From 1d2624a10e2c559f8ba9ef89eaa30832c0a83a96 Mon Sep 17 00:00:00 2001 From: Sascha Haeberling Date: Tue, 23 Jul 2013 19:00:21 -0700 Subject: Update ceres to the latest version in google3. Change-Id: I0165fffa55f60714f23e0096eac89fa68df75a05 --- internal/ceres/line_search.cc | 745 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 745 insertions(+) create mode 100644 internal/ceres/line_search.cc (limited to 'internal/ceres/line_search.cc') diff --git a/internal/ceres/line_search.cc b/internal/ceres/line_search.cc new file mode 100644 index 0000000..39618b5 --- /dev/null +++ b/internal/ceres/line_search.cc @@ -0,0 +1,745 @@ +// Ceres Solver - A fast non-linear least squares minimizer +// Copyright 2012 Google Inc. All rights reserved. +// http://code.google.com/p/ceres-solver/ +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of Google Inc. nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +// POSSIBILITY OF SUCH DAMAGE. +// +// Author: sameeragarwal@google.com (Sameer Agarwal) + +#ifndef CERES_NO_LINE_SEARCH_MINIMIZER +#include "ceres/line_search.h" + +#include "ceres/fpclassify.h" +#include "ceres/evaluator.h" +#include "ceres/internal/eigen.h" +#include "ceres/polynomial.h" +#include "ceres/stringprintf.h" +#include "glog/logging.h" + +namespace ceres { +namespace internal { +namespace { + +FunctionSample ValueSample(const double x, const double value) { + FunctionSample sample; + sample.x = x; + sample.value = value; + sample.value_is_valid = true; + return sample; +}; + +FunctionSample ValueAndGradientSample(const double x, + const double value, + const double gradient) { + FunctionSample sample; + sample.x = x; + sample.value = value; + sample.gradient = gradient; + sample.value_is_valid = true; + sample.gradient_is_valid = true; + return sample; +}; + +} // namespace + +// Convenience stream operator for pushing FunctionSamples into log messages. +std::ostream& operator<<(std::ostream &os, + const FunctionSample& sample) { + os << "[x: " << sample.x << ", value: " << sample.value + << ", gradient: " << sample.gradient << ", value_is_valid: " + << std::boolalpha << sample.value_is_valid << ", gradient_is_valid: " + << std::boolalpha << sample.gradient_is_valid << "]"; + return os; +} + +LineSearch::LineSearch(const LineSearch::Options& options) + : options_(options) {} + +LineSearch* LineSearch::Create(const LineSearchType line_search_type, + const LineSearch::Options& options, + string* error) { + LineSearch* line_search = NULL; + switch (line_search_type) { + case ceres::ARMIJO: + line_search = new ArmijoLineSearch(options); + break; + case ceres::WOLFE: + line_search = new WolfeLineSearch(options); + break; + default: + *error = string("Invalid line search algorithm type: ") + + LineSearchTypeToString(line_search_type) + + string(", unable to create line search."); + return NULL; + } + return line_search; +} + +LineSearchFunction::LineSearchFunction(Evaluator* evaluator) + : evaluator_(evaluator), + position_(evaluator->NumParameters()), + direction_(evaluator->NumEffectiveParameters()), + evaluation_point_(evaluator->NumParameters()), + scaled_direction_(evaluator->NumEffectiveParameters()), + gradient_(evaluator->NumEffectiveParameters()) { +} + +void LineSearchFunction::Init(const Vector& position, + const Vector& direction) { + position_ = position; + direction_ = direction; +} + +bool LineSearchFunction::Evaluate(const double x, double* f, double* g) { + scaled_direction_ = x * direction_; + if (!evaluator_->Plus(position_.data(), + scaled_direction_.data(), + evaluation_point_.data())) { + return false; + } + + if (g == NULL) { + return (evaluator_->Evaluate(evaluation_point_.data(), + f, NULL, NULL, NULL) && + IsFinite(*f)); + } + + if (!evaluator_->Evaluate(evaluation_point_.data(), + f, + NULL, + gradient_.data(), NULL)) { + return false; + } + + *g = direction_.dot(gradient_); + return IsFinite(*f) && IsFinite(*g); +} + +double LineSearchFunction::DirectionInfinityNorm() const { + return direction_.lpNorm(); +} + +// Returns step_size \in [min_step_size, max_step_size] which minimizes the +// polynomial of degree defined by interpolation_type which interpolates all +// of the provided samples with valid values. +double LineSearch::InterpolatingPolynomialMinimizingStepSize( + const LineSearchInterpolationType& interpolation_type, + const FunctionSample& lowerbound, + const FunctionSample& previous, + const FunctionSample& current, + const double min_step_size, + const double max_step_size) const { + if (!current.value_is_valid || + (interpolation_type == BISECTION && + max_step_size <= current.x)) { + // Either: sample is invalid; or we are using BISECTION and contracting + // the step size. + return min(max(current.x * 0.5, min_step_size), max_step_size); + } else if (interpolation_type == BISECTION) { + CHECK_GT(max_step_size, current.x); + // We are expanding the search (during a Wolfe bracketing phase) using + // BISECTION interpolation. Using BISECTION when trying to expand is + // strictly speaking an oxymoron, but we define this to mean always taking + // the maximum step size so that the Armijo & Wolfe implementations are + // agnostic to the interpolation type. + return max_step_size; + } + // Only check if lower-bound is valid here, where it is required + // to avoid replicating current.value_is_valid == false + // behaviour in WolfeLineSearch. + CHECK(lowerbound.value_is_valid) + << "Ceres bug: lower-bound sample for interpolation is invalid, " + << "please contact the developers!, interpolation_type: " + << LineSearchInterpolationTypeToString(interpolation_type) + << ", lowerbound: " << lowerbound << ", previous: " << previous + << ", current: " << current; + + // Select step size by interpolating the function and gradient values + // and minimizing the corresponding polynomial. + vector samples; + samples.push_back(lowerbound); + + if (interpolation_type == QUADRATIC) { + // Two point interpolation using function values and the + // gradient at the lower bound. + samples.push_back(ValueSample(current.x, current.value)); + + if (previous.value_is_valid) { + // Three point interpolation, using function values and the + // gradient at the lower bound. + samples.push_back(ValueSample(previous.x, previous.value)); + } + } else if (interpolation_type == CUBIC) { + // Two point interpolation using the function values and the gradients. + samples.push_back(current); + + if (previous.value_is_valid) { + // Three point interpolation using the function values and + // the gradients. + samples.push_back(previous); + } + } else { + LOG(FATAL) << "Ceres bug: No handler for interpolation_type: " + << LineSearchInterpolationTypeToString(interpolation_type) + << ", please contact the developers!"; + } + + double step_size = 0.0, unused_min_value = 0.0; + MinimizeInterpolatingPolynomial(samples, min_step_size, max_step_size, + &step_size, &unused_min_value); + return step_size; +} + +ArmijoLineSearch::ArmijoLineSearch(const LineSearch::Options& options) + : LineSearch(options) {} + +void ArmijoLineSearch::Search(const double step_size_estimate, + const double initial_cost, + const double initial_gradient, + Summary* summary) { + *CHECK_NOTNULL(summary) = LineSearch::Summary(); + CHECK_GE(step_size_estimate, 0.0); + CHECK_GT(options().sufficient_decrease, 0.0); + CHECK_LT(options().sufficient_decrease, 1.0); + CHECK_GT(options().max_num_iterations, 0); + Function* function = options().function; + + // Note initial_cost & initial_gradient are evaluated at step_size = 0, + // not step_size_estimate, which is our starting guess. + const FunctionSample initial_position = + ValueAndGradientSample(0.0, initial_cost, initial_gradient); + + FunctionSample previous = ValueAndGradientSample(0.0, 0.0, 0.0); + previous.value_is_valid = false; + + FunctionSample current = ValueAndGradientSample(step_size_estimate, 0.0, 0.0); + current.value_is_valid = false; + + const bool interpolation_uses_gradients = + options().interpolation_type == CUBIC; + const double descent_direction_max_norm = + static_cast(function)->DirectionInfinityNorm(); + + ++summary->num_function_evaluations; + if (interpolation_uses_gradients) { ++summary->num_gradient_evaluations; } + current.value_is_valid = + function->Evaluate(current.x, + ¤t.value, + interpolation_uses_gradients + ? ¤t.gradient : NULL); + current.gradient_is_valid = + interpolation_uses_gradients && current.value_is_valid; + while (!current.value_is_valid || + current.value > (initial_cost + + options().sufficient_decrease + * initial_gradient + * current.x)) { + // If current.value_is_valid is false, we treat it as if the cost at that + // point is not large enough to satisfy the sufficient decrease condition. + ++summary->num_iterations; + if (summary->num_iterations >= options().max_num_iterations) { + summary->error = + StringPrintf("Line search failed: Armijo failed to find a point " + "satisfying the sufficient decrease condition within " + "specified max_num_iterations: %d.", + options().max_num_iterations); + LOG(WARNING) << summary->error; + return; + } + + const double step_size = + this->InterpolatingPolynomialMinimizingStepSize( + options().interpolation_type, + initial_position, + previous, + current, + (options().max_step_contraction * current.x), + (options().min_step_contraction * current.x)); + + if (step_size * descent_direction_max_norm < options().min_step_size) { + summary->error = + StringPrintf("Line search failed: step_size too small: %.5e " + "with descent_direction_max_norm: %.5e.", step_size, + descent_direction_max_norm); + LOG(WARNING) << summary->error; + return; + } + + previous = current; + current.x = step_size; + + ++summary->num_function_evaluations; + if (interpolation_uses_gradients) { ++summary->num_gradient_evaluations; } + current.value_is_valid = + function->Evaluate(current.x, + ¤t.value, + interpolation_uses_gradients + ? ¤t.gradient : NULL); + current.gradient_is_valid = + interpolation_uses_gradients && current.value_is_valid; + } + + summary->optimal_step_size = current.x; + summary->success = true; +} + +WolfeLineSearch::WolfeLineSearch(const LineSearch::Options& options) + : LineSearch(options) {} + +void WolfeLineSearch::Search(const double step_size_estimate, + const double initial_cost, + const double initial_gradient, + Summary* summary) { + *CHECK_NOTNULL(summary) = LineSearch::Summary(); + // All parameters should have been validated by the Solver, but as + // invalid values would produce crazy nonsense, hard check them here. + CHECK_GE(step_size_estimate, 0.0); + CHECK_GT(options().sufficient_decrease, 0.0); + CHECK_GT(options().sufficient_curvature_decrease, + options().sufficient_decrease); + CHECK_LT(options().sufficient_curvature_decrease, 1.0); + CHECK_GT(options().max_step_expansion, 1.0); + + // Note initial_cost & initial_gradient are evaluated at step_size = 0, + // not step_size_estimate, which is our starting guess. + const FunctionSample initial_position = + ValueAndGradientSample(0.0, initial_cost, initial_gradient); + + bool do_zoom_search = false; + // Important: The high/low in bracket_high & bracket_low refer to their + // _function_ values, not their step sizes i.e. it is _not_ required that + // bracket_low.x < bracket_high.x. + FunctionSample solution, bracket_low, bracket_high; + + // Wolfe bracketing phase: Increases step_size until either it finds a point + // that satisfies the (strong) Wolfe conditions, or an interval that brackets + // step sizes which satisfy the conditions. From Nocedal & Wright [1] p61 the + // interval: (step_size_{k-1}, step_size_{k}) contains step lengths satisfying + // the strong Wolfe conditions if one of the following conditions are met: + // + // 1. step_size_{k} violates the sufficient decrease (Armijo) condition. + // 2. f(step_size_{k}) >= f(step_size_{k-1}). + // 3. f'(step_size_{k}) >= 0. + // + // Caveat: If f(step_size_{k}) is invalid, then step_size is reduced, ignoring + // this special case, step_size monotonically increases during bracketing. + if (!this->BracketingPhase(initial_position, + step_size_estimate, + &bracket_low, + &bracket_high, + &do_zoom_search, + summary) && + summary->num_iterations < options().max_num_iterations) { + // Failed to find either a valid point or a valid bracket, but we did not + // run out of iterations. + return; + } + if (!do_zoom_search) { + // Either: Bracketing phase already found a point satisfying the strong + // Wolfe conditions, thus no Zoom required. + // + // Or: Bracketing failed to find a valid bracket or a point satisfying the + // strong Wolfe conditions within max_num_iterations. As this is an + // 'artificial' constraint, and we would otherwise fail to produce a valid + // point when ArmijoLineSearch would succeed, we return the lowest point + // found thus far which satsifies the Armijo condition (but not the Wolfe + // conditions). + CHECK(bracket_low.value_is_valid) + << "Ceres bug: Bracketing produced an invalid bracket_low, please " + << "contact the developers!, bracket_low: " << bracket_low + << ", bracket_high: " << bracket_high << ", num_iterations: " + << summary->num_iterations << ", max_num_iterations: " + << options().max_num_iterations; + summary->optimal_step_size = bracket_low.x; + summary->success = true; + return; + } + + // Wolfe Zoom phase: Called when the Bracketing phase finds an interval of + // non-zero, finite width that should bracket step sizes which satisfy the + // (strong) Wolfe conditions (before finding a step size that satisfies the + // conditions). Zoom successively decreases the size of the interval until a + // step size which satisfies the Wolfe conditions is found. The interval is + // defined by bracket_low & bracket_high, which satisfy: + // + // 1. The interval bounded by step sizes: bracket_low.x & bracket_high.x + // contains step sizes that satsify the strong Wolfe conditions. + // 2. bracket_low.x is of all the step sizes evaluated *which satisifed the + // Armijo sufficient decrease condition*, the one which generated the + // smallest function value, i.e. bracket_low.value < + // f(all other steps satisfying Armijo). + // - Note that this does _not_ (necessarily) mean that initially + // bracket_low.value < bracket_high.value (although this is typical) + // e.g. when bracket_low = initial_position, and bracket_high is the + // first sample, and which does not satisfy the Armijo condition, + // but still has bracket_high.value < initial_position.value. + // 3. bracket_high is chosen after bracket_low, s.t. + // bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0. + if (!this->ZoomPhase(initial_position, + bracket_low, + bracket_high, + &solution, + summary) && !solution.value_is_valid) { + // Failed to find a valid point (given the specified decrease parameters) + // within the specified bracket. + return; + } + // Ensure that if we ran out of iterations whilst zooming the bracket, or + // shrank the bracket width to < tolerance and failed to find a point which + // satisfies the strong Wolfe curvature condition, that we return the point + // amongst those found thus far, which minimizes f() and satisfies the Armijo + // condition. + solution = + solution.value_is_valid && solution.value <= bracket_low.value + ? solution : bracket_low; + + summary->optimal_step_size = solution.x; + summary->success = true; +} + +// Returns true iff bracket_low & bracket_high bound a bracket that contains +// points which satisfy the strong Wolfe conditions. Otherwise, on return false, +// if we stopped searching due to the 'artificial' condition of reaching +// max_num_iterations, bracket_low is the step size amongst all those +// tested, which satisfied the Armijo decrease condition and minimized f(). +bool WolfeLineSearch::BracketingPhase( + const FunctionSample& initial_position, + const double step_size_estimate, + FunctionSample* bracket_low, + FunctionSample* bracket_high, + bool* do_zoom_search, + Summary* summary) { + Function* function = options().function; + + FunctionSample previous = initial_position; + FunctionSample current = ValueAndGradientSample(step_size_estimate, 0.0, 0.0); + current.value_is_valid = false; + + const bool interpolation_uses_gradients = + options().interpolation_type == CUBIC; + const double descent_direction_max_norm = + static_cast(function)->DirectionInfinityNorm(); + + *do_zoom_search = false; + *bracket_low = initial_position; + + ++summary->num_function_evaluations; + if (interpolation_uses_gradients) { ++summary->num_gradient_evaluations; } + current.value_is_valid = + function->Evaluate(current.x, + ¤t.value, + interpolation_uses_gradients + ? ¤t.gradient : NULL); + current.gradient_is_valid = + interpolation_uses_gradients && current.value_is_valid; + + while (true) { + ++summary->num_iterations; + + if (current.value_is_valid && + (current.value > (initial_position.value + + options().sufficient_decrease + * initial_position.gradient + * current.x) || + (previous.value_is_valid && current.value > previous.value))) { + // Bracket found: current step size violates Armijo sufficient decrease + // condition, or has stepped past an inflection point of f() relative to + // previous step size. + *do_zoom_search = true; + *bracket_low = previous; + *bracket_high = current; + break; + } + + // Irrespective of the interpolation type we are using, we now need the + // gradient at the current point (which satisfies the Armijo condition) + // in order to check the strong Wolfe conditions. + if (!interpolation_uses_gradients) { + ++summary->num_function_evaluations; + ++summary->num_gradient_evaluations; + current.value_is_valid = + function->Evaluate(current.x, + ¤t.value, + ¤t.gradient); + current.gradient_is_valid = current.value_is_valid; + } + + if (current.value_is_valid && + fabs(current.gradient) <= + -options().sufficient_curvature_decrease * initial_position.gradient) { + // Current step size satisfies the strong Wolfe conditions, and is thus a + // valid termination point, therefore a Zoom not required. + *bracket_low = current; + *bracket_high = current; + break; + + } else if (current.value_is_valid && current.gradient >= 0) { + // Bracket found: current step size has stepped past an inflection point + // of f(), but Armijo sufficient decrease is still satisfied and + // f(current) is our best minimum thus far. Remember step size + // monotonically increases, thus previous_step_size < current_step_size + // even though f(previous) > f(current). + *do_zoom_search = true; + // Note inverse ordering from first bracket case. + *bracket_low = current; + *bracket_high = previous; + break; + + } else if (summary->num_iterations >= options().max_num_iterations) { + // Check num iterations bound here so that we always evaluate the + // max_num_iterations-th iteration against all conditions, and + // then perform no additional (unused) evaluations. + summary->error = + StringPrintf("Line search failed: Wolfe bracketing phase failed to " + "find a point satisfying strong Wolfe conditions, or a " + "bracket containing such a point within specified " + "max_num_iterations: %d", options().max_num_iterations); + LOG(WARNING) << summary->error; + // Ensure that bracket_low is always set to the step size amongst all + // those tested which minimizes f() and satisfies the Armijo condition + // when we terminate due to the 'artificial' max_num_iterations condition. + *bracket_low = + current.value_is_valid && current.value < bracket_low->value + ? current : *bracket_low; + return false; + } + // Either: f(current) is invalid; or, f(current) is valid, but does not + // satisfy the strong Wolfe conditions itself, or the conditions for + // being a boundary of a bracket. + + // If f(current) is valid, (but meets no criteria) expand the search by + // increasing the step size. + const double max_step_size = + current.value_is_valid + ? (current.x * options().max_step_expansion) : current.x; + + // We are performing 2-point interpolation only here, but the API of + // InterpolatingPolynomialMinimizingStepSize() allows for up to + // 3-point interpolation, so pad call with a sample with an invalid + // value that will therefore be ignored. + const FunctionSample unused_previous; + DCHECK(!unused_previous.value_is_valid); + // Contracts step size if f(current) is not valid. + const double step_size = + this->InterpolatingPolynomialMinimizingStepSize( + options().interpolation_type, + previous, + unused_previous, + current, + previous.x, + max_step_size); + if (step_size * descent_direction_max_norm < options().min_step_size) { + summary->error = + StringPrintf("Line search failed: step_size too small: %.5e " + "with descent_direction_max_norm: %.5e", step_size, + descent_direction_max_norm); + LOG(WARNING) << summary->error; + return false; + } + + previous = current.value_is_valid ? current : previous; + current.x = step_size; + + ++summary->num_function_evaluations; + if (interpolation_uses_gradients) { ++summary->num_gradient_evaluations; } + current.value_is_valid = + function->Evaluate(current.x, + ¤t.value, + interpolation_uses_gradients + ? ¤t.gradient : NULL); + current.gradient_is_valid = + interpolation_uses_gradients && current.value_is_valid; + } + // Either we have a valid point, defined as a bracket of zero width, in which + // case no zoom is required, or a valid bracket in which to zoom. + return true; +} + +// Returns true iff solution satisfies the strong Wolfe conditions. Otherwise, +// on return false, if we stopped searching due to the 'artificial' condition of +// reaching max_num_iterations, solution is the step size amongst all those +// tested, which satisfied the Armijo decrease condition and minimized f(). +bool WolfeLineSearch::ZoomPhase(const FunctionSample& initial_position, + FunctionSample bracket_low, + FunctionSample bracket_high, + FunctionSample* solution, + Summary* summary) { + Function* function = options().function; + + CHECK(bracket_low.value_is_valid && bracket_low.gradient_is_valid) + << "Ceres bug: f_low input to Wolfe Zoom invalid, please contact " + << "the developers!, initial_position: " << initial_position + << ", bracket_low: " << bracket_low + << ", bracket_high: "<< bracket_high; + // We do not require bracket_high.gradient_is_valid as the gradient condition + // for a valid bracket is only dependent upon bracket_low.gradient, and + // in order to minimize jacobian evaluations, bracket_high.gradient may + // not have been calculated (if bracket_high.value does not satisfy the + // Armijo sufficient decrease condition and interpolation method does not + // require it). + CHECK(bracket_high.value_is_valid) + << "Ceres bug: f_high input to Wolfe Zoom invalid, please " + << "contact the developers!, initial_position: " << initial_position + << ", bracket_low: " << bracket_low + << ", bracket_high: "<< bracket_high; + CHECK_LT(bracket_low.gradient * + (bracket_high.x - bracket_low.x), 0.0) + << "Ceres bug: f_high input to Wolfe Zoom does not satisfy gradient " + << "condition combined with f_low, please contact the developers!" + << ", initial_position: " << initial_position + << ", bracket_low: " << bracket_low + << ", bracket_high: "<< bracket_high; + + const int num_bracketing_iterations = summary->num_iterations; + const bool interpolation_uses_gradients = + options().interpolation_type == CUBIC; + const double descent_direction_max_norm = + static_cast(function)->DirectionInfinityNorm(); + + while (true) { + // Set solution to bracket_low, as it is our best step size (smallest f()) + // found thus far and satisfies the Armijo condition, even though it does + // not satisfy the Wolfe condition. + *solution = bracket_low; + if (summary->num_iterations >= options().max_num_iterations) { + summary->error = + StringPrintf("Line search failed: Wolfe zoom phase failed to " + "find a point satisfying strong Wolfe conditions " + "within specified max_num_iterations: %d, " + "(num iterations taken for bracketing: %d).", + options().max_num_iterations, num_bracketing_iterations); + LOG(WARNING) << summary->error; + return false; + } + if (fabs(bracket_high.x - bracket_low.x) * descent_direction_max_norm + < options().min_step_size) { + // Bracket width has been reduced below tolerance, and no point satisfying + // the strong Wolfe conditions has been found. + summary->error = + StringPrintf("Line search failed: Wolfe zoom bracket width: %.5e " + "too small with descent_direction_max_norm: %.5e.", + fabs(bracket_high.x - bracket_low.x), + descent_direction_max_norm); + LOG(WARNING) << summary->error; + return false; + } + + ++summary->num_iterations; + // Polynomial interpolation requires inputs ordered according to step size, + // not f(step size). + const FunctionSample& lower_bound_step = + bracket_low.x < bracket_high.x ? bracket_low : bracket_high; + const FunctionSample& upper_bound_step = + bracket_low.x < bracket_high.x ? bracket_high : bracket_low; + // We are performing 2-point interpolation only here, but the API of + // InterpolatingPolynomialMinimizingStepSize() allows for up to + // 3-point interpolation, so pad call with a sample with an invalid + // value that will therefore be ignored. + const FunctionSample unused_previous; + DCHECK(!unused_previous.value_is_valid); + solution->x = + this->InterpolatingPolynomialMinimizingStepSize( + options().interpolation_type, + lower_bound_step, + unused_previous, + upper_bound_step, + lower_bound_step.x, + upper_bound_step.x); + // No check on magnitude of step size being too small here as it is + // lower-bounded by the initial bracket start point, which was valid. + ++summary->num_function_evaluations; + if (interpolation_uses_gradients) { ++summary->num_gradient_evaluations; } + solution->value_is_valid = + function->Evaluate(solution->x, + &solution->value, + interpolation_uses_gradients + ? &solution->gradient : NULL); + solution->gradient_is_valid = + interpolation_uses_gradients && solution->value_is_valid; + if (!solution->value_is_valid) { + summary->error = + StringPrintf("Line search failed: Wolfe Zoom phase found " + "step_size: %.5e, for which function is invalid, " + "between low_step: %.5e and high_step: %.5e " + "at which function is valid.", + solution->x, bracket_low.x, bracket_high.x); + LOG(WARNING) << summary->error; + return false; + } + + if ((solution->value > (initial_position.value + + options().sufficient_decrease + * initial_position.gradient + * solution->x)) || + (solution->value >= bracket_low.value)) { + // Armijo sufficient decrease not satisfied, or not better + // than current lowest sample, use as new upper bound. + bracket_high = *solution; + continue; + } + + // Armijo sufficient decrease satisfied, check strong Wolfe condition. + if (!interpolation_uses_gradients) { + // Irrespective of the interpolation type we are using, we now need the + // gradient at the current point (which satisfies the Armijo condition) + // in order to check the strong Wolfe conditions. + ++summary->num_function_evaluations; + ++summary->num_gradient_evaluations; + solution->value_is_valid = + function->Evaluate(solution->x, + &solution->value, + &solution->gradient); + solution->gradient_is_valid = solution->value_is_valid; + if (!solution->value_is_valid) { + summary->error = + StringPrintf("Line search failed: Wolfe Zoom phase found " + "step_size: %.5e, for which function is invalid, " + "between low_step: %.5e and high_step: %.5e " + "at which function is valid.", + solution->x, bracket_low.x, bracket_high.x); + LOG(WARNING) << summary->error; + return false; + } + } + if (fabs(solution->gradient) <= + -options().sufficient_curvature_decrease * initial_position.gradient) { + // Found a valid termination point satisfying strong Wolfe conditions. + break; + + } else if (solution->gradient * (bracket_high.x - bracket_low.x) >= 0) { + bracket_high = bracket_low; + } + + bracket_low = *solution; + } + // Solution contains a valid point which satisfies the strong Wolfe + // conditions. + return true; +} + +} // namespace internal +} // namespace ceres + +#endif // CERES_NO_LINE_SEARCH_MINIMIZER -- cgit v1.2.3