// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2014 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // Bounds constrained test problems from the paper // // Testing Unconstrained Optimization Software // Jorge J. More, Burton S. Garbow and Kenneth E. Hillstrom // ACM Transactions on Mathematical Software, 7(1), pp. 17-41, 1981 // // A subset of these problems were augmented with bounds and used for // testing bounds constrained optimization algorithms by // // A Trust Region Approach to Linearly Constrained Optimization // David M. Gay // Numerical Analysis (Griffiths, D.F., ed.), pp. 72-105 // Lecture Notes in Mathematics 1066, Springer Verlag, 1984. // // The latter paper is behind a paywall. We obtained the bounds on the // variables and the function values at the global minimums from // // http://www.mat.univie.ac.at/~neum/glopt/bounds.html // // A problem is considered solved if of the log relative error of its // objective function is at least 5. #include #include // NOLINT #include "ceres/ceres.h" #include "gflags/gflags.h" #include "glog/logging.h" namespace ceres { namespace examples { const double kDoubleMax = std::numeric_limits::max(); #define BEGIN_MGH_PROBLEM(name, num_parameters, num_residuals) \ struct name { \ static const int kNumParameters = num_parameters; \ static const double initial_x[kNumParameters]; \ static const double lower_bounds[kNumParameters]; \ static const double upper_bounds[kNumParameters]; \ static const double constrained_optimal_cost; \ static const double unconstrained_optimal_cost; \ static CostFunction* Create() { \ return new AutoDiffCostFunction(new name); \ } \ template \ bool operator()(const T* const x, T* residual) const { #define END_MGH_PROBLEM return true; } }; // NOLINT // Rosenbrock function. BEGIN_MGH_PROBLEM(TestProblem1, 2, 2) const T x1 = x[0]; const T x2 = x[1]; residual[0] = T(10.0) * (x2 - x1 * x1); residual[1] = T(1.0) - x1; END_MGH_PROBLEM; const double TestProblem1::initial_x[] = {-1.2, 1.0}; const double TestProblem1::lower_bounds[] = {-kDoubleMax, -kDoubleMax}; const double TestProblem1::upper_bounds[] = {kDoubleMax, kDoubleMax}; const double TestProblem1::constrained_optimal_cost = std::numeric_limits::quiet_NaN(); const double TestProblem1::unconstrained_optimal_cost = 0.0; // Freudenstein and Roth function. BEGIN_MGH_PROBLEM(TestProblem2, 2, 2) const T x1 = x[0]; const T x2 = x[1]; residual[0] = T(-13.0) + x1 + ((T(5.0) - x2) * x2 - T(2.0)) * x2; residual[1] = T(-29.0) + x1 + ((x2 + T(1.0)) * x2 - T(14.0)) * x2; END_MGH_PROBLEM; const double TestProblem2::initial_x[] = {0.5, -2.0}; const double TestProblem2::lower_bounds[] = {-kDoubleMax, -kDoubleMax}; const double TestProblem2::upper_bounds[] = {kDoubleMax, kDoubleMax}; const double TestProblem2::constrained_optimal_cost = std::numeric_limits::quiet_NaN(); const double TestProblem2::unconstrained_optimal_cost = 0.0; // Powell badly scaled function. BEGIN_MGH_PROBLEM(TestProblem3, 2, 2) const T x1 = x[0]; const T x2 = x[1]; residual[0] = T(10000.0) * x1 * x2 - T(1.0); residual[1] = exp(-x1) + exp(-x2) - T(1.0001); END_MGH_PROBLEM; const double TestProblem3::initial_x[] = {0.0, 1.0}; const double TestProblem3::lower_bounds[] = {0.0, 1.0}; const double TestProblem3::upper_bounds[] = {1.0, 9.0}; const double TestProblem3::constrained_optimal_cost = 0.15125900e-9; const double TestProblem3::unconstrained_optimal_cost = 0.0; // Brown badly scaled function. BEGIN_MGH_PROBLEM(TestProblem4, 2, 3) const T x1 = x[0]; const T x2 = x[1]; residual[0] = x1 - T(1000000.0); residual[1] = x2 - T(0.000002); residual[2] = x1 * x2 - T(2.0); END_MGH_PROBLEM; const double TestProblem4::initial_x[] = {1.0, 1.0}; const double TestProblem4::lower_bounds[] = {0.0, 0.00003}; const double TestProblem4::upper_bounds[] = {1000000.0, 100.0}; const double TestProblem4::constrained_optimal_cost = 0.78400000e3; const double TestProblem4::unconstrained_optimal_cost = 0.0; // Beale function. BEGIN_MGH_PROBLEM(TestProblem5, 2, 3) const T x1 = x[0]; const T x2 = x[1]; residual[0] = T(1.5) - x1 * (T(1.0) - x2); residual[1] = T(2.25) - x1 * (T(1.0) - x2 * x2); residual[2] = T(2.625) - x1 * (T(1.0) - x2 * x2 * x2); END_MGH_PROBLEM; const double TestProblem5::initial_x[] = {1.0, 1.0}; const double TestProblem5::lower_bounds[] = {0.6, 0.5}; const double TestProblem5::upper_bounds[] = {10.0, 100.0}; const double TestProblem5::constrained_optimal_cost = 0.0; const double TestProblem5::unconstrained_optimal_cost = 0.0; // Jennrich and Sampson function. BEGIN_MGH_PROBLEM(TestProblem6, 2, 10) const T x1 = x[0]; const T x2 = x[1]; for (int i = 1; i <= 10; ++i) { residual[i - 1] = T(2.0) + T(2.0 * i) - exp(T(static_cast(i)) * x1) - exp(T(static_cast(i) * x2)); } END_MGH_PROBLEM; const double TestProblem6::initial_x[] = {1.0, 1.0}; const double TestProblem6::lower_bounds[] = {-kDoubleMax, -kDoubleMax}; const double TestProblem6::upper_bounds[] = {kDoubleMax, kDoubleMax}; const double TestProblem6::constrained_optimal_cost = std::numeric_limits::quiet_NaN(); const double TestProblem6::unconstrained_optimal_cost = 124.362; // Helical valley function. BEGIN_MGH_PROBLEM(TestProblem7, 3, 3) const T x1 = x[0]; const T x2 = x[1]; const T x3 = x[2]; const T theta = T(0.5 / M_PI) * atan(x2 / x1) + (x1 > 0.0 ? T(0.0) : T(0.5)); residual[0] = T(10.0) * (x3 - T(10.0) * theta); residual[1] = T(10.0) * (sqrt(x1 * x1 + x2 * x2) - T(1.0)); residual[2] = x3; END_MGH_PROBLEM; const double TestProblem7::initial_x[] = {-1.0, 0.0, 0.0}; const double TestProblem7::lower_bounds[] = {-100.0, -1.0, -1.0}; const double TestProblem7::upper_bounds[] = {0.8, 1.0, 1.0}; const double TestProblem7::constrained_optimal_cost = 0.99042212; const double TestProblem7::unconstrained_optimal_cost = 0.0; // Bard function BEGIN_MGH_PROBLEM(TestProblem8, 3, 15) const T x1 = x[0]; const T x2 = x[1]; const T x3 = x[2]; double y[] = {0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.10, 4.39}; for (int i = 1; i <=15; ++i) { const T u = T(static_cast(i)); const T v = T(static_cast(16 - i)); const T w = T(static_cast(std::min(i, 16 - i))); residual[i - 1] = T(y[i - 1]) - x1 + u / (v * x2 + w * x3); } END_MGH_PROBLEM; const double TestProblem8::initial_x[] = {1.0, 1.0, 1.0}; const double TestProblem8::lower_bounds[] = { -kDoubleMax, -kDoubleMax, -kDoubleMax}; const double TestProblem8::upper_bounds[] = { kDoubleMax, kDoubleMax, kDoubleMax}; const double TestProblem8::constrained_optimal_cost = std::numeric_limits::quiet_NaN(); const double TestProblem8::unconstrained_optimal_cost = 8.21487e-3; // Gaussian function. BEGIN_MGH_PROBLEM(TestProblem9, 3, 15) const T x1 = x[0]; const T x2 = x[1]; const T x3 = x[2]; const double y[] = {0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521, 0.3989, 0.3521, 0.2420, 0.1295, 0.0540, 0.0175, 0.0044, 0.0009}; for (int i = 0; i < 15; ++i) { const T t_i = T((8.0 - i - 1.0) / 2.0); const T y_i = T(y[i]); residual[i] = x1 * exp(-x2 * (t_i - x3) * (t_i - x3) / T(2.0)) - y_i; } END_MGH_PROBLEM; const double TestProblem9::initial_x[] = {0.4, 1.0, 0.0}; const double TestProblem9::lower_bounds[] = {0.398, 1.0, -0.5}; const double TestProblem9::upper_bounds[] = {4.2, 2.0, 0.1}; const double TestProblem9::constrained_optimal_cost = 0.11279300e-7; const double TestProblem9::unconstrained_optimal_cost = 0.112793e-7; // Meyer function. BEGIN_MGH_PROBLEM(TestProblem10, 3, 16) const T x1 = x[0]; const T x2 = x[1]; const T x3 = x[2]; const double y[] = {34780, 28610, 23650, 19630, 16370, 13720, 11540, 9744, 8261, 7030, 6005, 5147, 4427, 3820, 3307, 2872}; for (int i = 0; i < 16; ++i) { T t = T(45 + 5.0 * (i + 1)); residual[i] = x1 * exp(x2 / (t + x3)) - y[i]; } END_MGH_PROBLEM const double TestProblem10::initial_x[] = {0.02, 4000, 250}; const double TestProblem10::lower_bounds[] ={ -kDoubleMax, -kDoubleMax, -kDoubleMax}; const double TestProblem10::upper_bounds[] ={ kDoubleMax, kDoubleMax, kDoubleMax}; const double TestProblem10::constrained_optimal_cost = std::numeric_limits::quiet_NaN(); const double TestProblem10::unconstrained_optimal_cost = 87.9458; #undef BEGIN_MGH_PROBLEM #undef END_MGH_PROBLEM template string ConstrainedSolve() { double x[TestProblem::kNumParameters]; std::copy(TestProblem::initial_x, TestProblem::initial_x + TestProblem::kNumParameters, x); Problem problem; problem.AddResidualBlock(TestProblem::Create(), NULL, x); for (int i = 0; i < TestProblem::kNumParameters; ++i) { problem.SetParameterLowerBound(x, i, TestProblem::lower_bounds[i]); problem.SetParameterUpperBound(x, i, TestProblem::upper_bounds[i]); } Solver::Options options; options.parameter_tolerance = 1e-18; options.function_tolerance = 1e-18; options.gradient_tolerance = 1e-18; options.max_num_iterations = 1000; options.linear_solver_type = DENSE_QR; Solver::Summary summary; Solve(options, &problem, &summary); const double kMinLogRelativeError = 5.0; const double log_relative_error = -std::log10( std::abs(2.0 * summary.final_cost - TestProblem::constrained_optimal_cost) / (TestProblem::constrained_optimal_cost > 0.0 ? TestProblem::constrained_optimal_cost : 1.0)); return (log_relative_error >= kMinLogRelativeError ? "Success\n" : "Failure\n"); } template string UnconstrainedSolve() { double x[TestProblem::kNumParameters]; std::copy(TestProblem::initial_x, TestProblem::initial_x + TestProblem::kNumParameters, x); Problem problem; problem.AddResidualBlock(TestProblem::Create(), NULL, x); Solver::Options options; options.parameter_tolerance = 1e-18; options.function_tolerance = 0.0; options.gradient_tolerance = 1e-18; options.max_num_iterations = 1000; options.linear_solver_type = DENSE_QR; Solver::Summary summary; Solve(options, &problem, &summary); const double kMinLogRelativeError = 5.0; const double log_relative_error = -std::log10( std::abs(2.0 * summary.final_cost - TestProblem::unconstrained_optimal_cost) / (TestProblem::unconstrained_optimal_cost > 0.0 ? TestProblem::unconstrained_optimal_cost : 1.0)); return (log_relative_error >= kMinLogRelativeError ? "Success\n" : "Failure\n"); } } // namespace examples } // namespace ceres int main(int argc, char** argv) { google::ParseCommandLineFlags(&argc, &argv, true); google::InitGoogleLogging(argv[0]); using ceres::examples::UnconstrainedSolve; using ceres::examples::ConstrainedSolve; #define UNCONSTRAINED_SOLVE(n) \ std::cout << "Problem " << n << " : " \ << UnconstrainedSolve(); #define CONSTRAINED_SOLVE(n) \ std::cout << "Problem " << n << " : " \ << ConstrainedSolve(); std::cout << "Unconstrained problems\n"; UNCONSTRAINED_SOLVE(1); UNCONSTRAINED_SOLVE(2); UNCONSTRAINED_SOLVE(3); UNCONSTRAINED_SOLVE(4); UNCONSTRAINED_SOLVE(5); UNCONSTRAINED_SOLVE(6); UNCONSTRAINED_SOLVE(7); UNCONSTRAINED_SOLVE(8); UNCONSTRAINED_SOLVE(9); UNCONSTRAINED_SOLVE(10); std::cout << "\nConstrained problems\n"; CONSTRAINED_SOLVE(3); CONSTRAINED_SOLVE(4); CONSTRAINED_SOLVE(5); CONSTRAINED_SOLVE(7); CONSTRAINED_SOLVE(9); return 0; }