
CERES SOLVER: TUTORIAL & REFERENCE

SAMEER AGARWAL

sameeragarwal@google.com
KEIR MIERLE

keir@google.com

November 17, 2012

CONTENTS

Contents 2

1 A Note to the Reader 3

2 Version History 4

3 Introduction 12

4 License 14

5 Building Ceres 15

I Tutorial 23

6 Non-linear Least Squares 24

7 Hello World! 25

8 Powell’s Function 28

9 Fitting a Curve to Data 31

10 Bundle Adjustment 34

II Reference 38

11 Overview 39

12 Modeling 40

13 Solving 53

14 Frequently Asked Questions 70

15 Further Reading 72

Bibliography 73

2

A NOTE TO THE READER

Building this pdf from source requires a relatively recent installation of LaTeX 1, minted.sty2 and
pygments3.

Despite our best efforts, this manual remains a work in progress and the source code for Ceres Solver
remains the ultimate reference.

1http://www.tug.org/texlive/
2http://code.google.com/p/minted/
3http://pygments.org/

3

http://www.tug.org/texlive/
http://code.google.com/p/minted/
http://pygments.org/

VERSION HISTORY

1.4.0

API Changes

The new ordering API breaks existing code. Here the common case fixes.

Before

options.linear_solver_type = ceres::DENSE_SCHUR
options.ordering_type = ceres::SCHUR

After

options.linear_solver_type = ceres::DENSE_SCHUR

Before

options.linear_solver_type = ceres::DENSE_SCHUR;
options.ordering_type = ceres::USER;
for (int i = 0; i < num_points; ++i) {

options.ordering.push_back(my_points[i])
}
for (int i = 0; i < num_cameras; ++i) {

options.ordering.push_back(my_cameras[i])
}
options.num_eliminate_blocks = num_points;

After

options.linear_solver_type = ceres::DENSE_SCHUR;
options.ordering = new ceres::ParameterBlockOrdering;
for (int i = 0; i < num_points; ++i) {

options.linear_solver_ordering->AddElementToGroup(my_points[i], 0);
}
for (int i = 0; i < num_cameras; ++i) {

options.linear_solver_ordering->AddElementToGroup(my_cameras[i], 1);
}

4

CHAPTER 2. VERSION HISTORY 5

New Features

• A new richer, more expressive and consistent API for ordering parameter blocks.

• A non-linear generalization of Ruhe & Wedin’s Algorithm II. This allows the user to use variable
projection on separable and non-separable non-linear least squares problems. With multithread-
ing, this results in significant improvements to the convergence behavior of the solver at a small
increase in run time.

• An image denoising example using fields of experts. (Petter Strandmark)

• Defines for Ceres version and ABI version.

• Higher precision timer code where available. (Petter Strandmark)

• Example Makefile for users of Ceres.

• IterationSummary now informs the user when the step is a non-monotonic step.

• Fewer memory allocations when using DenseQRSolver.

• GradientChecker for testing CostFunctions (William Rucklidge)

• Add support for cost functions with 10 parameter blocks in Problem. (Fisher)

• Add support for 10 parameter blocks in AutoDiffCostFunction.

Bug Fixes

• static cast to force Eigen::Index to long conversion

• Change LOG(ERROR) to LOG(WARNING) in schur_complement_solver.cc.

• Remove verbose logging from DenseQRSolve.

• Fix the Android NDK build.

• Better handling of empty and constant Problems.

• Remove an internal header that was leaking into the public API.

• Memory leak in trust_region_minimizer.cc

• Schur ordering was operating on the wrong object (Ricardo Martin)

CHAPTER 2. VERSION HISTORY 6

• MSVC fixes (Petter Strandmark)

• Various fixes to nist.cc (Markus Moll)

• Fixed a jacobian scaling bug.

• Numerically robust computation of model_cost_change.

• Signed comparison compiler warning fixes (Ricardo Martin)

• Various compiler warning fixes all over.

• Inclusion guard fixes (Petter Strandmark)

• Segfault in test code (Sergey Popov)

• Replaced EXPECT/ASSERT_DEATH with the more portable EXPECT_DEATH_IF_SUPPORTED
macros.

• Fixed the camera projection model in Ceres’ implementation of Snavely’s camera model. (Ricardo
Martin)

1.3.0

New Features

• Android Port (Scott Ettinger also contributed to the port)

• Windows port. (Changchang Wu and Pierre Moulon also contributed to the port)

• New subspace Dogleg Solver. (Markus Moll)

• Trust region algorithm now supports the option of non-monotonic steps.

• New loss functions ArcTanLossFunction, TolerantLossFunction and ComposedLossFunction.
(James Roseborough).

• New DENSE_NORMAL_CHOLESKY linear solver, which uses Eigen’s LDLT factorization on the nor-
mal equations.

• Cached symbolic factorization when using CXSparse. (Petter Strandark)

• New example nist.cc and data from the NIST non-linear regression test suite. (Thanks to
Douglas Bates for suggesting this.)

CHAPTER 2. VERSION HISTORY 7

• The traditional Dogleg solver now uses an elliptical trust region (Markus Moll)

• Support for returning initial and final gradients & Jacobians.

• Gradient computation support in the evaluators, with an eye towards developing first order/gradient
based solvers.

• A better way to compute Solver::Summary::fixed_cost. (Markus Moll)

• CMake support for building documentation, separate examples, installing and uninstalling the
library and Gerrit hooks (Arnaud Gelas)

• SuiteSparse4 support (Markus Moll)

• Support for building Ceres without TR1 (This leads to slightly slower DENSE_SCHUR and SPARSE_SCHUR
solvers).

• BALProblem can now write a problem back to disk.

• bundle_adjuster now allows the user to normalize and perturb the problem before solving.

• Solver progress logging to file.

• Added Program::ToString and ParameterBlock::ToString to help with debugging.

• Ability to build Ceres as a shared library (MacOS and Linux only), associated versioning and
build release script changes.

• Portable floating point classification API.

Bug Fixes

• Fix how invalid step evaluations are handled.

• Change the slop handling around zero for model cost changes to use relative tolerances rather
than absolute tolerances.

• Fix an inadvertant integer to bool conversion. (Petter Strandmark)

• Do not link to libgomp when building on windows. (Petter Strandmark)

• Include gflags.h in test_utils.cc. (Petter Strandmark)

• Use standard random number generation routines. (Petter Strandmark)

• TrustRegionMinimizer does not implicitly negate the steps that it takes. (Markus Moll)

CHAPTER 2. VERSION HISTORY 8

• Diagonal scaling allows for equal upper and lower bounds. (Markus Moll)

• TrustRegionStrategy does not misuse LinearSolver:Summary anymore.

• Fix Eigen3 Row/Column Major storage issue. (Lena Gieseke)

• QuaternionToAngleAxis now guarantees an angle in [−π,π]. (Guoxuan Zhang)

• Added a workaround for a compiler bug in the Android NDK to the Schur eliminator.

• The sparse linear algebra library is only logged in Summary::FullReport if it is used.

• Rename the macro CERES_DONT_HAVE_PROTOCOL_BUFFERS to CERES_NO_PROTOCOL_BUFFERS for
consistency.

• Fix how static structure detection for the Schur eliminator logs its results.

• Correct example code in the documentation. (Petter Strandmark)

• Fix fpclassify.h to work with the Android NDK and STLport.

• Fix a memory leak in the levenber_marquardt_strategy_test.cc

• Fix an early return bug in the Dogleg solver. (Markus Moll)

• Zero initialize Jets.

• Moved internal/ceres/mock_log.h to internal/ceres/gmock/mock-log.h

• Unified file path handling in tests.

• data_fitting.cc includes gflags

• Renamed Ceres’ Mutex class and associated macros to avoid namespace conflicts.

• Close the BAL problem file after reading it (Markus Moll)

• Fix IsInfinite on Jets.

• Drop alignment requirements for Jets.

• Fixed Jet to integer comparison. (Keith Leung)

• Fix use of uninitialized arrays. (Sebastian Koch & Markus Moll)

• Conditionally compile gflag dependencies.(Casey Goodlett)

• Add data_fitting.cc to the examples CMake file.

CHAPTER 2. VERSION HISTORY 9

1.2.3

Bug Fixes

• suitesparse_test is enabled even when -DSUITESPARSE=OFF.

• FixedArray internal struct did not respect Eigen alignment requirements (Koichi Akabe &
Stephan Kassemeyer).

• Fixed quadratic.cc documentation and code mismatch (Nick Lewycky).

1.2.2

Bug Fixes

• Fix constant parameter blocks, and other minor fixes (Markus Moll)

• Fix alignment issues when combining Jet and FixedArray in automatic differeniation.

• Remove obsolete build_defs file.

1.2.1

New Features

• Powell’s Dogleg solver

• Documentation now has a brief overview of Trust Region methods and how the Levenberg-
Marquardt and Dogleg methods work.

Bug Fixes

• Destructor for TrustRegionStrategy was not virtual (Markus Moll)

• Invalid DCHECK in suitesparse.cc (Markus Moll)

• Iteration callbacks were not properly invoked (Luis Alberto Zarrabeiti)

• Logging level changes in ConjugateGradientsSolver

CHAPTER 2. VERSION HISTORY 10

• VisibilityBasedPreconditioner setup does not account for skipped camera pairs. This was debug-
ging code.

• Enable SSE support on MacOS

• system_test was taking too long and too much memory (Koichi Akabe)

1.2.0

New Features

• CXSparse support.

• Block oriented fill reducing orderings. This reduces the factorization time for sparse CHOLMOD
significantly.

• New Trust region loop with support for multiple trust region step strategies. Currently only
Levenberg-Marquardt is supported, but this refactoring opens the door for Dog-leg, Stiehaug
and others.

• CMake file restructuring. Builds in Release mode by default, and now has platform specific
tuning flags.

• Re-organized documentation. No new content, but better organization.

Bug Fixes

• Fixed integer overflow bug in block_random_access_sparse_matrix.cc.

• Renamed some macros to prevent name conflicts.

• Fixed incorrent input to StateUpdatingCallback.

• Fixes to AutoDiff tests.

• Various internal cleanups.

1.1.1

Bug Fixes

• Fix a bug in the handling of constant blocks. (Louis Simard)

CHAPTER 2. VERSION HISTORY 11

• Add an optional lower bound to the Levenberg-Marquardt regularizer to prevent oscillating be-
tween well and ill posed linear problems.

• Some internal refactoring and test fixes.

2.1 1.1.0

New Features

• New iterative linear solver for general sparse problems - CGNR and a block Jacobi preconditioner
for it.

• Changed the semantics of how SuiteSparse dependencies are checked and used. Now SuiteSparse
is built by default, only if all of its dependencies are present.

• Automatic differentiation now supports dynamic number of residuals.

• Support for writing the linear least squares problems to disk in text format so that they can
loaded into MATLAB.

• Linear solver results are now checked for nan and infinities.

• Added .gitignore file.

• A better more robust build system.

Bug Fixes

• Fixed a strict weak ordering bug in the schur ordering.

• Grammar and typos in the documents and code comments.

• Fixed tests which depended on exact equality between floating point values.

1.0.0

Initial Release.

INTRODUCTION

Ceres Solver1 is a non-linear least squares solver developed at Google. It is designed to solve small and
large sparse problems accurately and efficiently 2. Amongst its various features is a simple but expres-
sive API with support for automatic differentiation, robust norms, local parameterizations, automatic
gradient checking, multithreading and automatic problem structure detection.

The key computational cost when solving a non-linear least squares problem is the solution of a linear
least squares problem in each iteration. To this end Ceres supports a number of different linear solvers
suited for different needs. This includes dense QR factorization (using Eigen3) for small scale prob-
lems, sparse Cholesky factorization (using SuiteSparse) for general sparse problems and specialized
Schur complement based solvers for problems that arise in multi-view geometry [8].

Ceres has been used for solving a variety of problems in computer vision and machine learning at
Google with sizes that range from a tens of variables and objective functions with a few hundred
terms to problems with millions of variables and objective functions with tens of millions of terms.

3.1 WHAT’S IN A NAME?

While there is some debate as to who invented of the method of Least Squares [20]. There is no debate
that it was Carl Friedrich Gauss’s prediction of the orbit of the newly discovered asteroid Ceres based
on just 41 days of observations that brought it to the attention of the world [21]. We named our solver
after Ceres to celebrate this seminal event in the history of astronomy, statistics and optimization.

3.2 CONTRIBUTING TO CERES SOLVER

We welcome contributions to Ceres, whether they are new features, bug fixes or tests. The Ceres
mailing list3 is the best place for all development related discussions. Please consider joining it. If
you have ideas on how you would like to contribute to Ceres, it is a good idea to let us know on the
mailinglist before you start development. We may have suggestions that will save effort when trying
to merge your work into the main branch. If you are looking for ideas, please let us know about your
interest and skills and we will be happy to make a suggestion or three.

We follow Google’s C++ Style Guide 4 and use git for version control.

1For brevity, in the rest of this document we will just use the term Ceres.
2For a gentle but brief introduction to non-liner least squares problems, please start by reading the Tutorial
3http://groups.google.com/group/ceres-solver
4http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

12

http://groups.google.com/group/ceres-solver
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

CHAPTER 3. INTRODUCTION 13

3.3 CITING CERES SOLVER

If you use Ceres for an academic publication, please cite this manual. e.g.,

@manual{ceres-manual,
Author = {Sameer Agarwal and Keir Mierle},
Title = {Ceres Solver: Tutorial \& Reference},
Organization = {Google Inc.}
}

3.4 ACKNOWLEDGEMENTS

A number of people have helped with the development and open sourcing of Ceres.

Fredrik Schaffalitzky when he was at Google started the development of Ceres, and even though much
has changed since then, many of the ideas from his original design are still present in the current code.

Amongst Ceres’ users at Google two deserve special mention: William Rucklidge and James Rosebor-
ough. William was the first user of Ceres. He bravely took on the task of porting production code to
an as-yet unproven optimization library, reporting bugs and helping fix them along the way. James is
perhaps the most sophisticated user of Ceres at Google. He has reported and fixed bugs and helped
evolve the API for the better.

Nathan Wiegand contributed the MacOS port.

LICENSE

Ceres Solver is licensed under the New BSD license, whose terms are as follows.

Copyright (c) 2010, 2011, 2012, Google Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of Google Inc., nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

This software is provided by the copyright holders and contributors "AS IS" and any ex-
press or implied warranties, including, but not limited to, the implied warranties of mer-
chantability and fitness for a particular purpose are disclaimed. In no event shall Google
Inc. be liable for any direct, indirect, incidental, special, exemplary, or consequential dam-
ages (including, but not limited to, procurement of substitute goods or services; loss of use,
data, or profits; or business interruption) however caused and on any theory of liability,
whether in contract, strict liability, or tort (including negligence or otherwise) arising in
any way out of the use of this software, even if advised of the possibility of such damage.

14

BUILDING CERES

Ceres source code and documentation are hosted at http://code.google.com/p/ceres-solver/.

5.1 DEPENDENCIES

Ceres relies on a number of open source libraries, some of which are optional. For details on customiz-
ing the build process, please see Section 5.7.

1. cmake 1 is the cross-platform build system used by Ceres. We require that you have a relative
recent install of cmake (version 2.8.0 or better).

2. Eigen3 2 is used for doing all the low level matrix and linear algebra operations.

3. google-glog 3 is used for error checking and logging.

Note: Ceres requires glog version 0.3.1 or later. Version 0.3 (which ships with Fedora 16) has a
namespace bug which prevents Ceres from building.

4. gflags 4 is used by the code in examples. It is also used by some of the tests. Strictly speaking
it is not required to build the core library, we do not recommend building Ceres without
gflags.

5. SuiteSparse 5 is used for sparse matrix analysis, ordering and factorization. In particular Ceres
uses the AMD, COLAMD and CHOLMOD libraries. This is an optional dependency.

6. CXSparse 6 is used for sparse matrix analysis, ordering and factorization. While it is similar to
SuiteSparse in scope, its performance is a bit worse but is a much simpler library to build and
does not have any other dependencies. This is an optional dependency.

7. BLAS and LAPACK are needed by SuiteSparse. We recommend either GotoBlas2 7 or ATLAS 8,
both of which ship with BLAS and LAPACK routines.

1http://www.cmake.org/
2http://eigen.tuxfamily.org
3http://code.google.com/p/google-glog
4http://code.google.com/p/gflags
5http://www.cise.ufl.edu/research/sparse/SuiteSparse/
6http://www.cise.ufl.edu/research/sparse/CXSparse/
7http://www.tacc.utexas.edu/tacc-projects/gotoblas2
8http://math-atlas.sourceforge.net/

15

http://code.google.com/p/ceres-solver/
http://www.cmake.org/
http://eigen.tuxfamily.org
http://code.google.com/p/google-glog
http://code.google.com/p/gflags
http://www.cise.ufl.edu/research/sparse/SuiteSparse/
http://www.cise.ufl.edu/research/sparse/CXSparse/
http://www.tacc.utexas.edu/tacc-projects/gotoblas2
http://math-atlas.sourceforge.net/

CHAPTER 5. BUILDING CERES 16

8. protobuf 9 is an optional dependency that is used for serializing and deserializing linear least
squares problems to disk. This is useful for debugging and testing. Without it, some of the tests
will be disabled.

Currently we support building on Linux and MacOS X. Support for other platforms is forthcoming.

5.2 BUILDING ON LINUX

We will use Ubuntu as our example platform.

1. cmake

sudo apt-get install cmake

2. gflags can either be installed from source via the autoconf invocation

tar -xvzf gflags-2.0.tar.gz
cd gflags-2.0
./configure --prefix=/usr/local
make
sudo make install.

or via the deb or rpm packages available on the gflags website.

3. google-glog must be configured to use the previously installed gflags, rather than the stripped
down version that is bundled with google-glog. Assuming you have it installed in /usr/local
the following autoconf invocation installs it.

tar -xvzf glog-0.3.2.tar.gz
cd glog-0.3.2
./configure --with-gflags=/usr/local/
make
sudo make install

4. Eigen3

sudo apt-get install libeigen3-dev

5. SuiteSparse and CXSparse

sudo apt-get install libsuitesparse-dev

9http://code.google.com/p/protobuf/

http://code.google.com/p/protobuf/

CHAPTER 5. BUILDING CERES 17

This should automatically bring in the necessary BLAS and LAPACK dependencies. By co-incidence
on Ubuntu, this also installs CXSparse.

6. protobuf

sudo apt-get install libprotobuf-dev

We are now ready to build and test Ceres. Note that cmake requires the exact path to the libglog.a
and libgflag.a

tar zxf ceres-solver-1.2.1.tar.gz
mkdir ceres-bin
cd ceres-bin
cmake ../ceres-solver-1.2.1
make -j3
make test

You can also try running the command line bundling application with one of the included problems,
which comes from the University of Washington’s BAL dataset [1]:

bin/simple_bundle_adjuster \
../ceres-solver-1.2.1/data/problem-16-22106-pre.txt \

This runs Ceres for a maximum of 10 iterations using the DENSE_SCHUR linear solver. The output
should look something like this.

CHAPTER 5. BUILDING CERES 18

0: f: 1.598216e+06 d: 0.00e+00 g: 5.67e+18 h: 0.00e+00 rho: 0.00e+00 mu: 1.00e-04 li: 0
1: f: 1.116401e+05 d: 1.49e+06 g: 1.42e+18 h: 5.48e+02 rho: 9.50e-01 mu: 3.33e-05 li: 1
2: f: 4.923547e+04 d: 6.24e+04 g: 8.57e+17 h: 3.21e+02 rho: 6.79e-01 mu: 3.18e-05 li: 1
3: f: 1.884538e+04 d: 3.04e+04 g: 1.45e+17 h: 1.25e+02 rho: 9.81e-01 mu: 1.06e-05 li: 1
4: f: 1.807384e+04 d: 7.72e+02 g: 3.88e+16 h: 6.23e+01 rho: 9.57e-01 mu: 3.53e-06 li: 1
5: f: 1.803397e+04 d: 3.99e+01 g: 1.35e+15 h: 1.16e+01 rho: 9.99e-01 mu: 1.18e-06 li: 1
6: f: 1.803390e+04 d: 6.16e-02 g: 6.69e+12 h: 7.31e-01 rho: 1.00e+00 mu: 3.93e-07 li: 1

Ceres Solver Report

Original Reduced
Parameter blocks 22122 22122
Parameters 66462 66462
Residual blocks 83718 83718
Residual 167436 167436

Given Used
Linear solver DENSE_SCHUR DENSE_SCHUR
Preconditioner N/A N/A
Threads: 1 1
Linear Solver Threads: 1 1

Cost:
Initial 1.598216e+06
Final 1.803390e+04
Change 1.580182e+06

Number of iterations:
Successful 6
Unsuccessful 0
Total 6

Time (in seconds):
Preprocessor 0.000000e+00
Minimizer 2.000000e+00
Total 2.000000e+00
Termination: FUNCTION_TOLERANCE

CHAPTER 5. BUILDING CERES 19

5.3 BUILDING ON OS X

On OS X, we recommend using the homebrew 10 package manager.

1. cmake

brew install cmake

2. glog and gflags

Installing google-glog takes also brings in gflags as a dependency.

brew install glog

3. Eigen3

brew install eigen

4. SuiteSparse and CXSparse

brew install suite-sparse

5. protobuf

brew install protobuf

We are now ready to build and test Ceres.

tar zxf ceres-solver-1.2.1.tar.gz
mkdir ceres-bin
cd ceres-bin
cmake ../ceres-solver-1.2.1
make -j3
make test

Like the Linux build, you should now be able to run bin/simple_bundle_adjuster.

10http://mxcl.github.com/homebrew/

http://mxcl.github.com/homebrew/

CHAPTER 5. BUILDING CERES 20

5.4 BUILDING ON WINDOWS WITH VISUAL STUDIO

On Windows, we support building with Visual Studio 2010 or newer. Note that the Windows port
is less featureful and less tested than the Linux or Mac OS X versions due to the unavaliability of
SuiteSparse and CXSparse. Building is also more involved since there is no automated way to install
the dependencies.

1. Make a toplevel directory for deps & build & src somewhere: ceres/

2. Get dependencies; unpack them as subdirectories in ceres/ (ceres/eigen, ceres/glog, etc)

• Eigen 3.1 from eigen.tuxfamily.org (needed on Windows; 3.0.x will not work). There is no
need to build anything; just unpack the source tarball.

• Goolge Log. Open up the Visual Studio solution and build it.

• Goolge Flags. Open up the Visual Studio solution and build it.

3. Unpack the Ceres tarball into ceres. For the tarball, you should get a directory inside ceres
similar to ceres-solver-1.3.0. Alternately, checkout Ceres via git to get ceres-solver.git
inside ceres.

4. Install CMake.

5. Make a dir ceres/ceres-bin (for an out-of-tree build)

6. Run CMake; select the ceres-solver-X.Y.Z or ceres-solver.git directory for the CMake file.
Then select the ceres-bin for the build dir.

7. Try running "Configure". It won’t work. It’ll show a bunch of options. You’ll need to set:

• GLOG_INCLUDE

• GLOG_LIB

• GFLAGS_LIB

• GFLAGS_INCLUDE

to the appropriate place where you unpacked/built them.

8. You may have to tweak some more settings to generate a MSVC project. After each adjustment,
try pressing Configure & Generate until it generates successfully.

9. Open the solution and build it in MSVC

CHAPTER 5. BUILDING CERES 21

To run the tests, select the RUN_TESTS target and hit "Build RUN_TESTS" from the build menu.

Like the Linux build, you should now be able to run bin/simple_bundle_adjuster.

Notes:

• The default build is Debug; consider switching it to release mode.

• Currently system_test is not working properly.

• Building Ceres as a DLL is not supported; patches welcome.

• CMake puts the resulting test binaries in ceres-bin/examples/Debug by default.

• The solvers supported on Windows are DENSE_QR, DENSE_SCHUR, CGNR, and ITERATIVE_SCHUR.

• We’re looking for someone to work with upstream SuiteSparse to port their build system to
something sane like CMake, and get a supported Windows port.

5.5 BUILDING ON ANDROID

Download the Android NDK. Run ndk-build from inside the jni directory. Use the libceres.a that
gets created.

TODO(keir): Expand this section further.

5.6 COMPILER FLAGS TO USE WHEN BUILDING YOUR OWN APPLICATIONS

TBD

5.7 CUSTOMIZING THE BUILD PROCESS

It is possible to reduce the libraries needed to build Ceres and customize the build process by passing
appropriate flags to cmake. But unless you really know what you are doing, we recommend against
disabling any of the following flags.

1. protobuf

Protocol Buffers is a big dependency and if you do not care for the tests that depend on it and
the logging support it enables, you can turn it off by using

-DPROTOBUF=OFF.

CHAPTER 5. BUILDING CERES 22

2. SuiteSparse

By default, Ceres will only link to SuiteSparse if all its dependencies are present. To build
Ceres without SuiteSparse use

-DSUITESPARSE=OFF.

This will also disable dependency checking for LAPACK and BLAS. This saves on binary size, but
the resulting version of Ceres is not suited to large scale problems due to the lack of a sparse
Cholesky solver. This will reduce Ceres’ dependencies down to Eigen3, gflags and google-glog.

3. CXSparse

By default, Ceres will only link to CXSparse if all its dependencies are present. To build Ceres
without SuiteSparse use

-DCXSPARSE=OFF.

This saves on binary size, but the resulting version of Ceres is not suited to large scale problems
due to the lack of a sparse Cholesky solver. This will reduce Ceres’ dependencies down to Eigen3,
gflags and google-glog.

4. gflags To build Ceres without gflags, use

-DGFLAGS=OFF.

Disabling this flag will prevent some of the example code from building.

5. Template Specializations

If you are concerned about binary size/compilation time over some small (10-20%) performance
gains in the SPARSE_SCHUR solver, you can disable some of the template specializations by us-
ing

-DSCHUR_SPECIALIZATIONS=OFF.

6. OpenMP

On certain platforms like Android, multithreading with OpenMP is not supported. OpenMP
support can be disabled by using

-DOPENMP=OFF.

Part I

Tutorial

23

NON-LINEAR LEAST SQUARES

Let x ∈ Rn be an n-dimensional vector of variables, and F(x) = [f1(x); . . . ; fk(x)] be a vector of residuals
f i(x). The function f i(x) can be a scalar or a vector valued function. Then,

argmin
x

1
2

k∑
i=1

‖ f i(x)‖2. (6.1)

is a Non-linear least squares problem 1. Here ‖ ·‖ denotes the Euclidean norm of a vector.

Such optimization problems arise in almost every area of science and engineering. Whenever there is
data to be analyzed, curves to be fitted, there is usually a linear or a non-linear least squares problem
lurking in there somewhere.

Perhaps the simplest example of such a problem is the problem of Ordinary Linear Regression, where
given observations (x1, y1), . . . , (xk, yk), we wish to find the line y = mx+ c, that best explains y as
a function of x. One way to solve this problem is to find the solution to the following optimization
problem

argmin
m,c

k∑
i=1

(yi −mxi − c)2. (6.2)

With a little bit of calculus, this problem can be solved easily by hand. But what if, instead of a line we
were interested in a more complicated relationship between x and y, say for example y= emx+c. Then
the optimization problem becomes

argmin
m,c

k∑
i=1

(
yi − emxi+c)2 . (6.3)

This is a non-linear regression problem and solving it by hand is much more tedious. Ceres is designed
to help you model and solve problems like this easily and efficiently.

1Ceres can solve a more general version of this problem, but for pedagogical reasons, we will restrict ourselves to this
class of problems for now. See section 11 for a full description of the problems that Ceres can solve

24

HELLO WORLD!

To get started, let us consider the problem of finding the minimum of the function

1
2

(10− x)2. (7.1)

This is a trivial problem, whose minimum is easy to see is located at x = 10, but it is a good place to
start to illustrate the basics of solving a problem with Ceres1.

Let us write this problem as a non-linear least squares problem by defining the scalar residual function
f1(x)= 10− x. Then F(x)= [f1(x)] is a residual vector with exactly one component.

When solving a problem with Ceres, the first thing to do is to define a subclass of CostFunction. It
is responsible for computing the value of the residual function and its derivative (also known as the
Jacobian) with respect to x.

class SimpleCostFunction
: public ceres::SizedCostFunction<1 /* number of residuals */ ,

1 /* size of first parameter */ > {
public:
virtual ~SimpleCostFunction() {}
virtual bool Evaluate(double const* const* parameters,

double* residuals,
double** jacobians) const {

const double x = parameters[0][0];
residuals[0] = 10 - x; // f (x) = 10 − x
// Compute the Jacobian if asked for.
if (jacobians != NULL && jacobians[0] != NULL) {

jacobians[0][0] = -1;
}
return true;

}
};

SimpleCostFunction is provided with an input array of parameters, an output array for residuals and
an optional output array for Jacobians. In our example, there is just one parameter and one residual

1Full working code for this and other examples in this manual can be found in the examples directory. Code for this
example can be found in examples/quadratic.cc

25

CHAPTER 7. HELLO WORLD! 26

and this is known at compile time, therefore we can save some code and instead of inheriting from
CostFunction, we can instaed inherit from the templated SizedCostFunction class.

The jacobians array is optional, Evaluate is expected to check when it is non-null, and if it is the
case then fill it with the values of the derivative of the residual function. In this case since the residual
function is linear, the Jacobian is constant.

Once we have a way of computing the residual vector, it is now time to construct a Non-linear least
squares problem using it and have Ceres solve it.

int main(int argc, char** argv) {
double x = 5.0;
ceres::Problem problem;

// The problem object takes ownership of the newly allocated
// SimpleCostFunction and uses it to optimize the value of x.
problem.AddResidualBlock(new SimpleCostFunction, NULL, &x);

// Run the solver!
Solver::Options options;
options.max_num_iterations = 10;
options.linear_solver_type = ceres::DENSE_QR;
options.minimizer_progress_to_stdout = true;
Solver::Summary summary;
Solve(options, &problem, &summary);
std::cout << summary.BriefReport() << "\n";
std::cout << "x : 5.0 -> " << x << "\n";
return 0;

}

Compiling and running this program gives us

0: f: 1.250000e+01 d: 0.00e+00 g: 5.00e+00 h: 0.00e+00 rho: 0.00e+00 mu: 1.00e-04 li: 0
1: f: 1.249750e-07 d: 1.25e+01 g: 5.00e-04 h: 5.00e+00 rho: 1.00e+00 mu: 3.33e-05 li: 1
2: f: 1.388518e-16 d: 1.25e-07 g: 1.67e-08 h: 5.00e-04 rho: 1.00e+00 mu: 1.11e-05 li: 1
Ceres Solver Report: Iterations: 2, Initial cost: 1.250000e+01, \
Final cost: 1.388518e-16, Termination: PARAMETER_TOLERANCE.
x : 5 -> 10

CHAPTER 7. HELLO WORLD! 27

Starting from a x = 5, the solver in two iterations goes to 10 2. The careful reader will note that
this is a linear problem and one linear solve should be enough to get the optimal value. The default
configuration of the solver is aimed at non-linear problems, and for reasons of simplicity we did not
change it in this example. It is indeed possible to obtain the solution to this problem using Ceres in
one iteration. Also note that the solver did get very close to the optimal function value of 0 in the
very first iteration. We will discuss these issues in greater detail when we talk about convergence and
parameter settings for Ceres.

2Actually the solver ran for three iterations, and it was by looking at the value returned by the linear solver in the third
iteration, it observed that the update to the parameter block was too small and declared convergence. Ceres only prints
out the display at the end of an iteration, and terminates as soon as it detects convergence, which is why you only see two
iterations here and not three.

POWELL’S FUNCTION

Consider now a slightly more complicated example – the minimization of Powell’s function. Let x =
[x1, x2, x3, x4] and

f1(x)= x1 +10∗ x2 (8.1)

f2(x)=
p

5∗ (x3 − x4) (8.2)

f3(x)= (x2 −2∗ x3)2 (8.3)

f4(x)=
p

10∗ (x1 − x4)2 (8.4)

F(x)= [f1(x), f2(x), f3(x), f4(x)] (8.5)

F(x) is a function of four parameters, and has four residuals. Now, one way to solve this problem would
be to define four CostFunction objects that compute the residual and Jacobians. e.g. the following code
shows the implementation for f4(x).

class F4 : public ceres::SizedCostFunction<1, 4> {
public:
virtual ~F4() {}
virtual bool Evaluate(double const* const* parameters,

double* residuals,
double** jacobians) const {

double x1 = parameters[0][0];
double x4 = parameters[0][3];
// f4 = p

10 ∗ (x1 − x4)2

residuals[0] = sqrt(10.0) * (x1 - x4) * (x1 - x4)
if (jacobians != NULL) {

jacobians[0][0] = 2.0 * sqrt(10.0) * (x1 - x4); // ∂x1 f4(x)
jacobians[0][1] = 0.0; // ∂x2 f4(x)
jacobians[0][2] = 0.0; // ∂x3 f4(x)
jacobians[0][3] = -2.0 * sqrt(10.0) * (x1 - x4); // ∂x4 f4(x)

}
return true;

}
};

But this can get painful very quickly, especially for residuals involving complicated multi-variate
terms. Ceres provides two ways around this problem. Numeric and automatic symbolic differenti-
ation.

28

CHAPTER 8. POWELL’S FUNCTION 29

8.1 AUTOMATIC DIFFERENTIATION

With its automatic differentiation support, Ceres allows you to define templated objects/functors that
will compute the residual and it takes care of computing the Jacobians as needed and filling the
jacobians arrays with them. For example, for f4(x) we define

class F4 {
public:
template <typename T> bool operator()(const T* const x1,

const T* const x4,
T* residual) const {

// f4 = p
10 ∗ (x1 − x4)2

residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]);
return true;

}
};

The important thing to note here is that operator() is a templated method, which assumes that all
its inputs and outputs are of some type T. The reason for using templates here is because Ceres will
call F4::operator<T>(), with T=double when just the residual is needed, and with a special type
T = Jet when the Jacobians are needed.

Note also that the parameters are not packed into a single array, they are instead passed as separate
arguments to operator(). Similarly we can define classes F1,F2 and F4. Then let us consider the
construction and solution of the problem. For brevity we only describe the relevant bits of code 1

double x1 = 3.0; double x2 = -1.0; double x3 = 0.0; double x4 = 1.0;
// Add residual terms to the problem using the using the autodiff
// wrapper to get the derivatives automatically.
problem.AddResidualBlock(

new ceres::AutoDiffCostFunction<F1, 1, 1, 1>(new F1), NULL, &x1, &x2);
problem.AddResidualBlock(

new ceres::AutoDiffCostFunction<F2, 1, 1, 1>(new F2), NULL, &x3, &x4);
problem.AddResidualBlock(

new ceres::AutoDiffCostFunction<F3, 1, 1, 1>(new F3), NULL, &x2, &x3)
problem.AddResidualBlock(

new ceres::AutoDiffCostFunction<F4, 1, 1, 1>(new F4), NULL, &x1, &x4);
1The full source code for this example can be found in examples/powell.cc.

CHAPTER 8. POWELL’S FUNCTION 30

A few things are worth noting in the code above. First, the object being added to the Problem is an
AutoDiffCostFunction with F1, F2, F3 and F4 as template parameters. Second, each ResidualBlock
only depends on the two parameters that the corresponding residual object depends on and not on all
four parameters.

Compiling and running powell.cc gives us:

Initial x1 = 3, x2 = -1, x3 = 0, x4 = 1
0: f: 1.075000e+02 d: 0.00e+00 g: 1.55e+02 h: 0.00e+00 rho: 0.00e+00 mu: 1.00e-04 li: 0
1: f: 5.036190e+00 d: 1.02e+02 g: 2.00e+01 h: 2.16e+00 rho: 9.53e-01 mu: 3.33e-05 li: 1
2: f: 3.148168e-01 d: 4.72e+00 g: 2.50e+00 h: 6.23e-01 rho: 9.37e-01 mu: 1.11e-05 li: 1
3: f: 1.967760e-02 d: 2.95e-01 g: 3.13e-01 h: 3.08e-01 rho: 9.37e-01 mu: 3.70e-06 li: 1
4: f: 1.229900e-03 d: 1.84e-02 g: 3.91e-02 h: 1.54e-01 rho: 9.37e-01 mu: 1.23e-06 li: 1
5: f: 7.687123e-05 d: 1.15e-03 g: 4.89e-03 h: 7.69e-02 rho: 9.37e-01 mu: 4.12e-07 li: 1
6: f: 4.804625e-06 d: 7.21e-05 g: 6.11e-04 h: 3.85e-02 rho: 9.37e-01 mu: 1.37e-07 li: 1
7: f: 3.003028e-07 d: 4.50e-06 g: 7.64e-05 h: 1.92e-02 rho: 9.37e-01 mu: 4.57e-08 li: 1
8: f: 1.877006e-08 d: 2.82e-07 g: 9.54e-06 h: 9.62e-03 rho: 9.37e-01 mu: 1.52e-08 li: 1
9: f: 1.173223e-09 d: 1.76e-08 g: 1.19e-06 h: 4.81e-03 rho: 9.37e-01 mu: 5.08e-09 li: 1

10: f: 7.333425e-11 d: 1.10e-09 g: 1.49e-07 h: 2.40e-03 rho: 9.37e-01 mu: 1.69e-09 li: 1
11: f: 4.584044e-12 d: 6.88e-11 g: 1.86e-08 h: 1.20e-03 rho: 9.37e-01 mu: 5.65e-10 li: 1

Ceres Solver Report: Iterations: 12, Initial cost: 1.075000e+02, \
Final cost: 2.865573e-13, Termination: GRADIENT_TOLERANCE.
Final x1 = 0.000583994, x2 = -5.83994e-05, x3 = 9.55401e-05, x4 = 9.55401e-05

It is easy to see that the optimal solution to this problem is at x1 = 0, x2 = 0, x3 = 0, x4 = 0 with an
objective function value of 0. In 10 iterations, Ceres finds a solution with an objective function value
of 4×10−12.

8.2 NUMERIC DIFFERENTIATION

If a templated implementation is not possible then a NumericDiffCostFunction object can be used.
The user defines a CostFunction object whose Evaluate method is only computes the residuals. A
wrapper object NumericDiffCostFunction then uses it to compute the residuals and the Jacobian
using finite differencing. examples/quadratic_numeric_diff.cc shows a numerically differentiated
implementation of examples/quadratic.cc.

We recommend that if possible, automatic differentiation should be used. The use of C++ templates
makes automatic differentiation extremely efficient, whereas numeric differentiation can be quite ex-
pensive, prone to numeric errors and leads to slower convergence.

FITTING A CURVE TO DATA

The examples we have seen until now are simple optimization problems with no data. The original
purpose of least squares and non-linear least squares analysis was fitting curves to data. It is only
appropriate that we now consider an example of such a problem1. Let us fit some data to the curve

y= emx+c. (9.1)

We begin by defining a templated object to evaluate the residual. There will be a residual for each
observation.

class ExponentialResidual {
public:
ExponentialResidual(double x, double y)

: x_(x), y_(y) {}

template <typename T> bool operator()(const T* const m,
const T* const c,
T* residual) const {

residual[0] = T(y_) - exp(m[0] * T(x_) + c[0]); // y − emx + c

return true;
}

private:
// Observations for a sample.
const double x_;
const double y_;

};

Assuming the observations are in a 2n sized array called data, the problem construction is a simple
matter of creating a CostFunction for every observation.

1The full code and data for this example can be found in examples/data_fitting.cc. It contains data generated by
sampling the curve y= e0.3x+0.1 and adding Gaussian noise with standard deviation σ= 0.2.

31

CHAPTER 9. FITTING A CURVE TO DATA 32

double m = 0.0;
double c = 0.0;

Problem problem;
for (int i = 0; i < kNumObservations; ++i) {

problem.AddResidualBlock(
new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(

new ExponentialResidual(data[2 * i], data[2 * i + 1])),
NULL,
&m, &c);

}

Compiling and running data_fitting.cc gives us

0: f: 1.211734e+02 d: 0.00e+00 g: 3.61e+02 h: 0.00e+00 rho: 0.00e+00 mu: 1.00e-04 li: 0
1: f: 1.211734e+02 d:-2.21e+03 g: 3.61e+02 h: 7.52e-01 rho:-1.87e+01 mu: 2.00e-04 li: 1
2: f: 1.211734e+02 d:-2.21e+03 g: 3.61e+02 h: 7.51e-01 rho:-1.86e+01 mu: 8.00e-04 li: 1
3: f: 1.211734e+02 d:-2.19e+03 g: 3.61e+02 h: 7.48e-01 rho:-1.85e+01 mu: 6.40e-03 li: 1
4: f: 1.211734e+02 d:-2.02e+03 g: 3.61e+02 h: 7.22e-01 rho:-1.70e+01 mu: 1.02e-01 li: 1
5: f: 1.211734e+02 d:-7.34e+02 g: 3.61e+02 h: 5.78e-01 rho:-6.32e+00 mu: 3.28e+00 li: 1
6: f: 3.306595e+01 d: 8.81e+01 g: 4.10e+02 h: 3.18e-01 rho: 1.37e+00 mu: 1.09e+00 li: 1
7: f: 6.426770e+00 d: 2.66e+01 g: 1.81e+02 h: 1.29e-01 rho: 1.10e+00 mu: 3.64e-01 li: 1
8: f: 3.344546e+00 d: 3.08e+00 g: 5.51e+01 h: 3.05e-02 rho: 1.03e+00 mu: 1.21e-01 li: 1
9: f: 1.987485e+00 d: 1.36e+00 g: 2.33e+01 h: 8.87e-02 rho: 9.94e-01 mu: 4.05e-02 li: 1

10: f: 1.211585e+00 d: 7.76e-01 g: 8.22e+00 h: 1.05e-01 rho: 9.89e-01 mu: 1.35e-02 li: 1
11: f: 1.063265e+00 d: 1.48e-01 g: 1.44e+00 h: 6.06e-02 rho: 9.97e-01 mu: 4.49e-03 li: 1
12: f: 1.056795e+00 d: 6.47e-03 g: 1.18e-01 h: 1.47e-02 rho: 1.00e+00 mu: 1.50e-03 li: 1
13: f: 1.056751e+00 d: 4.39e-05 g: 3.79e-03 h: 1.28e-03 rho: 1.00e+00 mu: 4.99e-04 li: 1
Ceres Solver Report: Iterations: 13, Initial cost: 1.211734e+02, \
Final cost: 1.056751e+00, Termination: FUNCTION_TOLERANCE.
Initial m: 0 c: 0
Final m: 0.291861 c: 0.131439

Starting from parameter values m = 0, c = 0 with an initial objective function value of 121.173 Ceres
finds a solution m = 0.291861, c = 0.131439 with an objective function value of 1.05675. These values
are a a bit different than the parameters of the original model m = 0.3, c = 0.1, but this is expected.
When reconstructing a curve from noisy data, we expect to see such deviations. Indeed, if you were to
evaluate the objective function for m = 0.3, c = 0.1, the fit is worse with an objective function value of
1.082425. Figure 9 illustrates the fit.

CHAPTER 9. FITTING A CURVE TO DATA 33

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5

y

x

Ground Truth Curve
Observations
Fitted Curve

Least squares data fitting to the curve y= e0.3x+0.1. Observations were generated by sampling this curve uniformly
in the interval x = (0,5) and adding Gaussian noise with σ= 0.2.

BUNDLE ADJUSTMENT

One of the main reasons for writing Ceres was our need to solve large scale bundle adjustment prob-
lems [8, 23].

Given a set of measured image feature locations and correspondences, the goal of bundle adjustment
is to find 3D point positions and camera parameters that minimize the reprojection error. This op-
timization problem is usually formulated as a non-linear least squares problem, where the error is
the squared L2 norm of the difference between the observed feature location and the projection of the
corresponding 3D point on the image plane of the camera. Ceres has extensive support for solving
bundle adjustment problems.

Let us consider the solution of a problem from the BAL [1] dataset 1.

The first step as usual is to define a templated functor that computes the reprojection error/residual.
The structure of the functor is similar to the ExponentialResidual, in that there is an instance of
this object responsible for each image observation.

Each residual in a BAL problem depends on a three dimensional point and a nine parameter camera.
The nine parameters defining the camera can are: Three for rotation as a Rodriquez axis-angle vector,
three for translation, one for focal length and two for radial distortion. The details of this camera
model can be found on Noah Snavely’s Bundler homepage 2 and the BAL homepage 3.

1The code for this example can be found in examples/simple_bundle_adjuster.cc.
2http://phototour.cs.washington.edu/bundler/
3http://grail.cs.washington.edu/projects/bal/

34

http://phototour.cs.washington.edu/bundler/
http://grail.cs.washington.edu/projects/bal/

CHAPTER 10. BUNDLE ADJUSTMENT 35

struct SnavelyReprojectionError {
SnavelyReprojectionError(double observed_x, double observed_y)

: observed_x(observed_x), observed_y(observed_y) {}
template <typename T>
bool operator()(const T* const camera,

const T* const point,
T* residuals) const {

// camera[0,1,2] are the angle-axis rotation.
T p[3];
ceres::AngleAxisRotatePoint(camera, point, p);
// camera[3,4,5] are the translation.
p[0] += camera[3]; p[1] += camera[4]; p[2] += camera[5];

// Compute the center of distortion. The sign change comes from
// the camera model that Noah Snavely’s Bundler assumes, whereby
// the camera coordinate system has a negative z axis.
T xp = - p[0] / p[2];
T yp = - p[1] / p[2];

// Apply second and fourth order radial distortion.
const T& l1 = camera[7];
const T& l2 = camera[8];
T r2 = xp*xp + yp*yp;
T distortion = T(1.0) + r2 * (l1 + l2 * r2);

// Compute final projected point position.
const T& focal = camera[6];
T predicted_x = focal * distortion * xp;
T predicted_y = focal * distortion * yp;

// The error is the difference between the predicted and observed position.
residuals[0] = predicted_x - T(observed_x);
residuals[1] = predicted_y - T(observed_y);
return true;

}
double observed_x;
double observed_y;

};

CHAPTER 10. BUNDLE ADJUSTMENT 36

Note that unlike the examples before this is a non-trivial function and computing its analytic Ja-
cobian is a bit of a pain. Automatic differentiation makes our life very simple here. The function
AngleAxisRotatePoint and other functions for manipulating rotations can be found in include/ceres/rotation.h.

Given this functor, the bundle adjustment problem can be constructed as follows:

// Create residuals for each observation in the bundle adjustment problem. The
// parameters for cameras and points are added automatically.
ceres::Problem problem;
for (int i = 0; i < bal_problem.num_observations(); ++i) {

// Each Residual block takes a point and a camera as input and outputs a 2
// dimensional residual. Internally, the cost function stores the observed
// image location and compares the reprojection against the observation.
ceres::CostFunction* cost_function =

new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
new SnavelyReprojectionError(

bal_problem.observations()[2 * i + 0],
bal_problem.observations()[2 * i + 1]));

problem.AddResidualBlock(cost_function,
NULL /* squared loss */ ,
bal_problem.mutable_camera_for_observation(i),
bal_problem.mutable_point_for_observation(i));

}

Again note that that the problem construction for bundle adjustment is very similar to the curve fitting
example.

One way to solve this problem is to set Solver::Options::linear_solver_type to SPARSE_NORMAL_CHOLESKY
and call Solve. And while this is a reasonable thing to do, bundle adjustment problems have a special
sparsity structure that can be exploited to solve them much more efficiently. Ceres provides three
specialized solvers (collectively known as Schur based solvers) for this task. The example code uses
the simplest of them DENSE_SCHUR.

ceres::Solver::Options options;
options.linear_solver_type = ceres::DENSE_SCHUR;
options.minimizer_progress_to_stdout = true;
ceres::Solver::Summary summary;
ceres::Solve(options, &problem, &summary);
std::cout << summary.FullReport() << "\n";

CHAPTER 10. BUNDLE ADJUSTMENT 37

For a more sophisticated bundle adjustment example which demonstrates the use of Ceres’ more ad-
vanced features including its various linear solvers, robust loss functions and local parameterizations
see examples/bundle_adjuster.cc.

Part II

Reference

38

OVERVIEW

Ceres solves robustified non-linear least squares problems of the form

1
2

∑
i=1

ρ i

(∥∥ f i
(
xi1 , . . . , xik

)∥∥2
)
. (11.1)

Where f i(·) is a cost function that depends on the parameter blocks
[
xi1 , . . . , xik

]
and ρ i is a loss func-

tion. In most optimization problems small groups of scalars occur together. For example the three
components of a translation vector and the four components of the quaternion that define the pose of
a camera. We refer to such a group of small scalars as a Parameter Block. Of course a parameter
block can just have a single parameter. The term ρ i

(∥∥ f i
(
xi1 , . . . , xik

)∥∥2
)

is known as a Residual Block.
A Ceres problem is a collection of residual blocks, each of which depends on a subset of the parameter
blocks.

Solving problems using Ceres consists of two steps.

1. Modeling Define parameter blocks and residual blocks and build a Problem object containing
them.

2. Solving Configure and run the solver.

These two steps are mostly independent of each other. This is by design. Modeling the optimization
problem should not depend on how the solver and the user should be able to switch between various
solver settings and strategies without changing the way the problem is modeled. In the next two
chapters we will consider each of these steps in detail.

39

MODELING

12.1 costfunction

Given parameter blocks
[
xi1 , . . . , xik

]
, a CostFunction is responsible for computing a vector of residuals

and if asked a vector of Jacobian matrices, i.e., given
[
xi1 , . . . , xik

]
, compute the vector f i

(
xi1 , . . . , xik

)
and the matrices

Ji j = ∂

∂x j
f i

(
xi1 , . . . , xik

)
, ∀ j ∈ {i1, . . . , ik} (12.1)

class CostFunction {
public:
virtual bool Evaluate(double const* const* parameters,

double* residuals,
double** jacobians) = 0;

const vector<int16>& parameter_block_sizes();
int num_residuals() const;

protected:
vector<int16>* mutable_parameter_block_sizes();
void set_num_residuals(int num_residuals);

};

The signature of the function (number and sizes of input parameter blocks and number of outputs) is
stored in parameter_block_sizes_ and num_residuals_ respectively. User code inheriting from this
class is expected to set these two members with the corresponding accessors. This information will be
verified by the Problem when added with Problem::AddResidualBlock.

The most important method here is Evaluate. It implements the residual and Jacobian computation.

parameters is an array of pointers to arrays containing the various parameter blocks. parameters has
the same number of elements as parameter_block_sizes_. Parameter blocks are in the same order as
parameter_block_sizes_.

residuals is an array of size num_residuals_.

40

CHAPTER 12. MODELING 41

jacobians is an array of size parameter_block_sizes_ containing pointers to storage for Jacobian
matrices corresponding to each parameter block. The Jacobian matrices are in the same order as
parameter_block_sizes_. jacobians[i] is an array that contains num_residuals_× parameter_block_sizes_[i]
elements. Each Jacobian matrix is stored in row-major order, i.e.,

jacobians[i][r * parameter_block_size_[i] + c]= ∂residual[r]
∂parameters[i][c]

(12.2)

If jacobians is NULL, then no derivatives are returned; this is the case when computing cost only. If
jacobians[i] is NULL, then the Jacobian matrix corresponding to the ith parameter block must not be
returned, this is the case when the a parameter block is marked constant.

12.2 sizedcostfunction

If the size of the parameter blocks and the size of the residual vector is known at compile time (this
is the common case), Ceres provides SizedCostFunction, where these values can be specified as tem-
plate parameters.

template<int kNumResiduals,
int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, int N5 = 0>

class SizedCostFunction : public CostFunction {
public:
virtual bool Evaluate(double const* const* parameters,

double* residuals,
double** jacobians) = 0;

};

In this case the user only needs to implement the Evaluate method.

12.3 autodiffcostfunction

But even defining the SizedCostFunction can be a tedious affair if complicated derivative computa-
tions are involved. To this end Ceres provides automatic differentiation.

To get an auto differentiated cost function, you must define a class with a templated operator() (a
functor) that computes the cost function in terms of the template parameter T. The autodiff framework
substitutes appropriate Jet objects for T in order to compute the derivative when necessary, but this
is hidden, and you should write the function as if T were a scalar type (e.g. a double-precision floating
point number).

CHAPTER 12. MODELING 42

The function must write the computed value in the last argument (the only non-const one) and return
true to indicate success.

For example, consider a scalar error e = k − x>y, where both x and y are two-dimensional vector
parameters and k is a constant. The form of this error, which is the difference between a constant and
an expression, is a common pattern in least squares problems. For example, the value x>y might be
the model expectation for a series of measurements, where there is an instance of the cost function for
each measurement k.

The actual cost added to the total problem is e2, or (k− x>y)2; however, the squaring is implicitly done
by the optimization framework.

To write an auto-differentiable cost function for the above model, first define the object

class MyScalarCostFunction {
MyScalarCostFunction(double k): k_(k) {}
template <typename T>
bool operator()(const T* const x , const T* const y, T* e) const {

e[0] = T(k_) - x[0] * y[0] - x[1] * y[1];
return true;

}

private:
double k_;

};

Note that in the declaration of operator() the input parameters x and y come first, and are passed
as const pointers to arrays of T. If there were three input parameters, then the third input parameter
would come after y. The output is always the last parameter, and is also a pointer to an array. In the
example above, e is a scalar, so only e[0] is set.

Then given this class definition, the auto differentiated cost function for it can be constructed as
follows.

CostFunction* cost_function
= new AutoDiffCostFunction<MyScalarCostFunction, 1, 2, 2>(

new MyScalarCostFunction(1.0)); ^ ^ ^
| | |

Dimension of residual ------+ | |
Dimension of x ----------------+ |
Dimension of y -------------------+

CHAPTER 12. MODELING 43

In this example, there is usually an instance for each measurement of k.

In the instantiation above, the template parameters following MyScalarCostFunction, <1, 2, 2>
describe the functor as computing a 1-dimensional output from two arguments, both 2-dimensional.

The framework can currently accommodate cost functions of up to 6 independent variables, and there
is no limit on the dimensionality of each of them.

WARNING 1 Since the functor will get instantiated with different types for T, you must convert from
other numeric types to T before mixing computations with other variables of type T. In the example
above, this is seen where instead of using k_ directly, k_ is wrapped with T(k_).

WARNING 2 A common beginner’s error when first using AutoDiffCostFunction is to get the sizing
wrong. In particular, there is a tendency to set the template parameters to (dimension of residual,
number of parameters) instead of passing a dimension parameter for every parameter block. In the
example above, that would be <MyScalarCostFunction, 1, 2>, which is missing the 2 as the last
template argument.

Theory & Implementation

TBD

12.4 numericdiffcostfunction

To get a numerically differentiated cost function, define a subclass of CostFunction such that the
Evaluate function ignores the jacobian parameter. The numeric differentiation wrapper will fill in
the jacobians array if necessary by repeatedly calling the Evaluate method with small changes to
the appropriate parameters, and computing the slope. For performance, the numeric differentiation
wrapper class is templated on the concrete cost function, even though it could be implemented only in
terms of the virtual CostFunction interface.

template <typename CostFunctionNoJacobian,
NumericDiffMethod method = CENTRAL, int M = 0,
int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, int N5 = 0>

class NumericDiffCostFunction
: public SizedCostFunction<M, N0, N1, N2, N3, N4, N5> {

};

The numerically differentiated version of a cost function for a cost function can be constructed as
follows:

CHAPTER 12. MODELING 44

CostFunction* cost_function
= new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(

new MyCostFunction(...), TAKE_OWNERSHIP);

where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8 respectively. Look at
the tests for a more detailed example.

The central difference method is considerably more accurate at the cost of twice as many function
evaluations than forward difference. Consider using central differences begin with, and only after
that works, trying forward difference to improve performance.

12.5 lossfunction

For least squares problems where the minimization may encounter input terms that contain outliers,
that is, completely bogus measurements, it is important to use a loss function that reduces their
influence.

Consider a structure from motion problem. The unknowns are 3D points and camera parameters, and
the measurements are image coordinates describing the expected reprojected position for a point in a
camera. For example, we want to model the geometry of a street scene with fire hydrants and cars,
observed by a moving camera with unknown parameters, and the only 3D points we care about are the
pointy tippy-tops of the fire hydrants. Our magic image processing algorithm, which is responsible for
producing the measurements that are input to Ceres, has found and matched all such tippy-tops in all
image frames, except that in one of the frame it mistook a car’s headlight for a hydrant. If we didn’t do
anything special the residual for the erroneous measurement will result in the entire solution getting
pulled away from the optimum to reduce the large error that would otherwise be attributed to the
wrong measurement.

Using a robust loss function, the cost for large residuals is reduced. In the example above, this leads
to outlier terms getting down-weighted so they do not overly influence the final solution.

class LossFunction {
public:
virtual void Evaluate(double s, double out[3]) const = 0;

};

The key method is Evaluate, which given a non-negative scalar s, computes

out= [
ρ(s), ρ′(s), ρ′′(s)

]
(12.3)

CHAPTER 12. MODELING 45

Here the convention is that the contribution of a term to the cost function is given by 1
2ρ(s), where

s = ‖ f i‖2. Calling the method with a negative value of s is an error and the implementations are not
required to handle that case.

Most sane choices of ρ satisfy:

ρ(0)= 0 (12.4)

ρ′(0)= 1 (12.5)

ρ′(s)< 1 in the outlier region (12.6)

ρ′′(s)< 0 in the outlier region (12.7)

so that they mimic the squared cost for small residuals.

Scaling

Given one robustifier ρ(s) one can change the length scale at which robustification takes place, by
adding a scale factor a > 0 which gives us ρ(s,a) = a2ρ(s/a2) and the first and second derivatives as
ρ′(s/a2) and (1/a2)ρ′′(s/a2) respectively.

The reason for the appearance of squaring is that a is in the units of the residual vector norm whereas
s is a squared norm. For applications it is more convenient to specify a than its square.

Here are some common loss functions implemented in Ceres. For simplicity we described their un-
scaled versions. Figure 12.5 illustrates their shape graphically.

ρ(s)= s (NullLoss)

ρ(s)=
{

s s ≤ 1
2
p

s−1 s > 1
(HuberLoss)

ρ(s)= 2(
p

1+ s−1) (SoftLOneLoss)

ρ(s)= log(1+ s) (CauchyLoss)

Ceres includes a number of other loss functions, the descriptions and documentation for which can be
found in loss_function.h.

Theory & Implementation

Let us consider a problem with a single problem and a single parameter block.

min
x

1
2
ρ(f 2(x)) (12.8)

CHAPTER 12. MODELING 46

0

5

10

15

20

25

0 1 2 3 4 5

Lo
ss
Fu
nc
tio
n(
x2
)

x

NullLoss
HuberLoss

SoftLOneLoss
Cauchy

Shape of the various common loss functions.

Then, the robustified gradient and the Gauss-Newton Hessian are

g(x)= ρ′J>(x) f (x) (12.9)

H(x)= J>(x)
(
ρ′+2ρ′′ f (x) f >(x)

)
J(x) (12.10)

where the terms involving the second derivatives of f (x) have been ignored. Note that H(x) is indefinite
if ρ′′ f (x)> f (x)+ 1

2ρ
′ < 0. If this is not the case, then its possible to re-weight the residual and the

Jacobian matrix such that the corresponding linear least squares problem for the robustified Gauss-
Newton step.

CHAPTER 12. MODELING 47

Let α be a root of
1
2
α2 −α− ρ′′

ρ′
‖ f (x)‖2 = 0. (12.11)

Then, define the rescaled residual and Jacobian as

f̃ (x)=
√
ρ′

1−α f (x) (12.12)

J̃(x)=
√
ρ′

(
1−α f (x) f >(x)

‖ f (x)‖2

)
J(x) (12.13)

In the case 2ρ′′ ‖ f (x)‖2+ρ′. 0, we limit α≤ 1−ε for some small ε. For more details see Triggs et al [23].

With this simple rescaling, one can use any Jacobian based non-linear least squares algorithm to
robustifed non-linear least squares problems.

12.6 localparameterization

Sometimes the parameters x can overparameterize a problem. In that case it is desirable to choose
a parameterization to remove the null directions of the cost. More generally, if x lies on a manifold
of a smaller dimension than the ambient space that it is embedded in, then it is numerically and
computationally more effective to optimize it using a parameterization that lives in the tangent space
of that manifold at each point.

For example, a sphere in three dimensions is a two dimensional manifold, embedded in a three dimen-
sional space. At each point on the sphere, the plane tangent to it defines a two dimensional tangent
space. For a cost function defined on this sphere, given a point x, moving in the direction normal to
the sphere at that point is not useful. Thus a better way to parameterize a point on a sphere is to
optimize over two dimensional vector ∆x in the tangent space at the point on the sphere point and
then "move" to the point x+∆x, where the move operation involves projecting back onto the sphere.
Doing so removes a redundant dimension from the optimization, making it numerically more robust
and efficient.

More generally we can define a function
x′ =�(x,∆x), (12.14)

where x′ has the same size as x, and ∆x is of size less than or equal to x. The function �, generalizes
the definition of vector addition. Thus it satisfies the identity

� (x,0)= x, ∀x. (12.15)

Instances of LocalParameterization implement the � operation and its derivative with respect to
∆x at ∆x = 0.

CHAPTER 12. MODELING 48

class LocalParameterization {
public:
virtual ~LocalParameterization() {}
virtual bool Plus(const double* x,

const double* delta,
double* x_plus_delta) const = 0;

virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0;
virtual int GlobalSize() const = 0;
virtual int LocalSize() const = 0;

};

GlobalSize is the dimension of the ambient space in which the parameter block x lives. LocalSize
is the size of the tangent space that ∆x lives in. Plus implements �(x,∆x) and ComputeJacobian
computes the Jacobian matrix

J = ∂

∂∆x
� (x,∆x)

∣∣∣∣
∆x=0

(12.16)

in row major form.

A trivial version of � is when delta is of the same size as x and

� (x,∆x)= x+∆x (12.17)

A more interesting case if x is a two dimensional vector, and the user wishes to hold the first coordinate
constant. Then, ∆x is a scalar and � is defined as

� (x,∆x)= x+
[

0
1

]
∆x (12.18)

SubsetParameterization generalizes this construction to hold any part of a parameter block con-
stant.

Another example that occurs commonly in Structure from Motion problems is when camera rotations
are parameterized using a quaternion. There, it is useful only to make updates orthogonal to that
4-vector defining the quaternion. One way to do this is to let ∆x be a 3 dimensional vector and define
� to be

� (x,∆x)=
[
cos(|∆x|), sin(|∆x|)

|∆x| ∆x
]
∗ x (12.19)

CHAPTER 12. MODELING 49

The multiplication between the two 4-vectors on the right hand side is the standard quaternion prod-
uct. QuaternionParameterization is an implementation of (12.19).

CHAPTER 12. MODELING 50

12.7 problem

class Problem {
public:
struct Options {

Options();
Ownership cost_function_ownership;
Ownership loss_function_ownership;
Ownership local_parameterization_ownership;

};

Problem();
explicit Problem(const Options& options);
~Problem();

ResidualBlockId AddResidualBlock(CostFunction* cost_function,
LossFunction* loss_function,
const vector<double*>& parameter_blocks);

void AddParameterBlock(double* values, int size);
void AddParameterBlock(double* values,

int size,
LocalParameterization* local_parameterization);

void SetParameterBlockConstant(double* values);
void SetParameterBlockVariable(double* values);
void SetParameterization(double* values,

LocalParameterization* local_parameterization);

int NumParameterBlocks() const;
int NumParameters() const;
int NumResidualBlocks() const;
int NumResiduals() const;

};

The Problem objects holds the robustified non-linear least squares problem (11.1). To create a least
squares problem, use the Problem::AddResidualBlock and Problem::AddParameterBlock methods.

For example a problem containing 3 parameter blocks of sizes 3, 4 and 5 respectively and two residual
blocks of size 2 and 6:

CHAPTER 12. MODELING 51

double x1[] = { 1.0, 2.0, 3.0 };
double x2[] = { 1.0, 2.0, 3.0, 5.0 };
double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 };

Problem problem;
problem.AddResidualBlock(new MyUnaryCostFunction(...), x1);
problem.AddResidualBlock(new MyBinaryCostFunction(...), x2, x3);

AddResidualBlock as the name implies, adds a residual block to the problem. It adds a cost function,
an optional loss function, and connects the cost function to a set of parameter blocks.

The cost function carries with it information about the sizes of the parameter blocks it expects. The
function checks that these match the sizes of the parameter blocks listed in parameter_blocks. The
program aborts if a mismatch is detected. loss_function can be NULL, in which case the cost of the
term is just the squared norm of the residuals.

The user has the option of explicitly adding the parameter blocks using AddParameterBlock. This
causes additional correctness checking; however, AddResidualBlock implicitly adds the parameter
blocks if they are not present, so calling AddParameterBlock explicitly is not required.

Problem by default takes ownership of the cost_function and loss_function pointers. These
objects remain live for the life of the Problem object. If the user wishes to keep control over the
destruction of these objects, then they can do this by setting the corresponding enums in the Options
struct.

Note that even though the Problem takes ownership of cost_function and loss_function, it does
not preclude the user from re-using them in another residual block. The destructor takes care to call
delete on each cost_function or loss_function pointer only once, regardless of how many residual
blocks refer to them.

AddParameterBlock explicitly adds a parameter block to the Problem. Optionally it allows the user to
associate a LocalParameterization object with the parameter block too. Repeated calls with the same
arguments are ignored. Repeated calls with the same double pointer but a different size results in
undefined behaviour.

You can set any parameter block to be constant using

Problem::SetParameterBlockConstant

and undo this using

Problem::SetParameterBlockVariable.

CHAPTER 12. MODELING 52

In fact you can set any number of parameter blocks to be constant, and Ceres is smart enough to
figure out what part of the problem you have constructed depends on the parameter blocks that are
free to change and only spends time solving it. So for example if you constructed a problem with a
million parameter blocks and 2 million residual blocks, but then set all but one parameter blocks to
be constant and say only 10 residual blocks depend on this one non-constant parameter block. Then
the computational effort Ceres spends in solving this problem will be the same if you had defined a
problem with one parameter block and 10 residual blocks.

Problem by default takes ownership of the cost_function, loss_function and
local_parameterization pointers. These objects remain live for the life of the Problem object. If the
user wishes to keep control over the destruction of these objects, then they can do this by setting the
corresponding enums in the Options struct. Even though Problem takes ownership of these point-
ers, it does not preclude the user from re-using them in another residual or parameter block. The
destructor takes care to call delete on each pointer only once.

SOLVING

Effective use of Ceres requires some familiarity with the basic components of a nonlinear least squares
solver, so before we describe how to configure the solver, we will begin by taking a brief look at how
some of the core optimization algorithms in Ceres work and the various linear solvers and precondi-
tioners that power it.

13.1 TRUST REGION METHODS

Let x ∈ Rn be an n-dimensional vector of variables, and F(x) = [f1(x), . . . , fm(x)]> be a m-dimensional
function of x. We are interested in solving the following optimization problem 1,

argmin
x

1
2
‖F(x)‖2 . (13.1)

Here, the Jacobian J(x) of F(x) is an m× n matrix, where Ji j(x) = ∂ j f i(x) and the gradient vector
g(x) = ∇1

2‖F(x)‖2 = J(x)>F(x). Since the efficient global optimization of (13.1) for general F(x) is an
intractable problem, we will have to settle for finding a local minimum.

The general strategy when solving non-linear optimization problems is to solve a sequence of approx-
imations to the original problem [17]. At each iteration, the approximation is solved to determine a
correction ∆x to the vector x. For non-linear least squares, an approximation can be constructed by
using the linearization F(x+∆x) ≈ F(x)+ J(x)∆x, which leads to the following linear least squares
problem:

min
∆x

1
2
‖J(x)∆x+F(x)‖2 (13.2)

Unfortunately, naïvely solving a sequence of these problems and updating x ← x+∆x leads to an
algorithm that may not converge. To get a convergent algorithm, we need to control the size of the
step ∆x. And this is where the idea of a trust-region comes in. Algorithm 13.1 describes the basic
trust-region loop for non-linear least squares problems.

Here, µ is the trust region radius, D(x) is some matrix used to define a metric on the domain of F(x)
and ρ measures the quality of the step ∆x, i.e., how well did the linear model predict the decrease in
the value of the non-linear objective. The idea is to increase or decrease the radius of the trust region
depending on how well the linearization predicts the behavior of the non-linear objective, which in
turn is reflected in the value of ρ.

1At the level of the non-linear solver, the block and residual structure is not relevant, therefore our discussion here is in
terms of an optimization problem defined over a state vector of size n.

53

CHAPTER 13. SOLVING 54

The basic trust-region algorithm.

Require: Initial point x and a trust region radius µ.
loop

Solve argmin∆x
1
2‖J(x)∆x+F(x)‖2 s.t. ‖D(x)∆x‖2 ≤µ

ρ = ‖F(x+∆x)‖2 −‖F(x)‖2

‖J(x)∆x+F(x)‖2 −‖F(x)‖2

if ρ > ε then
x = x+∆x

end if
if ρ > η1 then
ρ = 2∗ρ

else
if ρ < η2 then
ρ = 0.5∗ρ

end if
end if

end loop

The key computational step in a trust-region algorithm is the solution of the constrained optimization
problem

argmin
∆x

1
2
‖J(x)∆x+F(x)‖2 (13.3)

such that ‖D(x)∆x‖2 ≤µ (13.4)

There are a number of different ways of solving this problem, each giving rise to a different con-
crete trust-region algorithm. Currently Ceres, implements two trust-region algorithms - Levenberg-
Marquardt and Dogleg.

Levenberg-Marquardt

The Levenberg-Marquardt algorithm [10, 14] is the most popular algorithm for solving non-linear
least squares problems. It was also the first trust region algorithm to be developed [10, 14]. Ceres
implements an exact step [12] and an inexact step variant of the Levenberg-Marquardt algorithm [16,
25].

It can be shown, that the solution to (13.4) can be obtained by solving an unconstrained optimization

CHAPTER 13. SOLVING 55

of the form

argmin
∆x

1
2
‖J(x)∆x+F(x)‖2 +λ‖D(x)∆x‖2 (13.5)

Where, λ is a Lagrange multiplier that is inverse related to µ. In Ceres, we solve for

argmin
∆x

1
2
‖J(x)∆x+F(x)‖2 + 1

µ
‖D(x)∆x‖2 (13.6)

The matrix D(x) is a non-negative diagonal matrix, typically the square root of the diagonal of the
matrix J(x)>J(x).

Before going further, let us make some notational simplifications. We will assume that the matrixp
µD has been concatenated at the bottom of the matrix J and similarly a vector of zeros has been

added to the bottom of the vector f and the rest of our discussion will be in terms of J and f , i.e. the
linear least squares problem.

min
∆x

1
2
‖J(x)∆x+ f (x)‖2. (13.7)

For all but the smallest problems the solution of (13.7) in each iteration of the Levenberg-Marquardt
algorithm is the dominant computational cost in Ceres. Ceres provides a number of different options
for solving (13.7). There are two major classes of methods - factorization and iterative.

The factorization methods are based on computing an exact solution of (13.6) using a Cholesky or a QR
factorization and lead to an exact step Levenberg-Marquardt algorithm. But it is not clear if an exact
solution of (13.6) is necessary at each step of the LM algorithm to solve (13.1). In fact, we have already
seen evidence that this may not be the case, as (13.6) is itself a regularized version of (13.2). Indeed,
it is possible to construct non-linear optimization algorithms in which the linearized problem is solved
approximately. These algorithms are known as inexact Newton or truncated Newton methods [17].

An inexact Newton method requires two ingredients. First, a cheap method for approximately solving
systems of linear equations. Typically an iterative linear solver like the Conjugate Gradients method
is used for this purpose [17]. Second, a termination rule for the iterative solver. A typical termination
rule is of the form

‖H(x)∆x+ g(x)‖ ≤ ηk‖g(x)‖. (13.8)

Here, k indicates the Levenberg-Marquardt iteration number and 0 < ηk < 1 is known as the forcing
sequence. Wright & Holt [25] prove that a truncated Levenberg-Marquardt algorithm that uses an
inexact Newton step based on (13.8) converges for any sequence ηk ≤ η0 < 1 and the rate of convergence
depends on the choice of the forcing sequence ηk.

Ceres supports both exact and inexact step solution strategies. When the user chooses a factorization
based linear solver, the exact step Levenberg-Marquardt algorithm is used. When the user chooses an
iterative linear solver, the inexact step Levenberg-Marquardt algorithm is used.

CHAPTER 13. SOLVING 56

Dogleg

Another strategy for solving the trust region problem (13.4) was introduced by M. J. D. Powell. The
key idea there is to compute two vectors

∆xGauss-Newton = argmin
∆x

1
2
‖J(x)∆x+ f (x)‖2. (13.9)

∆xCauchy =− ‖g(x)‖2

‖J(x)g(x)‖2 g(x). (13.10)

Note that the vector ∆xGauss-Newton is the solution to (13.2) and ∆xCauchy is the vector that minimizes
the linear approximation if we restrict ourselves to moving along the direction of the gradient. Dogleg
methods finds a vector ∆x defined by ∆xGauss-Newton and ∆xCauchy that solves the trust region problem.
Ceres supports two variants.

TRADITIONAL_DOGLEG as described by Powell, constructs two line segments using the Gauss-Newton
and Cauchy vectors and finds the point farthest along this line shaped like a dogleg (hence the name)
that is contained in the trust-region. For more details on the exact reasoning and computations, please
see Madsen et al [12].

SUBSPACE_DOGLEG is a more sophisticated method that considers the entire two dimensional subspace
spanned by these two vectors and finds the point that minimizes the trust region problem in this
subspace[4].

The key advantage of the Dogleg over Levenberg Marquardt is that if the step computation for a
particular choice of µ does not result in sufficient decrease in the value of the objective function,
Levenberg-Marquardt solves the linear approximation from scratch with a smaller value of µ. Dogleg
on the other hand, only needs to compute the interpolation between the Gauss-Newton and the Cauchy
vectors, as neither of them depend on the value of µ.

The Dogleg method can only be used with the exact factorization based linear solvers.

Inner Iterations

Some non-linear least squares problems have additional structure in the way the parameter blocks
interact that it is beneficial to modify the way the trust region step is computed. e.g., consider the
following regression problem

y= a1eb1x +a2eb3x2+c1 (13.11)

Given a set of pairs {(xi, yi)}, the user wishes to estimate a1,a2,b1,b2, and c1.

CHAPTER 13. SOLVING 57

Notice that the expression on the left is linear in a1 and a2, and given any value for b1, b2 and c1,
it is possible to use linear regression to estimate the optimal values of a1 and a2. It’s possible to
analytically eliminate the variables a1 and a2 from the problem entirely. Problems like these are
known as separable least squares problem and the most famous algorithm for solving them is the
Variable Projection algorithm invented by Golub & Pereyra [7].

Similar structure can be found in the matrix factorization with missing data problem. There the
corresponding algorithm is known as Wiberg’s algorithm [24].

Ruhe & Wedin present an analysis of various algorithms for solving separable non-linear least squares
problems and refer to Variable Projection as Algorithm I in their paper [18].

Implementing Variable Projection is tedious and expensive. Ruhe & Wedin present a simpler algo-
rithm with comparable convergence properties, which they call Algorithm II. Algorithm II performs
an additional optimization step to estimate a1 and a2 exactly after computing a successful Newton
step.

This idea can be generalized to cases where the residual is not linear in a1 and a2, i.e.,

y= f1(a1, eb1x)+ f2(a2, eb3x2+c1) (13.12)

In this case, we solve for the trust region step for the full problem, and then use it as the starting
point to further optimize just a1 and a2. For the linear case, this amounts to doing a single linear least
squares solve. For non-linear problems, any method for solving the a1 and a2 optimization problems
will do. The only constraint on a1 and a2 (if they are two different parameter block) is that they do not
co-occur in a residual block.

This idea can be further generalized, by not just optimizing (a1,a2), but decomposing the graph corre-
sponding to the Hessian matrix’s sparsity structure into a collection of non-overlapping independent
sets and optimizing each of them.

Setting Solver::Options::use_inner_iterations to true enables the use of this non-linear gener-
alization of Ruhe & Wedin’s Algorithm II. This version of Ceres has a higher iteration complexity, but
also displays better convergence behavior per iteration.

Setting Solver::Options::num_threads to the maximum number possible is highly recommended.

Non-monotonic Steps

Note that the basic trust-region algorithm described in Algorithm 13.1 is a descent algorithm in that
they only accepts a point if it strictly reduces the value of the objective function.

CHAPTER 13. SOLVING 58

Relaxing this requirement allows the algorithm to be more efficient in the long term at the cost of
some local increase in the value of the objective function.

This is because allowing for non-decreasing objective function values in a princpled manner allows the
algorithm to “jump over boulders” as the method is not restricted to move into narrow valleys while
preserving its convergence properties.

Setting Solver::Options::use_nonmonotonic_steps to true enables the non-monotonic trust re-
gion algorithm as described by Conn, Gould & Toint in [6].

Even though the value of the objective function may be larger than the minimum value encountered
over the course of the optimization, the final parameters returned to the user are the ones correspond-
ing to the minimum cost over all iterations.

The option to take non-monotonic is available for all trust region strategies.

13.2 linearsolver

Recall that in both of the trust-region methods described above, the key computational cost is the
solution of a linear least squares problem of the form

min
∆x

1
2
‖J(x)∆x+ f (x)‖2. (13.13)

Let H(x) = J(x)>J(x) and g(x) = −J(x)> f (x). For notational convenience let us also drop the depen-
dence on x. Then it is easy to see that solving (13.13) is equivalent to solving the normal equations

H∆x = g (13.14)

Ceres provides a number of different options for solving (13.14).

DENSE_QR

For small problems (a couple of hundred parameters and a few thousand residuals) with relatively
dense Jacobians, DENSE_QR is the method of choice [2]. Let J = QR be the QR-decomposition of J,
where Q is an orthonormal matrix and R is an upper triangular matrix [22]. Then it can be shown
that the solution to (13.14) is given by

∆x∗ =−R−1Q> f (13.15)

Ceres uses Eigen’s dense QR factorization routines.

CHAPTER 13. SOLVING 59

DENSE_NORMAL_CHOLESKY & SPARSE_NORMAL_CHOLESKY

Large non-linear least square problems are usually sparse. In such cases, using a dense QR factoriza-
tion is inefficient. Let H = R>R be the Cholesky factorization of the normal equations, where R is an
upper triangular matrix, then the solution to (13.14) is given by

∆x∗ = R−1R−>g. (13.16)

The observant reader will note that the R in the Cholesky factorization of H is the same upper trian-
gular matrix R in the QR factorization of J. Since Q is an orthonormal matrix, J = QR implies that
J>J = R>Q>QR = R>R. There are two variants of Cholesky factorization – sparse and dense.

DENSE_NORMAL_CHOLESKY as the name implies performs a dense Cholesky factorization of the normal
equations. Ceres uses Eigen’s dense LDLT factorization routines.

SPARSE_NORMAL_CHOLESKY, as the name implies performs a sparse Cholesky factorization of the nor-
mal equations. This leads to substantial savings in time and memory for large sparse problems. Ceres
uses the sparse Cholesky factorization routines in Professor Tim Davis’ SuiteSparse or CXSparse
packages [5].

DENSE_SCHUR & SPARSE_SCHUR

While it is possible to use SPARSE_NORMAL_CHOLESKY to solve bundle adjustment problems, bundle
adjustment problem have a special structure, and a more efficient scheme for solving (13.14) can be
constructed.

Suppose that the SfM problem consists of p cameras and q points and the variable vector x has the
block structure x = [y1, . . . , yp, z1, . . . , zq]. Where, y and z correspond to camera and point parameters,
respectively. Further, let the camera blocks be of size c and the point blocks be of size s (for most
problems c = 6–9 and s = 3). Ceres does not impose any constancy requirement on these block sizes,
but choosing them to be constant simplifies the exposition.

A key characteristic of the bundle adjustment problem is that there is no term f i that includes two or
more point blocks. This in turn implies that the matrix H is of the form

H =
[

B E
E> C

]
, (13.17)

where, B ∈Rpc×pc is a block sparse matrix with p blocks of size c× c and C ∈Rqs×qs is a block diagonal
matrix with q blocks of size s× s. E ∈Rpc×qs is a general block sparse matrix, with a block of size c× s
for each observation. Let us now block partition ∆x = [∆y,∆z] and g = [v,w] to restate (13.14) as the
block structured linear system [

B E
E> C

][
∆y
∆z

]
=

[
v
w

]
, (13.18)

CHAPTER 13. SOLVING 60

and apply Gaussian elimination to it. As we noted above, C is a block diagonal matrix, with small
diagonal blocks of size s× s. Thus, calculating the inverse of C by inverting each of these blocks is
cheap. This allows us to eliminate ∆z by observing that ∆z = C−1(w−E>∆y), giving us[

B−EC−1E>]
∆y= v−EC−1w . (13.19)

The matrix
S = B−EC−1E> , (13.20)

is the Schur complement of C in H. It is also known as the reduced camera matrix, because the only
variables participating in (13.19) are the ones corresponding to the cameras. S ∈ Rpc×pc is a block
structured symmetric positive definite matrix, with blocks of size c× c. The block Si j corresponding to
the pair of images i and j is non-zero if and only if the two images observe at least one common point.

Now, (13.18) can be solved by first forming S, solving for ∆y, and then back-substituting ∆y to obtain
the value of ∆z. Thus, the solution of what was an n×n, n = pc+ qs linear system is reduced to the
inversion of the block diagonal matrix C, a few matrix-matrix and matrix-vector multiplies, and the
solution of block sparse pc× pc linear system (13.19). For almost all problems, the number of cameras
is much smaller than the number of points, p ¿ q, thus solving (13.19) is significantly cheaper than
solving (13.18). This is the Schur complement trick [3].

This still leaves open the question of solving (13.19). The method of choice for solving symmetric pos-
itive definite systems exactly is via the Cholesky factorization [22] and depending upon the structure
of the matrix, there are, in general, two options. The first is direct factorization, where we store and
factor S as a dense matrix [22]. This method has O(p2) space complexity and O(p3) time complexity
and is only practical for problems with up to a few hundred cameras. Ceres implements this strategy
as the DENSE_SCHUR solver.

But, S is typically a fairly sparse matrix, as most images only see a small fraction of the scene. This
leads us to the second option: sparse direct methods. These methods store S as a sparse matrix, use
row and column re-ordering algorithms to maximize the sparsity of the Cholesky decomposition, and
focus their compute effort on the non-zero part of the factorization [5]. Sparse direct methods, depend-
ing on the exact sparsity structure of the Schur complement, allow bundle adjustment algorithms to
significantly scale up over those based on dense factorization. Ceres implements this strategy as the
SPARSE_SCHUR solver.

CGNR

For general sparse problems, if the problem is too large for CHOLMOD or a sparse linear algebra library
is not linked into Ceres, another option is the CGNR solver. This solver uses the Conjugate Gradients
solver on the normal equations, but without forming the normal equations explicitly. It exploits the

CHAPTER 13. SOLVING 61

relation

Hx = J>Jx = J>(Jx) (13.21)

When the user chooses ITERATIVE_SCHUR as the linear solver, Ceres automatically switches from the
exact step algorithm to an inexact step algorithm.

ITERATIVE_SCHUR

Another option for bundle adjustment problems is to apply PCG to the reduced camera matrix S
instead of H. One reason to do this is that S is a much smaller matrix than H, but more importantly,
it can be shown that κ(S)≤ κ(H). Ceres implements PCG on S as the ITERATIVE_SCHUR solver. When
the user chooses ITERATIVE_SCHUR as the linear solver, Ceres automatically switches from the exact
step algorithm to an inexact step algorithm.

The cost of forming and storing the Schur complement S can be prohibitive for large problems. Indeed,
for an inexact Newton solver that computes S and runs PCG on it, almost all of its time is spent in
constructing S; the time spent inside the PCG algorithm is negligible in comparison. Because PCG
only needs access to S via its product with a vector, one way to evaluate Sx is to observe that

x1 = E>x

x2 = C−1x1

x3 = Ex2

x4 = Bx

Sx = x4 − x3 . (13.22)

Thus, we can run PCG on S with the same computational effort per iteration as PCG on H, while
reaping the benefits of a more powerful preconditioner. In fact, we do not even need to compute H,
(13.22) can be implemented using just the columns of J.

Equation (13.22) is closely related to Domain Decomposition methods for solving large linear systems
that arise in structural engineering and partial differential equations. In the language of Domain
Decomposition, each point in a bundle adjustment problem is a domain, and the cameras form the
interface between these domains. The iterative solution of the Schur complement then falls within the
sub-category of techniques known as Iterative Sub-structuring [15, 19].

13.3 PRECONDITIONER

The convergence rate of Conjugate Gradients for solving (13.14) depends on the distribution of eigen-
values of H [19]. A useful upper bound is

p
κ(H), where, κ(H)f is the condition number of the matrix

CHAPTER 13. SOLVING 62

H. For most bundle adjustment problems, κ(H) is high and a direct application of Conjugate Gradients
to (13.14) results in extremely poor performance.

The solution to this problem is to replace (13.14) with a preconditioned system. Given a linear system,
Ax = b and a preconditioner M the preconditioned system is given by M−1 Ax = M−1b. The result-
ing algorithm is known as Preconditioned Conjugate Gradients algorithm (PCG) and its worst case
complexity now depends on the condition number of the preconditioned matrix κ(M−1 A).

The computational cost of using a preconditioner M is the cost of computing M and evaluating the
product M−1 y for arbitrary vectors y. Thus, there are two competing factors to consider: How much of
H’s structure is captured by M so that the condition number κ(HM−1) is low, and the computational
cost of constructing and using M. The ideal preconditioner would be one for which κ(M−1 A)= 1. M = A
achieves this, but it is not a practical choice, as applying this preconditioner would require solving a
linear system equivalent to the unpreconditioned problem. It is usually the case that the more infor-
mation M has about H, the more expensive it is use. For example, Incomplete Cholesky factorization
based preconditioners have much better convergence behavior than the Jacobi preconditioner, but are
also much more expensive.

The simplest of all preconditioners is the diagonal or Jacobi preconditioner, i.e. , M = diag(A), which
for block structured matrices like H can be generalized to the block Jacobi preconditioner.

For ITERATIVE_SCHUR there are two obvious choices for block diagonal preconditioners for S. The
block diagonal of the matrix B [13] and the block diagonal S, i.e. the block Jacobi preconditioner for
S. Ceres’s implements both of these preconditioners and refers to them as JACOBI and SCHUR_JACOBI
respectively.

For bundle adjustment problems arising in reconstruction from community photo collections, more
effective preconditioners can be constructed by analyzing and exploiting the camera-point visibility
structure of the scene [9]. Ceres implements the two visibility based preconditioners described by
Kushal & Agarwal as CLUSTER_JACOBI and CLUSTER_TRIDIAGONAL. These are fairly new precondi-
tioners and Ceres’ implementation of them is in its early stages and is not as mature as the other
preconditioners described above.

13.4 ORDERING

The order in which variables are eliminated in a linear solver can have a significant of impact on the
efficiency and accuracy of the method. For example when doing sparse Cholesky factorization, there
are matrices for which a good ordering will give a Cholesky factor with O(n) storage, where as a bad
ordering will result in an completely dense factor.

Ceres allows the user to provide varying amounts of hints to the solver about the variable elimination
ordering to use. This can range from no hints, where the solver is free to decide the best ordering

CHAPTER 13. SOLVING 63

based on the user’s choices like the linear solver being used, to an exact order in which the variables
should be eliminated, and a variety of possibilities in between.

Instances of the ParameterBlockOrdering class are used to communicate this information to Ceres.

Formally an ordering is an ordered partitioning of the parameter blocks. Each parameter block belongs
to exactly one group, and each group has a unique integer associated with it, that determines its order
in the set of groups. We call these groups elimination groups.

Given such an ordering, Ceres ensures that the parameter blocks in the lowest numbered elimination
group are eliminated first, and then the parameter blocks in the next lowest numbered elimination
group and so on. Within each elimination group, Ceres is free to order the parameter blocks as it
chooses. e.g. Consider the linear system

x+ y= 3 (13.23)

2x+3y= 7 (13.24)

There are two ways in which it can be solved. First eliminating x from the two equations, solving for y
and then back substituting for x, or first eliminating y, solving for x and back substituting for y. The
user can construct three orderings here.

1. {0 : x}, {1 : y}: Eliminate x first.

2. {0 : y}, {1 : x}: Eliminate y first.

3. {0 : x, y}: Solver gets to decide the elimination order.

Thus, to have Ceres determine the ordering automatically using heuristics, put all the variables in the
same elimination group. The identity of the group does not matter. This is the same as not specifying
an ordering at all. To control the ordering for every variable, create an elimination group per variable,
ordering them in the desired order.

If the user is using one of the Schur solvers (DENSE_SCHUR, SPARSE_SCHUR, ITERATIVE_SCHUR) and
chooses to specify an ordering, it must have one important property. The lowest numbered elimination
group must form an independent set in the graph corresponding to the Hessian, or in other words,
no two parameter blocks in in the first elimination group should co-occur in the same residual block.
For the best performance, this elimination group should be as large as possible. For standard bundle
adjustment problems, this corresponds to the first elimination group containing all the 3d points, and
the second containing the all the cameras parameter blocks.

CHAPTER 13. SOLVING 64

If the user leaves the choice to Ceres, then the solver uses an approximate maximum independent set
algorithm to identify the first elimination group [11] .

13.5 solver::options

Solver::Options controls the overall behavior of the solver. We list the various settings and their
default values below.

1. trust_region_strategy_type (LEVENBERG_MARQUARDT) The trust region step computation al-
gorithm used by Ceres. Currently LEVENBERG_MARQUARDT and DOGLEG are the two valid choices.

2. dogleg_type (TRADITIONAL_DOGLEG) Ceres supports two different dogleg strategies. TRADITIONAL_DOGLEG
method by Powell and the SUBSPACE_DOGLEG method described by Byrd et al. [4]. See Sec-
tion 13.1 for more details.

3. use_nonmonotoic_steps (false) Relax the requirement that the trust-region algorithm take
strictly decreasing steps. See Section 13.1 for more details.

4. max_consecutive_nonmonotonic_steps (5) The window size used by the step selection algo-
rithm to accept non-monotonic steps.

5. max_num_iterations (50) Maximum number of iterations for Levenberg-Marquardt.

6. max_solver_time_in_seconds (109) Maximum amount of time for which the solver should
run.

7. num_threads (1) Number of threads used by Ceres to evaluate the Jacobian.

8. initial_trust_region_radius (104) The size of the initial trust region. When the LEVENBERG_MARQUARDT
strategy is used, the reciprocal of this number is the initial regularization parameter.

9. max_trust_region_radius (1016) The trust region radius is not allowed to grow beyond this
value.

10. min_trust_region_radius (10−32) The solver terminates, when the trust region becomes smaller
than this value.

11. min_relative_decrease (10−3) Lower threshold for relative decrease before a Levenberg-Marquardt
step is acceped.

12. lm_min_diagonal (106) The LEVENBERG_MARQUARDT strategy, uses a diagonal matrix to regular-
ize the the trust region step. This is the lower bound on the values of this diagonal matrix.

CHAPTER 13. SOLVING 65

13. lm_max_diagonal (1032) The LEVENBERG_MARQUARDT strategy, uses a diagonal matrix to regu-
larize the the trust region step. This is the upper bound on the values of this diagonal matrix.

14. max_num_consecutive_invalid_steps (5) The step returned by a trust region strategy can
sometimes be numerically invalid, usually because of conditioning issues. Instead of crashing
or stopping the optimization, the optimizer can go ahead and try solving with a smaller trust
region/better conditioned problem. This parameter sets the number of consecutive retries before
the minimizer gives up.

15. function_tolerance (10−6) Solver terminates if

|∆cost|
cost

< function_tolerance (13.25)

where, ∆cost is the change in objective function value (up or down) in the current iteration of
Levenberg-Marquardt.

16. Solver::Options::gradient_tolerance Solver terminates if

‖g(x)‖∞
‖g(x0)‖∞

< gradient_tolerance (13.26)

where ‖ ·‖∞ refers to the max norm, and x0 is the vector of initial parameter values.

17. parameter_tolerance (10−8) Solver terminates if

‖∆x‖
‖x‖+parameter_tolerance

< parameter_tolerance (13.27)

where∆x is the step computed by the linear solver in the current iteration of Levenberg-Marquardt.

18. linear_solver_type (SPARSE_NORMAL_CHOLESKY)

19. linear_solver_type (SPARSE_NORMAL_CHOLESKY/DENSE_QR) Type of linear solver used to com-
pute the solution to the linear least squares problem in each iteration of the Levenberg-Marquardt
algorithm. If Ceres is build with SuiteSparselinked in then the default is SPARSE_NORMAL_CHOLESKY,
it is DENSE_QR otherwise.

20. preconditioner_type (JACOBI) The preconditioner used by the iterative linear solver. The
default is the block Jacobi preconditioner. Valid values are (in increasing order of complexity)
IDENTITY,JACOBI, SCHUR_JACOBI, CLUSTER_JACOBI and CLUSTER_TRIDIAGONAL.

21. sparse_linear_algebra_library (SUITE_SPARSE) Ceres supports the use of two sparse linear
algebra libraries, SuiteSparse, which is enabled by setting this parameter to SUITE_SPARSE
and CXSparse, which can be selected by setting this parameter to CX_SPARSE. SuiteSparse

CHAPTER 13. SOLVING 66

is a sophisticated and complex sparse linear algebra library and should be used in general. If
your needs/platforms prevent you from using SuiteSparse, consider using CXSparse, which is a
much smaller, easier to build library. As can be expected, its performance on large problems is
not comparable to that of SuiteSparse.

22. num_linear_solver_threads (1) Number of threads used by the linear solver.

23. use_inner_iterations (false) Use a non-linear version of a simplified variable projection al-
gorithm. Essentially this amounts to doing a further optimization on each Newton/Trust region
step using a coordinate descent algorithm. For more details, see the discussion in 13.1

24. inner_iteration_ordering (NULL) If Solver::Options::inner_iterations is true, then the
user has two choices.

a) Let the solver heuristically decide which parameter blocks to optimize in each inner itera-
tion. To do this, set inner_iteration_ordering to NULL.

b) Specify a collection of of ordered independent sets. The lower numbered groups are opti-
mized before the higher number groups during the inner optimization phase. Each group
must be an independent set.

25. linear_solver_ordering (NULL) An instance of the ordering object informs the solver about
the desired order in which parameter blocks should be eliminated by the linear solvers. See
section 13.4 for more details.

If NULL, the solver is free to choose an ordering that it thinks is best. Note: currently, this option
only has an effect on the Schur type solvers, support for the SPARSE_NORMAL_CHOLESKY solver is
forth coming.

26. use_block_amd (true) By virtue of the modeling layer in Ceres being block oriented, all the
matrices used by Ceres are also block oriented. When doing sparse direct factorization of these
matrices, the fill-reducing ordering algorithms can either be run on the block or the scalar form
of these matrices. Running it on the block form exposes more of the super-nodal structure of the
matrix to the Cholesky factorization routines. This leads to substantial gains in factorization
performance. Setting this parameter to true, enables the use of a block oriented Approximate
Minimum Degree ordering algorithm. Settings it to false, uses a scalar AMD algorithm. This
option only makes sense when using sparse_linear_algebra_library = SUITE_SPARSE as it
uses the AMD package that is part of SuiteSparse.

27. linear_solver_min_num_iterations (1) Minimum number of iterations used by the linear
solver. This only makes sense when the linear solver is an iterative solver, e.g., ITERATIVE_SCHUR.

28. linear_solver_max_num_iterations (500) Minimum number of iterations used by the linear
solver. This only makes sense when the linear solver is an iterative solver, e.g., ITERATIVE_SCHUR.

CHAPTER 13. SOLVING 67

29. eta (10−1) Forcing sequence parameter. The truncated Newton solver uses this number to
control the relative accuracy with which the Newton step is computed. This constant is passed
to ConjugateGradientsSolver which uses it to terminate the iterations when

Q i −Q i−1

Q i
< η

i
(13.28)

30. jacobi_scaling (true) true means that the Jacobian is scaled by the norm of its columns
before being passed to the linear solver. This improves the numerical conditioning of the normal
equations.

31. logging_type (PER_MINIMIZER_ITERATION)

32. minimizer_progress_to_stdout (false) By default the Minimizer progress is logged to STDERR
depending on the vlog level. If this flag is set to true, and logging_type is not SILENT, the
logging output is sent to STDOUT.

33. return_initial_residuals (false)

34. return_final_residuals (false) If true, the vectors Solver::Summary::initial_residuals
and Solver::Summary::final_residuals are filled with the residuals before and after the
optimization. The entries of these vectors are in the order in which ResidualBlocks were added
to the Problem object.

35. return_initial_gradient (false)

36. return_final_gradient (false) If true, the vectors Solver::Summary::initial_gradient
and Solver::Summary::final_gradient are filled with the gradient before and after the opti-
mization. The entries of these vectors are in the order in which ParameterBlocks were added to
the Problem object.

Since AddResidualBlock adds ParameterBlocks to the Problem automatically if they do not
already exist, if you wish to have explicit control over the ordering of the vectors, then use
Problem::AddParameterBlock to explicitly add the ParameterBlocks in the order desired.

37. return_initial_jacobian (false)

38. return_initial_jacobian (false) If true, the Jacobian matrices before and after the optimiza-
tion are returned in Solver::Summary::initial_jacobian and Solver::Summary::final_jacobian
respectively.

The rows of these matrices are in the same order in which the ResidualBlocks were added to the
Problem object. The columns are in the same order in which the ParameterBlocks were added
to the Problem object.

CHAPTER 13. SOLVING 68

Since AddResidualBlock adds ParameterBlocks to the Problem automatically if they do not
already exist, if you wish to have explicit control over the column ordering of the matrix, then
use Problem::AddParameterBlock to explicitly add the ParameterBlocks in the order desired.

The Jacobian matrices are stored as compressed row sparse matrices. Please see ceres/crs_matrix.h
for more details of the format.

39. lsqp_iterations_to_dump List of iterations at which the optimizer should dump the linear
least squares problem to disk. Useful for testing and benchmarking. If empty (default), no
problems are dumped.

40. lsqp_dump_directory (/tmp) If lsqp_iterations_to_dump is non-empty, then this setting de-
termines the directory to which the files containing the linear least squares problems are written
to.

41. lsqp_dump_format (TEXTFILE) The format in which linear least squares problems should be
logged when lsqp_iterations_to_dump is non-empty. There are three options

• CONSOLE prints the linear least squares problem in a human readable format to stderr.
The Jacobian is printed as a dense matrix. The vectors D, x and f are printed as dense
vectors. This should only be used for small problems.

• PROTOBUF Write out the linear least squares problem to the directory pointed to by lsqp_dump_directory
as a protocol buffer. linear_least_squares_problems.h/cc contains routines for loading
these problems. For details on the on disk format used, see matrix.proto. The files are
named lm_iteration_???.lsqp. This requires that protobuf be linked into Ceres Solver.

• TEXTFILE Write out the linear least squares problem to the directory pointed to by lsqp_dump_directory
as text files which can be read into MATLAB/Octave. The Jacobian is dumped as a text file
containing (i, j, s) triplets, the vectors D, x and f are dumped as text files containing a list
of their values.
A MATLAB/Octave script called lm_iteration_???.m is also output, which can be used to
parse and load the problem into memory.

42. check_gradients (false) Check all Jacobians computed by each residual block with finite dif-
ferences. This is expensive since it involves computing the derivative by normal means (e.g. user
specified, autodiff, etc), then also computing it using finite differences. The results are compared,
and if they differ substantially, details are printed to the log.

43. gradient_check_relative_precision (10−8) Relative precision to check for in the gradient
checker. If the relative difference between an element in a Jacobian exceeds this number, then
the Jacobian for that cost term is dumped.

CHAPTER 13. SOLVING 69

44. numeric_derivative_relative_step_size (10−6) Relative shift used for taking numeric deriva-
tives. For finite differencing, each dimension is evaluated at slightly shifted values, e.g. for
forward differences, the numerical derivative is

δ= numeric_derivative_relative_step_size (13.29)

∆ f = f ((1+δ)x)− f (x)
δx

(13.30)

The finite differencing is done along each dimension. The reason to use a relative (rather than
absolute) step size is that this way, numeric differentiation works for functions where the argu-
ments are typically large (e.g. 109) and when the values are small (e.g. 10−5). It is possible to
construct "torture cases" which break this finite difference heuristic, but they do not come up
often in practice.

45. callbacks Callbacks that are executed at the end of each iteration of the Minimizer. They
are executed in the order that they are specified in this vector. By default, parameter blocks are
updated only at the end of the optimization, i.e when the Minimizer terminates. This behavior
is controlled by update_state_every_variable. If the user wishes to have access to the update
parameter blocks when his/her callbacks are executed, then set update_state_every_iteration
to true.

The solver does NOT take ownership of these pointers.

46. update_state_every_iteration (false) Normally the parameter blocks are only updated when
the solver terminates. Setting this to true update them in every iteration. This setting is useful
when building an interactive application using Ceres and using an IterationCallback.

47. solver_log If non-empty, a summary of the execution of the solver is recorded to this file. This
file is used for recording and Ceres’ performance. Currently, only the iteration number, total
time and the objective function value are logged. The format of this file is expected to change
over time as the performance evaluation framework is fleshed out.

13.6 solver::summary

TBD

FREQUENTLY ASKED QUESTIONS

1. Why does Ceres use blocks (ParameterBlocks and ResidualBlocks) ?

Most non-linear solvers we are aware of, define the problem and residuals in terms of scalars
and it is possible to do this with Ceres also. However, it is our experience that in most problems
small groups of scalars occur together. For example the three components of a translation vector
and the four components of the quaternion that define the pose of a camera. Same is true for
residuals, where it is common to have small vectors of residuals rather than just scalars. There
are a number of advantages of using blocks. It saves on indexing information, which for large
problems can be substantial. Blocks translate into contiguous storage in memory which is more
cache friendly and last but not the least, it allows us to use SIMD/SSE based BLAS routines to
significantly speed up various matrix operations.

2. What is a good ParameterBlock?

In most problems there is a natural parameter block structure, as there is a semantic mean-
ing associated with groups of scalars – mean vector of a distribution, color of a pixel etc. To
group two scalar variables, ask yourself if residual blocks will always use these two variables
together. If the answer is yes, then the two variables belong to the same parameter block.

3. What is a good ResidualBlock?

While it is often the case that problems have a natural blocking of parameters into parame-
ter blocks, it is not always clear what a good residual block structure is. One rule of thumb for
non-linear least squares problems since they often come from data fitting problems is to create
one residual block per observation. So if you are solving a Structure from Motion problem, one 2
dimensional residual block per 2d image projection is a good idea.

The flips side is that sometimes, when modeling the problem it is tempting to group a large num-
ber of residuals together into a single residual block as it reduces the number of CostFunctions
you have to define.

For example consider the following residual block of size 18 which depends on four parameter
blocks of size 4 each. Shown below is the Jacobian structure of this residual block, the numbers
in the columns indicate the size, and the numbers in the rows show a grouping of the matrix
that best capture its sparsity structure. X indicates a non-zero block, the rest of the blocks are
zero.

70

CHAPTER 14. FREQUENTLY ASKED QUESTIONS 71

4 4 4 4
2 X X X X
4 X
4 X
4 X
4 X

Notice that out of the 20 cells, only 8 are non-zero, in fact out of the 288 entries only 48 entries
are non-zero, thus we are hiding substantial sparsity from the solver, and using up much more
memory. It is much better to break this up into 5 residual blocks. One residual block of size 2
that depends on all four parameter block and four residual blocks of size 4 each that depend on
one parameter block at a time.

4. Can I set part of a parameter block constant?

Yes, use SubsetParameterization as a local parameterization for the parameter block of in-
terest. See local_parameterization.h for more details.

5. Can Ceres solve constrained non-linear least squares?

Not at this time. We have some ideas on how to do this, but we have not had very many re-
quests to justify the effort involved. If you have a problem that requires such a functionality we
would like to hear about it as it will help us decide directions for future work. In the meanwhile,
if you are interested in solving bounds constrained problems, consider using some of the tricks
described by John D’Errico in his fminsearchbnd toolkit 1.

6. Can Ceres solve problems that cannot be written as robustified non-linear least squares?

No. Ceres was designed from the grounds up to be a non-linear least squares solver. Currently
we have no plans of extending it into a general purpose non-linear solver.

1http://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd

http://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd

FURTHER READING

For a short but informative introduction to the subject we recommend the booklet by Madsel et
al. [12]. For a general introduction to non-linear optimization we recommend the text by Nocedal
& Wright [17]. Björck’s book remains the seminal reference on least squares problems [2]. Trefethen
& Bau’s book is our favourite text on introductory numerical linear algebra [22]. Triggs et al., provide
a thorough coverage of the bundle adjustment problem [23].

72

BIBLIOGRAPHY

[1] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle adjustment in the large. In Proceed-
ings of the European Conference on Computer Vision, pages 29–42, 2010.

[2] A. Björck. Numerical methods for least squares problems. SIAM, 1996.

[3] D. C. Brown. A solution to the general problem of multiple station analytical stereo triangulation.
Technical Report 43, Patrick Airforce Base, Florida, 1958.

[4] R.H. Byrd, R.B. Schnabel, and G.A. Shultz. Approximate solution of the trust region problem
by minimization over two-dimensional subspaces. Mathematical programming, 40(1):247–263,
1988.

[5] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887: CHOLMOD, Supernodal
Sparse Cholesky Factorization and Update/Downdate. TOMS, 35(3), 2008.

[6] A.R. Conn, N.I.M. Gould, and P.L. Toint. Trust-region methods, volume 1. Society for Industrial
Mathematics, 2000.

[7] G.H. Golub and V. Pereyra. The differentiation of pseudo-inverses and nonlinear least squares
problems whose variables separate. SIAM Journal on numerical analysis, 10(2):413–432, 1973.

[8] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge Univer-
sity Press, 2003.

[9] A. Kushal and S. Agarwal. Visibility based preconditioning for bundle adjustment. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[10] K. Levenberg. A method for the solution of certain nonlinear problems in least squares. Quart.
Appl. Math, 2(2):164–168, 1944.

[11] Na Li and Y. Saad. Miqr: A multilevel incomplete qr preconditioner for large sparse least-squares
problems. SIAM Journal on Matrix Analysis and Applications, 28(2):524–550, 2007.

[12] K. Madsen, H.B. Nielsen, and O. Tingleff. Methods for non-linear least squares problems. 2004.

[13] J. Mandel. On block diagonal and Schur complement preconditioning. Numer. Math., 58(1):79–93,
1990.

[14] D.W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. J. SIAM,
11(2):431–441, 1963.

73

BIBLIOGRAPHY 74

[15] T.P.A. Mathew. Domain decomposition methods for the numerical solution of partial differential
equations. Springer Verlag, 2008.

[16] S.G. Nash and A. Sofer. Assessing a search direction within a truncated-newton method. Opera-
tions Research Letters, 9(4):219–221, 1990.

[17] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2000.

[18] A. Ruhe and P.Å. Wedin. Algorithms for separable nonlinear least squares problems. Siam
Review, 22(3):318–337, 1980.

[19] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[20] S.M. Stigler. Gauss and the invention of least squares. The Annals of Statistics, 9(3):465–474,
1981.

[21] J. Tennenbaum and B. Director. How Gauss Determined the Orbit of Ceres.

[22] L.N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.

[23] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle Adjustment - A Modern
Synthesis. In Vision Algorithms, pages 298–372, 1999.

[24] T. Wiberg. Computation of principal components when data are missing. In Proc. Second Symp.
Computational Statistics, pages 229–236, 1976.

[25] S. J. Wright and J. N. Holt. An Inexact Levenberg-Marquardt Method for Large Sparse Nonlinear
Least Squares. Journal of the Australian Mathematical Society Series B, 26(4):387–403, 1985.

