// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // Interface for and implementation of various Line search algorithms. #ifndef CERES_INTERNAL_LINE_SEARCH_H_ #define CERES_INTERNAL_LINE_SEARCH_H_ #ifndef CERES_NO_LINE_SEARCH_MINIMIZER #include #include #include "ceres/internal/eigen.h" #include "ceres/internal/port.h" #include "ceres/types.h" namespace ceres { namespace internal { class Evaluator; struct FunctionSample; // Line search is another name for a one dimensional optimization // algorithm. The name "line search" comes from the fact one // dimensional optimization problems that arise as subproblems of // general multidimensional optimization problems. // // While finding the exact minimum of a one dimensionl function is // hard, instances of LineSearch find a point that satisfies a // sufficient decrease condition. Depending on the particular // condition used, we get a variety of different line search // algorithms, e.g., Armijo, Wolfe etc. class LineSearch { public: class Function; struct Options { Options() : interpolation_type(CUBIC), sufficient_decrease(1e-4), max_step_contraction(1e-3), min_step_contraction(0.9), min_step_size(1e-9), max_num_iterations(20), sufficient_curvature_decrease(0.9), max_step_expansion(10.0), function(NULL) {} // Degree of the polynomial used to approximate the objective // function. LineSearchInterpolationType interpolation_type; // Armijo and Wolfe line search parameters. // Solving the line search problem exactly is computationally // prohibitive. Fortunately, line search based optimization // algorithms can still guarantee convergence if instead of an // exact solution, the line search algorithm returns a solution // which decreases the value of the objective function // sufficiently. More precisely, we are looking for a step_size // s.t. // // f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size double sufficient_decrease; // In each iteration of the Armijo / Wolfe line search, // // new_step_size >= max_step_contraction * step_size // // Note that by definition, for contraction: // // 0 < max_step_contraction < min_step_contraction < 1 // double max_step_contraction; // In each iteration of the Armijo / Wolfe line search, // // new_step_size <= min_step_contraction * step_size // Note that by definition, for contraction: // // 0 < max_step_contraction < min_step_contraction < 1 // double min_step_contraction; // If during the line search, the step_size falls below this // value, it is truncated to zero. double min_step_size; // Maximum number of trial step size iterations during each line search, // if a step size satisfying the search conditions cannot be found within // this number of trials, the line search will terminate. int max_num_iterations; // Wolfe-specific line search parameters. // The strong Wolfe conditions consist of the Armijo sufficient // decrease condition, and an additional requirement that the // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe // conditions) of the gradient along the search direction // decreases sufficiently. Precisely, this second condition // is that we seek a step_size s.t. // // |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)| // // Where f() is the line search objective and f'() is the derivative // of f w.r.t step_size (d f / d step_size). double sufficient_curvature_decrease; // During the bracketing phase of the Wolfe search, the step size is // increased until either a point satisfying the Wolfe conditions is // found, or an upper bound for a bracket containing a point satisfying // the conditions is found. Precisely, at each iteration of the // expansion: // // new_step_size <= max_step_expansion * step_size. // // By definition for expansion, max_step_expansion > 1.0. double max_step_expansion; // The one dimensional function that the line search algorithm // minimizes. Function* function; }; // An object used by the line search to access the function values // and gradient of the one dimensional function being optimized. // // In practice, this object will provide access to the objective // function value and the directional derivative of the underlying // optimization problem along a specific search direction. // // See LineSearchFunction for an example implementation. class Function { public: virtual ~Function() {} // Evaluate the line search objective // // f(x) = p(position + x * direction) // // Where, p is the objective function of the general optimization // problem. // // g is the gradient f'(x) at x. // // f must not be null. The gradient is computed only if g is not null. virtual bool Evaluate(double x, double* f, double* g) = 0; }; // Result of the line search. struct Summary { Summary() : success(false), optimal_step_size(0.0), num_function_evaluations(0), num_gradient_evaluations(0), num_iterations(0) {} bool success; double optimal_step_size; int num_function_evaluations; int num_gradient_evaluations; int num_iterations; string error; }; explicit LineSearch(const LineSearch::Options& options); virtual ~LineSearch() {} static LineSearch* Create(const LineSearchType line_search_type, const LineSearch::Options& options, string* error); // Perform the line search. // // step_size_estimate must be a positive number. // // initial_cost and initial_gradient are the values and gradient of // the function at zero. // summary must not be null and will contain the result of the line // search. // // Summary::success is true if a non-zero step size is found. virtual void Search(double step_size_estimate, double initial_cost, double initial_gradient, Summary* summary) = 0; double InterpolatingPolynomialMinimizingStepSize( const LineSearchInterpolationType& interpolation_type, const FunctionSample& lowerbound_sample, const FunctionSample& previous_sample, const FunctionSample& current_sample, const double min_step_size, const double max_step_size) const; protected: const LineSearch::Options& options() const { return options_; } private: LineSearch::Options options_; }; class LineSearchFunction : public LineSearch::Function { public: explicit LineSearchFunction(Evaluator* evaluator); virtual ~LineSearchFunction() {} void Init(const Vector& position, const Vector& direction); virtual bool Evaluate(double x, double* f, double* g); double DirectionInfinityNorm() const; private: Evaluator* evaluator_; Vector position_; Vector direction_; // evaluation_point = Evaluator::Plus(position_, x * direction_); Vector evaluation_point_; // scaled_direction = x * direction_; Vector scaled_direction_; Vector gradient_; }; // Backtracking and interpolation based Armijo line search. This // implementation is based on the Armijo line search that ships in the // minFunc package by Mark Schmidt. // // For more details: http://www.di.ens.fr/~mschmidt/Software/minFunc.html class ArmijoLineSearch : public LineSearch { public: explicit ArmijoLineSearch(const LineSearch::Options& options); virtual ~ArmijoLineSearch() {} virtual void Search(double step_size_estimate, double initial_cost, double initial_gradient, Summary* summary); }; // Bracketing / Zoom Strong Wolfe condition line search. This implementation // is based on the pseudo-code algorithm presented in Nocedal & Wright [1] // (p60-61) with inspiration from the WolfeLineSearch which ships with the // minFunc package by Mark Schmidt [2]. // // [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed., Springer, 1999. // [2] http://www.di.ens.fr/~mschmidt/Software/minFunc.html. class WolfeLineSearch : public LineSearch { public: explicit WolfeLineSearch(const LineSearch::Options& options); virtual ~WolfeLineSearch() {} virtual void Search(double step_size_estimate, double initial_cost, double initial_gradient, Summary* summary); // Returns true iff either a valid point, or valid bracket are found. bool BracketingPhase(const FunctionSample& initial_position, const double step_size_estimate, FunctionSample* bracket_low, FunctionSample* bracket_high, bool* perform_zoom_search, Summary* summary); // Returns true iff final_line_sample satisfies strong Wolfe conditions. bool ZoomPhase(const FunctionSample& initial_position, FunctionSample bracket_low, FunctionSample bracket_high, FunctionSample* solution, Summary* summary); }; } // namespace internal } // namespace ceres #endif // CERES_NO_LINE_SEARCH_MINIMIZER #endif // CERES_INTERNAL_LINE_SEARCH_H_