preconditioner "
- "to CGNR with JACOBI preconditioner.",
- PreconditionerTypeToString(
- options->preconditioner_type));
- // CGNR currently only supports the JACOBI preconditioner.
- options->preconditioner_type = JACOBI;
- } else {
- msg += "ITERATIVE_SCHUR with IDENTITY preconditioner"
- "to CGNR with IDENTITY preconditioner.";
- }
- }
- LOG(WARNING) << msg;
-}
-
-bool SolverImpl::ApplyUserOrdering(
- const ProblemImpl::ParameterMap& parameter_map,
- const ParameterBlockOrdering* parameter_block_ordering,
- Program* program,
- string* error) {
- const int num_parameter_blocks = program->NumParameterBlocks();
- if (parameter_block_ordering->NumElements() != num_parameter_blocks) {
- *error = StringPrintf("User specified ordering does not have the same "
- "number of parameters as the problem. The problem"
- "has %d blocks while the ordering has %d blocks.",
- num_parameter_blocks,
- parameter_block_ordering->NumElements());
- return false;
- }
-
- vector<ParameterBlock*>* parameter_blocks =
- program->mutable_parameter_blocks();
- parameter_blocks->clear();
-
- const map<int, set<double*> >& groups =
- parameter_block_ordering->group_to_elements();
-
- for (map<int, set<double*> >::const_iterator group_it = groups.begin();
- group_it != groups.end();
- ++group_it) {
- const set<double*>& group = group_it->second;
- for (set<double*>::const_iterator parameter_block_ptr_it = group.begin();
- parameter_block_ptr_it != group.end();
- ++parameter_block_ptr_it) {
- ProblemImpl::ParameterMap::const_iterator parameter_block_it =
- parameter_map.find(*parameter_block_ptr_it);
- if (parameter_block_it == parameter_map.end()) {
- *error = StringPrintf("User specified ordering contains a pointer "
- "to a double that is not a parameter block in "
- "the problem. The invalid double is in group: %d",
- group_it->first);
- return false;
- }
- parameter_blocks->push_back(parameter_block_it->second);
- }
- }
- return true;
-}
-
-
-TripletSparseMatrix* SolverImpl::CreateJacobianBlockSparsityTranspose(
- const Program* program) {
-
- // Matrix to store the block sparsity structure of the Jacobian.
- TripletSparseMatrix* tsm =
- new TripletSparseMatrix(program->NumParameterBlocks(),
- program->NumResidualBlocks(),
- 10 * program->NumResidualBlocks());
- int num_nonzeros = 0;
- int* rows = tsm->mutable_rows();
- int* cols = tsm->mutable_cols();
- double* values = tsm->mutable_values();
-
- const vector<ResidualBlock*>& residual_blocks = program->residual_blocks();
- for (int c = 0; c < residual_blocks.size(); ++c) {
- const ResidualBlock* residual_block = residual_blocks[c];
- const int num_parameter_blocks = residual_block->NumParameterBlocks();
- ParameterBlock* const* parameter_blocks =
- residual_block->parameter_blocks();
-
- for (int j = 0; j < num_parameter_blocks; ++j) {
- if (parameter_blocks[j]->IsConstant()) {
- continue;
- }
-
- // Re-size the matrix if needed.
- if (num_nonzeros >= tsm->max_num_nonzeros()) {
- tsm->set_num_nonzeros(num_nonzeros);
- tsm->Reserve(2 * num_nonzeros);
- rows = tsm->mutable_rows();
- cols = tsm->mutable_cols();
- values = tsm->mutable_values();
- }
- CHECK_LT(num_nonzeros, tsm->max_num_nonzeros());
-
- const int r = parameter_blocks[j]->index();
- rows[num_nonzeros] = r;
- cols[num_nonzeros] = c;
- values[num_nonzeros] = 1.0;
- ++num_nonzeros;
- }
- }
-
- tsm->set_num_nonzeros(num_nonzeros);
- return tsm;
-}
-
-bool SolverImpl::ReorderProgramForSchurTypeLinearSolver(
- const LinearSolverType linear_solver_type,
- const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
- const ProblemImpl::ParameterMap& parameter_map,
- ParameterBlockOrdering* parameter_block_ordering,
- Program* program,
- string* error) {
- if (parameter_block_ordering->NumGroups() == 1) {
- // If the user supplied an parameter_block_ordering with just one
- // group, it is equivalent to the user supplying NULL as an
- // parameter_block_ordering. Ceres is completely free to choose the
- // parameter block ordering as it sees fit. For Schur type solvers,
- // this means that the user wishes for Ceres to identify the
- // e_blocks, which we do by computing a maximal independent set.
- vector<ParameterBlock*> schur_ordering;
- const int num_eliminate_blocks =
- ComputeStableSchurOrdering(*program, &schur_ordering);
-
- CHECK_EQ(schur_ordering.size(), program->NumParameterBlocks())
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
-
- // Update the parameter_block_ordering object.
- for (int i = 0; i < schur_ordering.size(); ++i) {
- double* parameter_block = schur_ordering[i]->mutable_user_state();
- const int group_id = (i < num_eliminate_blocks) ? 0 : 1;
- parameter_block_ordering->AddElementToGroup(parameter_block, group_id);
- }
-
- // We could call ApplyUserOrdering but this is cheaper and
- // simpler.
- swap(*program->mutable_parameter_blocks(), schur_ordering);
- } else {
- // The user provided an ordering with more than one elimination
- // group. Trust the user and apply the ordering.
- if (!ApplyUserOrdering(parameter_map,
- parameter_block_ordering,
- program,
- error)) {
- return false;
- }
- }
-
- // Pre-order the columns corresponding to the schur complement if
- // possible.
-#if !defined(CERES_NO_SUITESPARSE) && !defined(CERES_NO_CAMD)
- if (linear_solver_type == SPARSE_SCHUR &&
- sparse_linear_algebra_library_type == SUITE_SPARSE) {
- vector<int> constraints;
- vector<ParameterBlock*>& parameter_blocks =
- *(program->mutable_parameter_blocks());
-
- for (int i = 0; i < parameter_blocks.size(); ++i) {
- constraints.push_back(
- parameter_block_ordering->GroupId(
- parameter_blocks[i]->mutable_user_state()));
- }
-
- // Renumber the entries of constraints to be contiguous integers
- // as camd requires that the group ids be in the range [0,
- // parameter_blocks.size() - 1].
- SolverImpl::CompactifyArray(&constraints);
-
- // Set the offsets and index for CreateJacobianSparsityTranspose.
- program->SetParameterOffsetsAndIndex();
- // Compute a block sparse presentation of J'.
- scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
- SolverImpl::CreateJacobianBlockSparsityTranspose(program));
-
- SuiteSparse ss;
- cholmod_sparse* block_jacobian_transpose =
- ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get());
-
- vector<int> ordering(parameter_blocks.size(), 0);
- ss.ConstrainedApproximateMinimumDegreeOrdering(block_jacobian_transpose,
- &constraints[0],
- &ordering[0]);
- ss.Free(block_jacobian_transpose);
-
- const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
- for (int i = 0; i < program->NumParameterBlocks(); ++i) {
- parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
- }
- }
-#endif
-
- program->SetParameterOffsetsAndIndex();
- // Schur type solvers also require that their residual blocks be
- // lexicographically ordered.
- const int num_eliminate_blocks =
- parameter_block_ordering->group_to_elements().begin()->second.size();
- return LexicographicallyOrderResidualBlocks(num_eliminate_blocks,
- program,
- error);
-}
-
-bool SolverImpl::ReorderProgramForSparseNormalCholesky(
- const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
- const ParameterBlockOrdering* parameter_block_ordering,
- Program* program,
- string* error) {
- // Set the offsets and index for CreateJacobianSparsityTranspose.
- program->SetParameterOffsetsAndIndex();
- // Compute a block sparse presentation of J'.
- scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
- SolverImpl::CreateJacobianBlockSparsityTranspose(program));
-
- vector<int> ordering(program->NumParameterBlocks(), 0);
- vector<ParameterBlock*>& parameter_blocks =
- *(program->mutable_parameter_blocks());
-
- if (sparse_linear_algebra_library_type == SUITE_SPARSE) {
-#ifdef CERES_NO_SUITESPARSE
- *error = "Can't use SPARSE_NORMAL_CHOLESKY with SUITE_SPARSE because "
- "SuiteSparse was not enabled when Ceres was built.";
- return false;
-#else
- SuiteSparse ss;
- cholmod_sparse* block_jacobian_transpose =
- ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get());
-
-# ifdef CERES_NO_CAMD
- // No cholmod_camd, so ignore user's parameter_block_ordering and
- // use plain old AMD.
- ss.ApproximateMinimumDegreeOrdering(block_jacobian_transpose, &ordering[0]);
-# else
- if (parameter_block_ordering->NumGroups() > 1) {
- // If the user specified more than one elimination groups use them
- // to constrain the ordering.
- vector<int> constraints;
- for (int i = 0; i < parameter_blocks.size(); ++i) {
- constraints.push_back(
- parameter_block_ordering->GroupId(
- parameter_blocks[i]->mutable_user_state()));
- }
- ss.ConstrainedApproximateMinimumDegreeOrdering(
- block_jacobian_transpose,
- &constraints[0],
- &ordering[0]);
- } else {
- ss.ApproximateMinimumDegreeOrdering(block_jacobian_transpose,
- &ordering[0]);
- }
-# endif // CERES_NO_CAMD
-
- ss.Free(block_jacobian_transpose);
-#endif // CERES_NO_SUITESPARSE
-
- } else if (sparse_linear_algebra_library_type == CX_SPARSE) {
-#ifndef CERES_NO_CXSPARSE
-
- // CXSparse works with J'J instead of J'. So compute the block
- // sparsity for J'J and compute an approximate minimum degree
- // ordering.
- CXSparse cxsparse;
- cs_di* block_jacobian_transpose;
- block_jacobian_transpose =
- cxsparse.CreateSparseMatrix(tsm_block_jacobian_transpose.get());
- cs_di* block_jacobian = cxsparse.TransposeMatrix(block_jacobian_transpose);
- cs_di* block_hessian =
- cxsparse.MatrixMatrixMultiply(block_jacobian_transpose, block_jacobian);
- cxsparse.Free(block_jacobian);
- cxsparse.Free(block_jacobian_transpose);
-
- cxsparse.ApproximateMinimumDegreeOrdering(block_hessian, &ordering[0]);
- cxsparse.Free(block_hessian);
-#else // CERES_NO_CXSPARSE
- *error = "Can't use SPARSE_NORMAL_CHOLESKY with CX_SPARSE because "
- "CXSparse was not enabled when Ceres was built.";
- return false;
-#endif // CERES_NO_CXSPARSE
- } else {
- *error = "Unknown sparse linear algebra library.";
- return false;
- }
-
- // Apply ordering.
- const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
- for (int i = 0; i < program->NumParameterBlocks(); ++i) {
- parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
- }
-
- program->SetParameterOffsetsAndIndex();
- return true;
-}
-
-void SolverImpl::CompactifyArray(vector<int>* array_ptr) {
- vector<int>& array = *array_ptr;
- const set<int> unique_group_ids(array.begin(), array.end());
- map<int, int> group_id_map;
- for (set<int>::const_iterator it = unique_group_ids.begin();
- it != unique_group_ids.end();
- ++it) {
- InsertOrDie(&group_id_map, *it, group_id_map.size());
- }
-
- for (int i = 0; i < array.size(); ++i) {
- array[i] = group_id_map[array[i]];
- }
-}
-
} // namespace internal
} // namespace ceres