// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/internal/eigen.h" #include "ceres/low_rank_inverse_hessian.h" #include "glog/logging.h" namespace ceres { namespace internal { LowRankInverseHessian::LowRankInverseHessian( int num_parameters, int max_num_corrections, bool use_approximate_eigenvalue_scaling) : num_parameters_(num_parameters), max_num_corrections_(max_num_corrections), use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling), num_corrections_(0), approximate_eigenvalue_scale_(1.0), delta_x_history_(num_parameters, max_num_corrections), delta_gradient_history_(num_parameters, max_num_corrections), delta_x_dot_delta_gradient_(max_num_corrections) { } bool LowRankInverseHessian::Update(const Vector& delta_x, const Vector& delta_gradient) { const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient); if (delta_x_dot_delta_gradient <= 1e-10) { VLOG(2) << "Skipping LBFGS Update, delta_x_dot_delta_gradient too small: " << delta_x_dot_delta_gradient; return false; } if (num_corrections_ == max_num_corrections_) { // TODO(sameeragarwal): This can be done more efficiently using // a circular buffer/indexing scheme, but for simplicity we will // do the expensive copy for now. delta_x_history_.block(0, 0, num_parameters_, max_num_corrections_ - 1) = delta_x_history_ .block(0, 1, num_parameters_, max_num_corrections_ - 1); delta_gradient_history_ .block(0, 0, num_parameters_, max_num_corrections_ - 1) = delta_gradient_history_ .block(0, 1, num_parameters_, max_num_corrections_ - 1); delta_x_dot_delta_gradient_.head(num_corrections_ - 1) = delta_x_dot_delta_gradient_.tail(num_corrections_ - 1); } else { ++num_corrections_; } delta_x_history_.col(num_corrections_ - 1) = delta_x; delta_gradient_history_.col(num_corrections_ - 1) = delta_gradient; delta_x_dot_delta_gradient_(num_corrections_ - 1) = delta_x_dot_delta_gradient; approximate_eigenvalue_scale_ = delta_x_dot_delta_gradient / delta_gradient.squaredNorm(); return true; } void LowRankInverseHessian::RightMultiply(const double* x_ptr, double* y_ptr) const { ConstVectorRef gradient(x_ptr, num_parameters_); VectorRef search_direction(y_ptr, num_parameters_); search_direction = gradient; Vector alpha(num_corrections_); for (int i = num_corrections_ - 1; i >= 0; --i) { alpha(i) = delta_x_history_.col(i).dot(search_direction) / delta_x_dot_delta_gradient_(i); search_direction -= alpha(i) * delta_gradient_history_.col(i); } if (use_approximate_eigenvalue_scaling_) { // Rescale the initial inverse Hessian approximation (H_0) to be iteratively // updated so that it is of similar 'size' to the true inverse Hessian along // the most recent search direction. As shown in [1]: // // \gamma_k = (delta_gradient_{k-1}' * delta_x_{k-1}) / // (delta_gradient_{k-1}' * delta_gradient_{k-1}) // // Satisfies: // // (1 / \lambda_m) <= \gamma_k <= (1 / \lambda_1) // // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues of // the true Hessian (not the inverse) along the most recent search direction // respectively. Thus \gamma is an approximate eigenvalue of the true // inverse Hessian, and choosing: H_0 = I * \gamma will yield a starting // point that has a similar scale to the true inverse Hessian. This // technique is widely reported to often improve convergence, however this // is not universally true, particularly if there are errors in the initial // jacobians, or if there are significant differences in the sensitivity // of the problem to the parameters (i.e. the range of the magnitudes of // the components of the gradient is large). // // The original origin of this rescaling trick is somewhat unclear, the // earliest reference appears to be Oren [1], however it is widely discussed // without specific attributation in various texts including [2] (p143/178). // // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms Part II: // Implementation and experiments, Management Science, // 20(5), 863-874, 1974. // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999. search_direction *= approximate_eigenvalue_scale_; } for (int i = 0; i < num_corrections_; ++i) { const double beta = delta_gradient_history_.col(i).dot(search_direction) / delta_x_dot_delta_gradient_(i); search_direction += delta_x_history_.col(i) * (alpha(i) - beta); } } } // namespace internal } // namespace ceres