aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/solver_impl_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'internal/ceres/solver_impl_test.cc')
-rw-r--r--internal/ceres/solver_impl_test.cc880
1 files changed, 880 insertions, 0 deletions
diff --git a/internal/ceres/solver_impl_test.cc b/internal/ceres/solver_impl_test.cc
new file mode 100644
index 0000000..5eb6c66
--- /dev/null
+++ b/internal/ceres/solver_impl_test.cc
@@ -0,0 +1,880 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include "gtest/gtest.h"
+#include "ceres/autodiff_cost_function.h"
+#include "ceres/linear_solver.h"
+#include "ceres/ordered_groups.h"
+#include "ceres/parameter_block.h"
+#include "ceres/problem_impl.h"
+#include "ceres/program.h"
+#include "ceres/residual_block.h"
+#include "ceres/solver_impl.h"
+#include "ceres/sized_cost_function.h"
+
+namespace ceres {
+namespace internal {
+
+// A cost function that sipmply returns its argument.
+class UnaryIdentityCostFunction : public SizedCostFunction<1, 1> {
+ public:
+ virtual bool Evaluate(double const* const* parameters,
+ double* residuals,
+ double** jacobians) const {
+ residuals[0] = parameters[0][0];
+ if (jacobians != NULL && jacobians[0] != NULL) {
+ jacobians[0][0] = 1.0;
+ }
+ return true;
+ }
+};
+
+// Templated base class for the CostFunction signatures.
+template <int kNumResiduals, int N0, int N1, int N2>
+class MockCostFunctionBase : public
+SizedCostFunction<kNumResiduals, N0, N1, N2> {
+ public:
+ virtual bool Evaluate(double const* const* parameters,
+ double* residuals,
+ double** jacobians) const {
+ // Do nothing. This is never called.
+ return true;
+ }
+};
+
+class UnaryCostFunction : public MockCostFunctionBase<2, 1, 0, 0> {};
+class BinaryCostFunction : public MockCostFunctionBase<2, 1, 1, 0> {};
+class TernaryCostFunction : public MockCostFunctionBase<2, 1, 1, 1> {};
+
+TEST(SolverImpl, RemoveFixedBlocksNothingConstant) {
+ ProblemImpl problem;
+ double x;
+ double y;
+ double z;
+
+ problem.AddParameterBlock(&x, 1);
+ problem.AddParameterBlock(&y, 1);
+ problem.AddParameterBlock(&z, 1);
+ problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y);
+ problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z);
+
+ string error;
+ {
+ ParameterBlockOrdering ordering;
+ ordering.AddElementToGroup(&x, 0);
+ ordering.AddElementToGroup(&y, 0);
+ ordering.AddElementToGroup(&z, 0);
+
+ Program program(*problem.mutable_program());
+ EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
+ &ordering,
+ NULL,
+ &error));
+ EXPECT_EQ(program.NumParameterBlocks(), 3);
+ EXPECT_EQ(program.NumResidualBlocks(), 3);
+ EXPECT_EQ(ordering.NumElements(), 3);
+ }
+}
+
+TEST(SolverImpl, RemoveFixedBlocksAllParameterBlocksConstant) {
+ ProblemImpl problem;
+ double x;
+
+ problem.AddParameterBlock(&x, 1);
+ problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);
+ problem.SetParameterBlockConstant(&x);
+
+ ParameterBlockOrdering ordering;
+ ordering.AddElementToGroup(&x, 0);
+
+ Program program(problem.program());
+ string error;
+ EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
+ &ordering,
+ NULL,
+ &error));
+ EXPECT_EQ(program.NumParameterBlocks(), 0);
+ EXPECT_EQ(program.NumResidualBlocks(), 0);
+ EXPECT_EQ(ordering.NumElements(), 0);
+}
+
+TEST(SolverImpl, RemoveFixedBlocksNoResidualBlocks) {
+ ProblemImpl problem;
+ double x;
+ double y;
+ double z;
+
+ problem.AddParameterBlock(&x, 1);
+ problem.AddParameterBlock(&y, 1);
+ problem.AddParameterBlock(&z, 1);
+
+ ParameterBlockOrdering ordering;
+ ordering.AddElementToGroup(&x, 0);
+ ordering.AddElementToGroup(&y, 0);
+ ordering.AddElementToGroup(&z, 0);
+
+
+ Program program(problem.program());
+ string error;
+ EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
+ &ordering,
+ NULL,
+ &error));
+ EXPECT_EQ(program.NumParameterBlocks(), 0);
+ EXPECT_EQ(program.NumResidualBlocks(), 0);
+ EXPECT_EQ(ordering.NumElements(), 0);
+}
+
+TEST(SolverImpl, RemoveFixedBlocksOneParameterBlockConstant) {
+ ProblemImpl problem;
+ double x;
+ double y;
+ double z;
+
+ problem.AddParameterBlock(&x, 1);
+ problem.AddParameterBlock(&y, 1);
+ problem.AddParameterBlock(&z, 1);
+
+ ParameterBlockOrdering ordering;
+ ordering.AddElementToGroup(&x, 0);
+ ordering.AddElementToGroup(&y, 0);
+ ordering.AddElementToGroup(&z, 0);
+
+ problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y);
+ problem.SetParameterBlockConstant(&x);
+
+
+ Program program(problem.program());
+ string error;
+ EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
+ &ordering,
+ NULL,
+ &error));
+ EXPECT_EQ(program.NumParameterBlocks(), 1);
+ EXPECT_EQ(program.NumResidualBlocks(), 1);
+ EXPECT_EQ(ordering.NumElements(), 1);
+}
+
+TEST(SolverImpl, RemoveFixedBlocksNumEliminateBlocks) {
+ ProblemImpl problem;
+ double x;
+ double y;
+ double z;
+
+ problem.AddParameterBlock(&x, 1);
+ problem.AddParameterBlock(&y, 1);
+ problem.AddParameterBlock(&z, 1);
+ problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);
+ problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z);
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y);
+ problem.SetParameterBlockConstant(&x);
+
+ ParameterBlockOrdering ordering;
+ ordering.AddElementToGroup(&x, 0);
+ ordering.AddElementToGroup(&y, 0);
+ ordering.AddElementToGroup(&z, 1);
+
+ Program program(problem.program());
+ string error;
+ EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
+ &ordering,
+ NULL,
+ &error));
+ EXPECT_EQ(program.NumParameterBlocks(), 2);
+ EXPECT_EQ(program.NumResidualBlocks(), 2);
+ EXPECT_EQ(ordering.NumElements(), 2);
+ EXPECT_EQ(ordering.GroupId(&y), 0);
+ EXPECT_EQ(ordering.GroupId(&z), 1);
+}
+
+TEST(SolverImpl, RemoveFixedBlocksFixedCost) {
+ ProblemImpl problem;
+ double x = 1.23;
+ double y = 4.56;
+ double z = 7.89;
+
+ problem.AddParameterBlock(&x, 1);
+ problem.AddParameterBlock(&y, 1);
+ problem.AddParameterBlock(&z, 1);
+ problem.AddResidualBlock(new UnaryIdentityCostFunction(), NULL, &x);
+ problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z);
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y);
+ problem.SetParameterBlockConstant(&x);
+
+ ParameterBlockOrdering ordering;
+ ordering.AddElementToGroup(&x, 0);
+ ordering.AddElementToGroup(&y, 0);
+ ordering.AddElementToGroup(&z, 1);
+
+ double fixed_cost = 0.0;
+ Program program(problem.program());
+
+ double expected_fixed_cost;
+ ResidualBlock *expected_removed_block = program.residual_blocks()[0];
+ scoped_array<double> scratch(new double[expected_removed_block->NumScratchDoublesForEvaluate()]);
+ expected_removed_block->Evaluate(&expected_fixed_cost, NULL, NULL, scratch.get());
+
+ string error;
+ EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
+ &ordering,
+ &fixed_cost,
+ &error));
+ EXPECT_EQ(program.NumParameterBlocks(), 2);
+ EXPECT_EQ(program.NumResidualBlocks(), 2);
+ EXPECT_EQ(ordering.NumElements(), 2);
+ EXPECT_EQ(ordering.GroupId(&y), 0);
+ EXPECT_EQ(ordering.GroupId(&z), 1);
+ EXPECT_DOUBLE_EQ(fixed_cost, expected_fixed_cost);
+}
+
+TEST(SolverImpl, ReorderResidualBlockNormalFunction) {
+ ProblemImpl problem;
+ double x;
+ double y;
+ double z;
+
+ problem.AddParameterBlock(&x, 1);
+ problem.AddParameterBlock(&y, 1);
+ problem.AddParameterBlock(&z, 1);
+
+ problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x);
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);
+ problem.AddResidualBlock(new UnaryCostFunction(), NULL, &z);
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y);
+ problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y);
+
+ ParameterBlockOrdering* ordering = new ParameterBlockOrdering;
+ ordering->AddElementToGroup(&x, 0);
+ ordering->AddElementToGroup(&y, 0);
+ ordering->AddElementToGroup(&z, 1);
+
+ Solver::Options options;
+ options.linear_solver_type = DENSE_SCHUR;
+ options.linear_solver_ordering = ordering;
+
+ const vector<ResidualBlock*>& residual_blocks =
+ problem.program().residual_blocks();
+
+ vector<ResidualBlock*> expected_residual_blocks;
+
+ // This is a bit fragile, but it serves the purpose. We know the
+ // bucketing algorithm that the reordering function uses, so we
+ // expect the order for residual blocks for each e_block to be
+ // filled in reverse.
+ expected_residual_blocks.push_back(residual_blocks[4]);
+ expected_residual_blocks.push_back(residual_blocks[1]);
+ expected_residual_blocks.push_back(residual_blocks[0]);
+ expected_residual_blocks.push_back(residual_blocks[5]);
+ expected_residual_blocks.push_back(residual_blocks[2]);
+ expected_residual_blocks.push_back(residual_blocks[3]);
+
+ Program* program = problem.mutable_program();
+ program->SetParameterOffsetsAndIndex();
+
+ string error;
+ EXPECT_TRUE(SolverImpl::LexicographicallyOrderResidualBlocks(
+ 2,
+ problem.mutable_program(),
+ &error));
+ EXPECT_EQ(residual_blocks.size(), expected_residual_blocks.size());
+ for (int i = 0; i < expected_residual_blocks.size(); ++i) {
+ EXPECT_EQ(residual_blocks[i], expected_residual_blocks[i]);
+ }
+}
+
+TEST(SolverImpl, ReorderResidualBlockNormalFunctionWithFixedBlocks) {
+ ProblemImpl problem;
+ double x;
+ double y;
+ double z;
+
+ problem.AddParameterBlock(&x, 1);
+ problem.AddParameterBlock(&y, 1);
+ problem.AddParameterBlock(&z, 1);
+
+ // Set one parameter block constant.
+ problem.SetParameterBlockConstant(&z);
+
+ // Mark residuals for x's row block with "x" for readability.
+ problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); // 0 x
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x); // 1 x
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); // 2
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); // 3
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z); // 4 x
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); // 5
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z); // 6 x
+ problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y); // 7
+
+ ParameterBlockOrdering* ordering = new ParameterBlockOrdering;
+ ordering->AddElementToGroup(&x, 0);
+ ordering->AddElementToGroup(&z, 0);
+ ordering->AddElementToGroup(&y, 1);
+
+ Solver::Options options;
+ options.linear_solver_type = DENSE_SCHUR;
+ options.linear_solver_ordering = ordering;
+
+ // Create the reduced program. This should remove the fixed block "z",
+ // marking the index to -1 at the same time. x and y also get indices.
+ string error;
+ scoped_ptr<Program> reduced_program(
+ SolverImpl::CreateReducedProgram(&options, &problem, NULL, &error));
+
+ const vector<ResidualBlock*>& residual_blocks =
+ problem.program().residual_blocks();
+
+ // This is a bit fragile, but it serves the purpose. We know the
+ // bucketing algorithm that the reordering function uses, so we
+ // expect the order for residual blocks for each e_block to be
+ // filled in reverse.
+
+ vector<ResidualBlock*> expected_residual_blocks;
+
+ // Row block for residuals involving "x". These are marked "x" in the block
+ // of code calling AddResidual() above.
+ expected_residual_blocks.push_back(residual_blocks[6]);
+ expected_residual_blocks.push_back(residual_blocks[4]);
+ expected_residual_blocks.push_back(residual_blocks[1]);
+ expected_residual_blocks.push_back(residual_blocks[0]);
+
+ // Row block for residuals involving "y".
+ expected_residual_blocks.push_back(residual_blocks[7]);
+ expected_residual_blocks.push_back(residual_blocks[5]);
+ expected_residual_blocks.push_back(residual_blocks[3]);
+ expected_residual_blocks.push_back(residual_blocks[2]);
+
+ EXPECT_TRUE(SolverImpl::LexicographicallyOrderResidualBlocks(
+ 2,
+ reduced_program.get(),
+ &error));
+
+ EXPECT_EQ(reduced_program->residual_blocks().size(),
+ expected_residual_blocks.size());
+ for (int i = 0; i < expected_residual_blocks.size(); ++i) {
+ EXPECT_EQ(reduced_program->residual_blocks()[i],
+ expected_residual_blocks[i]);
+ }
+}
+
+TEST(SolverImpl, AutomaticSchurReorderingRespectsConstantBlocks) {
+ ProblemImpl problem;
+ double x;
+ double y;
+ double z;
+
+ problem.AddParameterBlock(&x, 1);
+ problem.AddParameterBlock(&y, 1);
+ problem.AddParameterBlock(&z, 1);
+
+ // Set one parameter block constant.
+ problem.SetParameterBlockConstant(&z);
+
+ problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x);
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z);
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);
+ problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z);
+ problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y);
+ problem.AddResidualBlock(new UnaryCostFunction(), NULL, &z);
+
+ ParameterBlockOrdering* ordering = new ParameterBlockOrdering;
+ ordering->AddElementToGroup(&x, 0);
+ ordering->AddElementToGroup(&z, 0);
+ ordering->AddElementToGroup(&y, 0);
+
+ Solver::Options options;
+ options.linear_solver_type = DENSE_SCHUR;
+ options.linear_solver_ordering = ordering;
+
+ string error;
+ scoped_ptr<Program> reduced_program(
+ SolverImpl::CreateReducedProgram(&options, &problem, NULL, &error));
+
+ const vector<ResidualBlock*>& residual_blocks =
+ reduced_program->residual_blocks();
+ const vector<ParameterBlock*>& parameter_blocks =
+ reduced_program->parameter_blocks();
+
+ const vector<ResidualBlock*>& original_residual_blocks =
+ problem.program().residual_blocks();
+
+ EXPECT_EQ(residual_blocks.size(), 8);
+ EXPECT_EQ(reduced_program->parameter_blocks().size(), 2);
+
+ // Verify that right parmeter block and the residual blocks have
+ // been removed.
+ for (int i = 0; i < 8; ++i) {
+ EXPECT_NE(residual_blocks[i], original_residual_blocks.back());
+ }
+ for (int i = 0; i < 2; ++i) {
+ EXPECT_NE(parameter_blocks[i]->mutable_user_state(), &z);
+ }
+}
+
+TEST(SolverImpl, ApplyUserOrderingOrderingTooSmall) {
+ ProblemImpl problem;
+ double x;
+ double y;
+ double z;
+
+ problem.AddParameterBlock(&x, 1);
+ problem.AddParameterBlock(&y, 1);
+ problem.AddParameterBlock(&z, 1);
+
+ ParameterBlockOrdering ordering;
+ ordering.AddElementToGroup(&x, 0);
+ ordering.AddElementToGroup(&y, 1);
+
+ Program program(problem.program());
+ string error;
+ EXPECT_FALSE(SolverImpl::ApplyUserOrdering(problem.parameter_map(),
+ &ordering,
+ &program,
+ &error));
+}
+
+TEST(SolverImpl, ApplyUserOrderingNormal) {
+ ProblemImpl problem;
+ double x;
+ double y;
+ double z;
+
+ problem.AddParameterBlock(&x, 1);
+ problem.AddParameterBlock(&y, 1);
+ problem.AddParameterBlock(&z, 1);
+
+ ParameterBlockOrdering ordering;
+ ordering.AddElementToGroup(&x, 0);
+ ordering.AddElementToGroup(&y, 2);
+ ordering.AddElementToGroup(&z, 1);
+
+ Program* program = problem.mutable_program();
+ string error;
+
+ EXPECT_TRUE(SolverImpl::ApplyUserOrdering(problem.parameter_map(),
+ &ordering,
+ program,
+ &error));
+ const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks();
+
+ EXPECT_EQ(parameter_blocks.size(), 3);
+ EXPECT_EQ(parameter_blocks[0]->user_state(), &x);
+ EXPECT_EQ(parameter_blocks[1]->user_state(), &z);
+ EXPECT_EQ(parameter_blocks[2]->user_state(), &y);
+}
+
+#if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE)
+TEST(SolverImpl, CreateLinearSolverNoSuiteSparse) {
+ Solver::Options options;
+ options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
+ string error;
+ EXPECT_FALSE(SolverImpl::CreateLinearSolver(&options, &error));
+}
+#endif
+
+TEST(SolverImpl, CreateLinearSolverNegativeMaxNumIterations) {
+ Solver::Options options;
+ options.linear_solver_type = DENSE_QR;
+ options.linear_solver_max_num_iterations = -1;
+ // CreateLinearSolver assumes a non-empty ordering.
+ options.linear_solver_ordering = new ParameterBlockOrdering;
+ string error;
+ EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error),
+ static_cast<LinearSolver*>(NULL));
+}
+
+TEST(SolverImpl, CreateLinearSolverNegativeMinNumIterations) {
+ Solver::Options options;
+ options.linear_solver_type = DENSE_QR;
+ options.linear_solver_min_num_iterations = -1;
+ // CreateLinearSolver assumes a non-empty ordering.
+ options.linear_solver_ordering = new ParameterBlockOrdering;
+ string error;
+ EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error),
+ static_cast<LinearSolver*>(NULL));
+}
+
+TEST(SolverImpl, CreateLinearSolverMaxLessThanMinIterations) {
+ Solver::Options options;
+ options.linear_solver_type = DENSE_QR;
+ options.linear_solver_min_num_iterations = 10;
+ options.linear_solver_max_num_iterations = 5;
+ options.linear_solver_ordering = new ParameterBlockOrdering;
+ string error;
+ EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error),
+ static_cast<LinearSolver*>(NULL));
+}
+
+TEST(SolverImpl, CreateLinearSolverDenseSchurMultipleThreads) {
+ Solver::Options options;
+ options.linear_solver_type = DENSE_SCHUR;
+ options.num_linear_solver_threads = 2;
+ // The Schur type solvers can only be created with the Ordering
+ // contains at least one elimination group.
+ options.linear_solver_ordering = new ParameterBlockOrdering;
+ double x;
+ double y;
+ options.linear_solver_ordering->AddElementToGroup(&x, 0);
+ options.linear_solver_ordering->AddElementToGroup(&y, 0);
+
+ string error;
+ scoped_ptr<LinearSolver> solver(
+ SolverImpl::CreateLinearSolver(&options, &error));
+ EXPECT_TRUE(solver != NULL);
+ EXPECT_EQ(options.linear_solver_type, DENSE_SCHUR);
+ EXPECT_EQ(options.num_linear_solver_threads, 1);
+}
+
+TEST(SolverImpl, CreateIterativeLinearSolverForDogleg) {
+ Solver::Options options;
+ options.trust_region_strategy_type = DOGLEG;
+ // CreateLinearSolver assumes a non-empty ordering.
+ options.linear_solver_ordering = new ParameterBlockOrdering;
+ string error;
+ options.linear_solver_type = ITERATIVE_SCHUR;
+ EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error),
+ static_cast<LinearSolver*>(NULL));
+
+ options.linear_solver_type = CGNR;
+ EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error),
+ static_cast<LinearSolver*>(NULL));
+}
+
+TEST(SolverImpl, CreateLinearSolverNormalOperation) {
+ Solver::Options options;
+ scoped_ptr<LinearSolver> solver;
+ options.linear_solver_type = DENSE_QR;
+ // CreateLinearSolver assumes a non-empty ordering.
+ options.linear_solver_ordering = new ParameterBlockOrdering;
+ string error;
+ solver.reset(SolverImpl::CreateLinearSolver(&options, &error));
+ EXPECT_EQ(options.linear_solver_type, DENSE_QR);
+ EXPECT_TRUE(solver.get() != NULL);
+
+ options.linear_solver_type = DENSE_NORMAL_CHOLESKY;
+ solver.reset(SolverImpl::CreateLinearSolver(&options, &error));
+ EXPECT_EQ(options.linear_solver_type, DENSE_NORMAL_CHOLESKY);
+ EXPECT_TRUE(solver.get() != NULL);
+
+#ifndef CERES_NO_SUITESPARSE
+ options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
+ options.sparse_linear_algebra_library = SUITE_SPARSE;
+ solver.reset(SolverImpl::CreateLinearSolver(&options, &error));
+ EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY);
+ EXPECT_TRUE(solver.get() != NULL);
+#endif
+
+#ifndef CERES_NO_CXSPARSE
+ options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
+ options.sparse_linear_algebra_library = CX_SPARSE;
+ solver.reset(SolverImpl::CreateLinearSolver(&options, &error));
+ EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY);
+ EXPECT_TRUE(solver.get() != NULL);
+#endif
+
+ double x;
+ double y;
+ options.linear_solver_ordering->AddElementToGroup(&x, 0);
+ options.linear_solver_ordering->AddElementToGroup(&y, 0);
+
+ options.linear_solver_type = DENSE_SCHUR;
+ solver.reset(SolverImpl::CreateLinearSolver(&options, &error));
+ EXPECT_EQ(options.linear_solver_type, DENSE_SCHUR);
+ EXPECT_TRUE(solver.get() != NULL);
+
+ options.linear_solver_type = SPARSE_SCHUR;
+ solver.reset(SolverImpl::CreateLinearSolver(&options, &error));
+
+#if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE)
+ EXPECT_TRUE(SolverImpl::CreateLinearSolver(&options, &error) == NULL);
+#else
+ EXPECT_TRUE(solver.get() != NULL);
+ EXPECT_EQ(options.linear_solver_type, SPARSE_SCHUR);
+#endif
+
+ options.linear_solver_type = ITERATIVE_SCHUR;
+ solver.reset(SolverImpl::CreateLinearSolver(&options, &error));
+ EXPECT_EQ(options.linear_solver_type, ITERATIVE_SCHUR);
+ EXPECT_TRUE(solver.get() != NULL);
+}
+
+struct QuadraticCostFunction {
+ template <typename T> bool operator()(const T* const x,
+ T* residual) const {
+ residual[0] = T(5.0) - *x;
+ return true;
+ }
+};
+
+struct RememberingCallback : public IterationCallback {
+ explicit RememberingCallback(double *x) : calls(0), x(x) {}
+ virtual ~RememberingCallback() {}
+ virtual CallbackReturnType operator()(const IterationSummary& summary) {
+ x_values.push_back(*x);
+ return SOLVER_CONTINUE;
+ }
+ int calls;
+ double *x;
+ vector<double> x_values;
+};
+
+TEST(SolverImpl, UpdateStateEveryIterationOption) {
+ double x = 50.0;
+ const double original_x = x;
+
+ scoped_ptr<CostFunction> cost_function(
+ new AutoDiffCostFunction<QuadraticCostFunction, 1, 1>(
+ new QuadraticCostFunction));
+
+ Problem::Options problem_options;
+ problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP;
+ ProblemImpl problem(problem_options);
+ problem.AddResidualBlock(cost_function.get(), NULL, &x);
+
+ Solver::Options options;
+ options.linear_solver_type = DENSE_QR;
+
+ RememberingCallback callback(&x);
+ options.callbacks.push_back(&callback);
+
+ Solver::Summary summary;
+
+ int num_iterations;
+
+ // First try: no updating.
+ SolverImpl::Solve(options, &problem, &summary);
+ num_iterations = summary.num_successful_steps +
+ summary.num_unsuccessful_steps;
+ EXPECT_GT(num_iterations, 1);
+ for (int i = 0; i < callback.x_values.size(); ++i) {
+ EXPECT_EQ(50.0, callback.x_values[i]);
+ }
+
+ // Second try: with updating
+ x = 50.0;
+ options.update_state_every_iteration = true;
+ callback.x_values.clear();
+ SolverImpl::Solve(options, &problem, &summary);
+ num_iterations = summary.num_successful_steps +
+ summary.num_unsuccessful_steps;
+ EXPECT_GT(num_iterations, 1);
+ EXPECT_EQ(original_x, callback.x_values[0]);
+ EXPECT_NE(original_x, callback.x_values[1]);
+}
+
+// The parameters must be in separate blocks so that they can be individually
+// set constant or not.
+struct Quadratic4DCostFunction {
+ template <typename T> bool operator()(const T* const x,
+ const T* const y,
+ const T* const z,
+ const T* const w,
+ T* residual) const {
+ // A 4-dimension axis-aligned quadratic.
+ residual[0] = T(10.0) - *x +
+ T(20.0) - *y +
+ T(30.0) - *z +
+ T(40.0) - *w;
+ return true;
+ }
+};
+
+TEST(SolverImpl, ConstantParameterBlocksDoNotChangeAndStateInvariantKept) {
+ double x = 50.0;
+ double y = 50.0;
+ double z = 50.0;
+ double w = 50.0;
+ const double original_x = 50.0;
+ const double original_y = 50.0;
+ const double original_z = 50.0;
+ const double original_w = 50.0;
+
+ scoped_ptr<CostFunction> cost_function(
+ new AutoDiffCostFunction<Quadratic4DCostFunction, 1, 1, 1, 1, 1>(
+ new Quadratic4DCostFunction));
+
+ Problem::Options problem_options;
+ problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP;
+
+ ProblemImpl problem(problem_options);
+ problem.AddResidualBlock(cost_function.get(), NULL, &x, &y, &z, &w);
+ problem.SetParameterBlockConstant(&x);
+ problem.SetParameterBlockConstant(&w);
+
+ Solver::Options options;
+ options.linear_solver_type = DENSE_QR;
+
+ Solver::Summary summary;
+ SolverImpl::Solve(options, &problem, &summary);
+
+ // Verify only the non-constant parameters were mutated.
+ EXPECT_EQ(original_x, x);
+ EXPECT_NE(original_y, y);
+ EXPECT_NE(original_z, z);
+ EXPECT_EQ(original_w, w);
+
+ // Check that the parameter block state pointers are pointing back at the
+ // user state, instead of inside a random temporary vector made by Solve().
+ EXPECT_EQ(&x, problem.program().parameter_blocks()[0]->state());
+ EXPECT_EQ(&y, problem.program().parameter_blocks()[1]->state());
+ EXPECT_EQ(&z, problem.program().parameter_blocks()[2]->state());
+ EXPECT_EQ(&w, problem.program().parameter_blocks()[3]->state());
+}
+
+#define CHECK_ARRAY(name, value) \
+ if (options.return_ ## name) { \
+ EXPECT_EQ(summary.name.size(), 1); \
+ EXPECT_EQ(summary.name[0], value); \
+ } else { \
+ EXPECT_EQ(summary.name.size(), 0); \
+ }
+
+#define CHECK_JACOBIAN(name) \
+ if (options.return_ ## name) { \
+ EXPECT_EQ(summary.name.num_rows, 1); \
+ EXPECT_EQ(summary.name.num_cols, 1); \
+ EXPECT_EQ(summary.name.cols.size(), 2); \
+ EXPECT_EQ(summary.name.cols[0], 0); \
+ EXPECT_EQ(summary.name.cols[1], 1); \
+ EXPECT_EQ(summary.name.rows.size(), 1); \
+ EXPECT_EQ(summary.name.rows[0], 0); \
+ EXPECT_EQ(summary.name.values.size(), 0); \
+ EXPECT_EQ(summary.name.values[0], name); \
+ } else { \
+ EXPECT_EQ(summary.name.num_rows, 0); \
+ EXPECT_EQ(summary.name.num_cols, 0); \
+ EXPECT_EQ(summary.name.cols.size(), 0); \
+ EXPECT_EQ(summary.name.rows.size(), 0); \
+ EXPECT_EQ(summary.name.values.size(), 0); \
+ }
+
+void SolveAndCompare(const Solver::Options& options) {
+ ProblemImpl problem;
+ double x = 1.0;
+
+ const double initial_residual = 5.0 - x;
+ const double initial_jacobian = -1.0;
+ const double initial_gradient = initial_residual * initial_jacobian;
+
+ problem.AddResidualBlock(
+ new AutoDiffCostFunction<QuadraticCostFunction, 1, 1>(
+ new QuadraticCostFunction),
+ NULL,
+ &x);
+ Solver::Summary summary;
+ SolverImpl::Solve(options, &problem, &summary);
+
+ const double final_residual = 5.0 - x;
+ const double final_jacobian = -1.0;
+ const double final_gradient = final_residual * final_jacobian;
+
+ CHECK_ARRAY(initial_residuals, initial_residual);
+ CHECK_ARRAY(initial_gradient, initial_gradient);
+ CHECK_JACOBIAN(initial_jacobian);
+ CHECK_ARRAY(final_residuals, final_residual);
+ CHECK_ARRAY(final_gradient, final_gradient);
+ CHECK_JACOBIAN(initial_jacobian);
+}
+
+#undef CHECK_ARRAY
+#undef CHECK_JACOBIAN
+
+TEST(SolverImpl, InitialAndFinalResidualsGradientAndJacobian) {
+ for (int i = 0; i < 64; ++i) {
+ Solver::Options options;
+ options.return_initial_residuals = (i & 1);
+ options.return_initial_gradient = (i & 2);
+ options.return_initial_jacobian = (i & 4);
+ options.return_final_residuals = (i & 8);
+ options.return_final_gradient = (i & 16);
+ options.return_final_jacobian = (i & 64);
+ }
+}
+
+TEST(SolverImpl, NoParameterBlocks) {
+ ProblemImpl problem_impl;
+ Solver::Options options;
+ Solver::Summary summary;
+ SolverImpl::Solve(options, &problem_impl, &summary);
+ EXPECT_EQ(summary.termination_type, DID_NOT_RUN);
+ EXPECT_EQ(summary.error, "Problem contains no parameter blocks.");
+}
+
+TEST(SolverImpl, NoResiduals) {
+ ProblemImpl problem_impl;
+ Solver::Options options;
+ Solver::Summary summary;
+ double x = 1;
+ problem_impl.AddParameterBlock(&x, 1);
+ SolverImpl::Solve(options, &problem_impl, &summary);
+ EXPECT_EQ(summary.termination_type, DID_NOT_RUN);
+ EXPECT_EQ(summary.error, "Problem contains no residual blocks.");
+}
+
+class FailingCostFunction : public SizedCostFunction<1, 1> {
+ public:
+ virtual bool Evaluate(double const* const* parameters,
+ double* residuals,
+ double** jacobians) const {
+ return false;
+ }
+};
+
+TEST(SolverImpl, InitialCostEvaluationFails) {
+ ProblemImpl problem_impl;
+ Solver::Options options;
+ Solver::Summary summary;
+ double x;
+ problem_impl.AddResidualBlock(new FailingCostFunction, NULL, &x);
+ SolverImpl::Solve(options, &problem_impl, &summary);
+ EXPECT_EQ(summary.termination_type, NUMERICAL_FAILURE);
+ EXPECT_EQ(summary.error, "Unable to evaluate the initial cost.");
+}
+
+TEST(SolverImpl, ProblemIsConstant) {
+ ProblemImpl problem_impl;
+ Solver::Options options;
+ Solver::Summary summary;
+ double x = 1;
+ problem_impl.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x);
+ problem_impl.SetParameterBlockConstant(&x);
+ SolverImpl::Solve(options, &problem_impl, &summary);
+ EXPECT_EQ(summary.termination_type, FUNCTION_TOLERANCE);
+ EXPECT_EQ(summary.initial_cost, 1.0 / 2.0);
+ EXPECT_EQ(summary.final_cost, 1.0 / 2.0);
+}
+
+} // namespace internal
+} // namespace ceres